缸内直喷汽油机排气微粒物理化学特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机动车排放法规的日益严格,缸内直喷(GDI)汽油机颗粒物排放已成为近年来关注的热点。论文针对GDI汽油机颗粒物排放的相关基础问题,开展了数量、粒径分布、微观结构及颗粒相多环芳香烃(PAHs)排放等物理化学特性的研究,并考察了燃烧组织措施对其影响规律;同时,采用数值模拟方法进行了颗粒物形成历程及空燃比对其影响规律的初步探索。本文研究工作将进一步揭示GDI汽油机颗粒物本质,为采取有效措施降低其排放提供理论依据。具体研究成果如下:
     1. GDI汽油机排气颗粒物除怠速工况外,均呈包括核态和积聚态的双峰分布,其中核态数量较多,积聚态数量较少;与气道喷射(PFI)汽油机相比,其质量浓度、表面积浓度以及积聚态数量在多数工况下均较高。此外,其颗粒物排放与燃烧组织措施之间存在密切的相关性。采用稀混合气和推迟点火定时均可显著降低颗粒物数量,合理优化喷油定时和采用EGR技术均可降低积聚态颗粒物数量。
     2. GDI汽油机排气颗粒物主要由准球形基本碳粒子团聚而成,呈不规则几何形状,组成元素主要是碳(C)、氧(O)元素,另外还含有多种金属和非金属元素,且具有典型的自相似分形特性,分形维数介于1.36-2.38之间。燃烧组织措施对颗粒物分形维数影响较大,采用计量比混合气和推迟点火定时均会导致其增大,加入EGR则会使其减小。
     3.基本碳粒子主要为洋葱状微晶碳结构,及少量无序和无定形结构。其粒径分布类似高斯分布,峰值在20-35nm,微晶尺寸呈单峰分布,峰值在0.4~0.6nm,70%以上小于1nm,层间距分布在0.28~0.58nm,70%以上在0.34-0.44nm,曲率在1~2之间,峰值在1.2~1.6。此外,基本碳粒子微观结构参数与燃烧组织措施密切相关。采用计量比混合气、提前点火定时和喷油定时以及加入EGR均会使粒径增大;采用浓或稀混合气、推迟点火定时和喷油定时以及加入EGR均会使层间距增加;采用计量比混合气、推迟点火定时、提前喷油定时和加入EGR均会使曲率增大。
     4.采用电子能量损失谱(EELS)考察了燃烧组织措施对GDI汽油机颗粒物石墨化程度的影响规律。结果发现,采用计量比混合气、推迟点火定时、提前喷油定时以及加入EGR均会降低颗粒物石墨化程度,导致其氧化活性增加。
     5.颗粒相的PAHs排放规律研究表明,4环结构PAHs排放量最高,其次是5环结构PAHs,两者之和占总PAHs排放量58.70%以上,2环结构PAHs排放量最少,不到总PAHs排放量的7.50%。采用稀混合气、提前喷油时刻和减小EGR均可降低总PAHs排放量。
     6.采用AVL-Fire软件,建立了碳烟模型。模拟结果表明,碳烟在火焰传播过程中经历了生成与氧化的过程,其形成与燃空当量比以及燃烧温度密切相关。
With the increasingly strict requirements for vehicle emission regulations, theparticulate emission from gasoline direct injection (GDI) engine has been receivedconsiderable attention in recent years. In this dissertation, series of investigations havebeen performed to shed light on the physicochemical characteristics of particulateemission from GDI engine, including particle number, particle size distribution,microstructure and particle-phase polycyclic aromatic hydrocarbons (PAHs), and theeffect of combustion control parameters on them. Meanwhile, the three-dimensionalnumerical simulation has been adopted to explore preliminarily the formationhistories of particulates and the effect of air/fuel ratio. These research works willfurther reveal the essence of particulates from GDI engine, and provide theoreticalbasis for adopting effective measures to reduce particulate emission. The majorcontributions are listed as follow:
     1. Except for idle operation condition, exhaust particulates from GDI engine are ofbimodal distribution consisting of nucleation mode and accumulation mode particle,where the particle number with nucleation mode is more than that with accumulationmode. The mass concentration, surface area concentration and the amount ofaccumulation mode particles from GDI engine are generally higher as compared tothose from PFI engine in most operation condition. Furthermore, there is closerelationship between the particulate emission from GDI engine and the combustioncontrol parameters. The total particle number is obviously decreased with adoptinglean air/fuel mixture or delaying spark timing, and the number of accumulation modeparticle is decreased with reasonably optimizing injection time or adopting exhaustgas recirculation (EGR) technology.
     2. The exhaust particulates from GDI engine are fractal-like agglomeratesconsisting of quasi-sphere primary particles, which mainly compose of carbon (C),oxygen (O) element, and many kinds of trace metal and nonmetal elements. Theseparticles possess typical self-similarity fractal character, and the fractal dimension isin the range of1.36~2.38. Moreover, combustion control parameters have greatinfluence on the fractal dimension, which will increase with using stoichiometricair/fuel mixture or delaying spark timing, and decrease with introducing EGR intocylinder.
     3. Besides a small amount of disordered and amorphous structure, onion-shellcrystallitic carbon structure is found to be dominant in primary particles. The sizedistribution of primary particles is similar to Gauss distribution with the peak value of particle diameter in the range of20~35nm. Fringe length of primary particles shows aunimodal distribution with the maximum value in the range of0.4~0.6nm, and70%of that is less than1nm. Fringe separation of primary particles is in the range of0.28~0.58nm, with more than70%of that locating in0.34~0.44nm. Tortuosity ofprimary particles spreads from1to2with peak value in the ranger of1.2~1.6.
     The microstructure of primary particle is closely related to combustion controlparameter. Adopting stoichiometric air/fuel mixture, advancing spark timing andinjection timing and introducing EGR will cause the growth of primary particle.Fringe separation obviously increases while employing lean or rich air/fuel mixtures,delaying spark timing and injection timing and introducing EGR. Meanwhile,Adopting stoichiometric air/fuel mixture, delaying spark timing, advancing injectiontiming and introducing EGR will bring about bigger bending of primary particlemicrocrystal.
     4. An electron energy loss spectroscopy was employed to estimate the effect ofcombustion control parameter on the graphitization degree of exhaust particulates.The results indicate that adopting stoichiometric air/fuel mixture, delaying sparktiming, advancing injection timing and introducing EGR will decline thegraphitization degree, resulting in an enhanced oxidation activity of particles.
     5. Particle-phase PAHs were investigated, and the results show that the emissions offour-ring PAHs is highest, followed by five-ring PAHs, and the subtotal emissions ofboth account for more than58.70%of total PAHs. The lowest emissions of PAHs aretwo-ring PAHs, which account for less than7.5%of total PAHs. Furthermore,Adopting lean air/fuel mixture, advancing injection timing or reducing EGR will leadto a decrease in total PAHs emissions.
     6. A numerical simulation model for soot particles of GDI engine was establishedby AVL-Fire software. The results show that the soot simultaneously undergoes theformation and oxidation process during the flame propagation, and its formation isclosely related to fuel/air equivalent ratio and combustion temperature.
引文
[1] Http://Auto.Cntv.Cn/20110919/103887.Shtml
    [2]马艳丽,高月娥,我国未来汽车保有量情景预测研究,公路交通科技,2007,24(1):121-125
    [3] Yang F, Yu L, Song G, et al.,, Application of Small Sampling Approach toEstimating Vehicle Mileage Accumulations for Beijing, TransportationResearch Record: Journal of the Transportation Research Board,2004,1880(-1):77-82
    [4] Spicher U, Reissing J, Kech J M, et al.,, Gasoline Direct-Injection(GDI)Engines-Development Potentialities, SAE Paper,1999-01-2938,1999
    [5] Zhao F, Lai M C, Harrington D L, Automotive Spark-Ignited Direct-InjectionGasoline Engines, Prog Energ Combust,1999,25(5):437-562.
    [6] Y T, Combustion Characteristics and Research Topics of in-CylinderDirect-Injection Gasoline Engines, proceedings of the73rd JSME Annualmeeting (V)(in japanese)1996,317-318
    [7] Tagagi Y, The Role of Mixture Formation in Improving Fuel Economy andReducing Emissions of Automotive Si Engines, FISITA Technical Paper No,P0109,1996
    [8] Yang J, Kenney T, Some Concepts of DISIi Engine for High Fuel Efficiencyand Low Emissions, SAE paper2002-01-2747,2002
    [9] Anderson R W, Yang J, Brehob D D, et al., Understanding theThermodynamics of Direct Injection Spark-Ignition (Disi) CombustionSystems: An Analytical and Experimental Investigation, SAE transactions,1996,105:2195-2204
    [10] Yang J, Anderson R W, Fuel Injection Strategies to Increase Full-LoadTorque Output of a Direct-Injection Si Engine, SAE transactions,1998,107:498-505
    [11] Johnson E, Stovell C, Matthews R D, et al., Effects of Fuel Parameters on FTPEmissions of a1998TOYOTA with a Direct Injection Spark Ignition Engine,SAE paper2000-01-1907,2000
    [12] Ortmann R, Arndt S, Raimann J, et al., Methods and Analysis of FuelInjection, Mixture Preparation and Charge Stratification in Different DirectInjected Si Engines, SAE transactions,2001,110(3):826-833
    [13] Zhao F Q, Lai M C, Harrington D L, A Review of Mixture Preparation andCombustion Control Strategies for Spark-Ignited Direct-Injection GasolineEngines, SAE transactions,1997,106(3):861-904
    [14] Queiroz C, Tomanik E, Gasoline Direct-Injection Engines-a BibliographicalReview, SAE Paper973113,1997
    [15] Maricq M M, Podsiadlik D H, Brehob D D, et al., Particulate Emissions Froma Direct-Injection Spark Ignition (DISI) Engine, SAE Paper1999-01-1530,1999
    [16] Price P, Stone R, Collier T, et al., Particulate Matter and HydrocarbonEmissions Measurements: Comparing First and Second Generation DISI withPFI in Single Cylinder Optical Engines, SAE Paper2006-01-1263,2006
    [17] Zervas E, Dorlhène P, Daviau R, et al., Repeatability of Fine ParticleMeasurement of Diesel and Gasoline Vehicles Exhaust Gas, SAEPaper2004-01-1983,2004
    [18] Maricq M, Chemical Characterization of Particulate Emissions From DieselEngines: A Review, J Aerosol Sci,2007,38(11):1079-1118
    [19] Wong C P, Chan T L, Leung C W, Characterisation of Diesel Exhaust ParticleNumber and Size Distributions Using Mini-Dilution Tunnel andEjector-Diluter Measurement Techniques, Atmos Environ,2003,37(31):4435-4446
    [20] Nogi T, Shiraishi T, Nakayama Y, et al., Stability Improvement of Direct FuelInjection Engine Under Lean Combustion Operation, SAE transactions,1998,107:2305-2311
    [21] Aakko P, Nylund N O, Particle Emissions at Moderate and Cold TemperaturesUsing Different Fuels, SAE Paper2003-01-3285,2003
    [22] Kwon Y, Heinze P, Stradling R, et al., The Effect of Fuel Sulfur Content Onthe Exhaust Emissions From a Lean-Burn Gasoline Direct-Injection VehicleMarketed in Europe, SAE Paper1999-01-3585,1999
    [23] Mohr M, Lehmann U, Margaria G, Acea Program On the Emissions of FineParticulates From Passenger Cars (2) Part1: Particle Characterization of aWide Range of Engine Technologies, SAE Paper2003-01-1889,2003
    [24] Kokko J, Rantanen L, Pentik inen J, et al., Reduced Particulate Emissionswith Reformulated Gasoline, SAE Paper2000-01-2017,2000
    [25] Mohr M, Steffen D, Forss A M, Particulate Emissions of Gasoline Vehiclesand Influence of the Sampling Procedure, SAE Paper2000-01-1137,2000
    [26] Bernstein J A, Alexis N, Barnes C, et al., Health Effects of Air Pollution, JAllergy Clin Immun,2004,114(5):1116-1123
    [27] Whitby K T, Cantrell B, Atmospheric Aerosols-Characteristics andMeasurement, International Conference on Environmental Sensing andAssessment, Las Vegas, Nev, United States,14-19Sept.1975. pp.129-1to629-1.1976
    [28] Knox R B, Suphioglu C, Taylor P, et al., Major Grass Pollen Allergen Lol P1Binds to Diesel Exhaust Particles: Implications for Asthma and Air Pollution,Clinical&Experimental Allergy,1997,27(3):246-251
    [29] Peters A, von Klot S, Heier M, et al., Exposure to Traffic and the Onset ofMyocardial Infarction, The New England journal of medicine,2004,351(17):1721
    [30] O'Connor G T, Neas L, Vaughn B, et al., Acute Respiratory Health Effects ofAir Pollution On Children with Asthma in Us Inner Cities, J Allergy ClinImmun,2008,121(5):1133-1139
    [31] Mazzarella G, Ferraraccio F, Prati M V, et al., Effects of Diesel ExhaustParticles On Human Lung Epithelial Cells: An in Vitro Study, Resp Med,2007,101(6):1155-1162
    [32] Murphy S A, Bérubé K A, Pooley F D, et al., The Response of LungEpithelium to Well Characterised Fine Particles, Life Sci,1998,62(19):1789-1799
    [33] Group D W, Diesel Exhaust: Critical Analysis of Emissions, Exposure, andHealth Effects, Special Report. Cambridge, MA: Health Effects Institute,1995
    [34] Lipsett M, Campleman S, Occupational Exposure to Diesel Exhaust and LungCancer: A Meta-Analysis, Am J Public Health,1999,89(7):1009
    [35] Kagawa J, Health Effects of Diesel Exhaust Emissions--A Mixture of AirPollutants of Worldwide Concern, Toxicology,2002,181:349-353
    [36] Eastwood P, Particulate Emissions From Vehicles, England: John Wiley&sons Ltd,2008
    [37] Kittelson D B, Engines and Nanoparticles:: A Review, J Aerosol Sci,1998,29(5-6):575-588
    [38] Burtscher H, Physical Characterization of Particulate Emissions From DieselEngines: A Review, J Aerosol Sci,2005,36(7):896-932
    [39]刘忠长,何平,车用直喷柴油机排气微粒的排放规律,内燃机学报,1997,15(004):430-434
    [40]程至远,解建光,内燃机排放与净化,北京:北京理工大学出版社,2000
    [41] Figler B, Sahle W, Krantz S, et al., Diesel Exhaust Quantification by ScanningElectron Microscope with Special Emphasis On Particulate Size Distribution,Sci Total Environ,1996,193(2):77-83
    [42]王桂华,王钧效,张锡朝等,柴油机排气微粒中SOF成分的试验研究,内燃机学报,2004,22(2):110-115
    [43] Funkenbusch E F, Leddy D G, Johnson J H, et al., Characterization of theSoluble Organic Fraction of Diesel Particulate Matter, SAE Paper790418,1979
    [44] Villinger J, Federer W, Praun S, Continuous Pre-and Post-CatalystHydrocarbon and Nitrogen Compounds-Monitoring of Various DeNOxReactions by Twin Chemical Ionization Mass Spectrometry, SAEPaper2002-01-1679,2002
    [45] Wang Y F, Huang K L, Li C T, et al., Emissions of Fuel Metals Content Froma Diesel Vehicle Engine, Atmos Environ,2003,37(33):4637-4643
    [46]宋崇林,王玉秋,柴油机排气颗粒中有机组分的分离方法及微量金属的测定,天津大学学报:自然科学与工程技术版,2000,33(6):707-710
    [47] Davis A, Road Transport and Health, D R Morgan, S Robins (Editors),London: British Medical Association,1997
    [48] A S, Airborne Particles and their Effevts On Health' in Particulate Matter:Properties and Effects upon Health, Maynard R.L., Howard C.V.(Editors):Bios Scientific Publishers,1999
    [49] Donaldson K, Macnee W, The Mechanism of Lung Injury Caused by Pm10, RM Harrison, R E Hester(Editors), Air Pollution and Health, England, RSCpublishing,1998
    [50]陈薛,宋崇林,张延峰等,柴油机微粒中直接致突变物对细胞Dna的损伤,卫生毒理学杂志,2001,15(004):222-224
    [51] Crebelli R, Conti L, Crochi B, et al., The Effect of Fuel Composition On theMutagenicity of Diesel Engine Exhaust, Mutation Research Letters,1995,346(3):167-172
    [52] Hecht S S, Potential Carcinogenic Effect of Polynuclear AromaticHydrocarbons and Nitroaromatics in Mobile Source Emission, Air Pollutionthe Automobile and Public Health,1988,555
    [53] Flagan R C, Electrical Techniques, Aerosol Measurement: Principles,Techniques, and Applications, England: Wiley,2001
    [54] Montajir R M, Kawai T, Goto Y, et al., Thermal Conditioning of Exhaust Gas:Potential for Stabilizing Diesel Nano-Particles, SAE Paper2005-01-0187,2005
    [55] Kittelson D B, Engines and Nanoparticles:: A Review, J Aerosol Sci,1998,29(5-6):575-588
    [56] Ishiguro T, Yakatori Y, Akihama K, Microstructure of Diesel Soot ParticlesProbed by Electron Microscopy: First Observation of Inner Core and OuterShell, Combust Flame,1997,108(1):231
    [57]董素荣,现代柴油机全气缸取样系统开发及缸内微粒理化特性研究,博士论文,天津大学,2007
    [58] Lee K O, Zhu J, Ciatti S, et al., Sizes, Graphitic Structures and FractalGeometry of Light-Duty Diesel Engine Particulates,SAE Paper2003-01-3169,2003
    [59] Zhu J, Lee K O, Yozgatligil A, et al., Effects of Engine Operating ConditionsOn Morphology, Microstructure, and Fractal Geometry of Light-Duty DieselEngine Particulates, Proceedings of the Combustion Institute,2005,30(2):2781-2789
    [60] Luo Lang, Ph.D, In-cylinder particulate size distribution measurements in adirect-injection diesel engine, University of Minnesota,1991
    [61]祁士华,成玉,大气气溶胶物质来源研究进展,环境科学进展,1999,7(006):26-31
    [62] Lough G C, Schauer J J, Park J S, et al., Emissions of Metals Associated withMotor Vehicle Roadways, Environ Sci Technol,2005,39(3):826-836
    [63] Okada S, Kweon C B, Stetter J C, et al., Measurement of Trace MetalComposition in Diesel Engine Particulate and its Potential for Determining OilConsumption: Icpms (Inductively Coupled Plasma Mass Spectrometry) andAtofms (Aerosol Time of Flight Mass Spectrometer) Measurements, SAEtransactions,2003,112(3):338-351
    [64] Hahn D W, Lunden M M, Detection and Analysis of Aerosol Particles byLaser-Induced Breakdown Spectroscopy, Aerosol Science&Technology,2000,33(1-2):30-48
    [65] Hybl J D, Lithgow G A, Buckley S G, Laser-Induced BreakdownSpectroscopy Detection and Classification of Biological Aerosols, ApplSpectrosc,2003,57(10):1207-1215
    [66] Hybl J D, Tysk S M, Berry S R, et al., Laser-Induced Fluorescence-Cued,Laser-Induced Breakdown Spectroscopy Biological-Agent Detection, ApplOptics,2006,45(34):8806-8814
    [67] Braun A, Shah N, Huggins F E, et al., A Study of Diesel PM with X-RayMicrospectroscopy, Fuel,2004,83(7-8):997-1000
    [68] Berube K A, Jones T P, Williamson B J, et al., PhysicochemicalCharacterisation of Diesel Exhaust Particles: Factors for Assessing BiologicalActivity, Atmos Environ,1999,33(10):1599-1614
    [69] Wood K V, Ciupek J D, Cooks R G, et al., Characterization of DieselParticulates by Mass Spectrometry Including Ms-Ms, SAE Paper821217,1982
    [70] Tan P V, Malpica O, Evans G J, et al., Chemically-Assigned Classification ofAerosol Mass Spectra, J Am Soc Mass Spectr,2002,13(7):826-838
    [71] Funkenbusch E F, Leddy D G, Johnson J H, et al., The Characterization of theSoluble Organic Fraction of Diesel Particulate Matter, SAE Paper790418,1979
    [72] Riddle S G, Jakober C A, Robert M A, et al., Large Pahs Detected in FineParticulate Matter Emitted From Light-Duty Gasoline Vehicles, AtmosEnviron,2007,41(38):8658-8668
    [73] Spezzano P, Picini P, Cataldi D, et al., Particle-Phase Polycyclic AromaticHydrocarbon Emissions From Non-Catalysed, in-Use Four-Stroke Scooters,Environ Monit Assess,2007,133(1):105-117
    [74] Fraser M P, Cass G R, Simoneit B, Gas-Phase and Particle-Phase OrganicCompounds Emitted From Motor Vehicle Traffic in a Los Angeles RoadwayTunnel, Environ. Sci. Technol,1998,32(14):2051-2060
    [75] Clark N N, Atkinson C M, Mckain D L, et al., Speciation of HydrocarbonEmissions From a Medium Duty Diesel Engine, SAE Paper960322,1996
    [76] Lepperhoff G, Hxthwohl G, Methods to Analyze Non-Regulated EmissionsFrom Diesel Engines, SAE Paper941952,1994
    [77] Lanning L A, Smith K W, Tennant C J, A New Method for Diesel HCCollection and Speciation, SAE Paper2000-01-2951,2000
    [78] Schulz H, Bandeira De Melo G, Ousmanov F, Volatile Organic Compoundsand Particulates as Components of Diesel Engine Exhaust Gas, CombustFlame,1999,118(1-2):179-190.
    [79] Schauer J J, Kleeman M J, Cass G R, et al., Measurement of Emissions FromAir Pollution Sources.2. C1through C30Organic Compounds From MediumDuty Diesel Trucks, Environ Sci Technol,1999,33(10):1578-1587
    [80] Tsai J H, Chen S J, Huang K L, et al., Pm, Carbon, and Pah Emissions From aDiesel Generator Fuelled with Soy-Biodiesel Blends, J Hazard Mater,2010,179(1):237-243
    [81] Menzie C A, Potocki B B, Santodonato J, Exposure to Carcinogenic Pahs inthe Environment, Environ Sci Technol,1992,26(7):1278-1284
    [82] Jacob J, Karcher W, Belliardo J J, et al., Polycyclic Aromatic Compounds ofEnvironmental and Occupational Importance, Fresenius' Journal of AnalyticalChemistry,1986,323(1):1-10
    [83] Ma L, Chu S, Cheng H, et al., Polycyclic Aromatic HydrocarbonsContamination in Subsoil From Outskirts of Beijing, People's Republic ofChina, Geoderma,2005,129(3-4):200-210
    [84]中国环境优先监测研究课题组编,优先控制污染物,北京:中国环境科学出版社,1989
    [85]空气和废气监测分析方法编委会,空气和废气监测分析方法,北京:中国环境科学出版社,2003
    [86] Masih J, Masih A, Kulshrestha A, et al., Characteristics of PolycyclicAromatic Hydrocarbons in Indoor and Outdoor Atmosphere in the NorthCentral Part of India, J Hazard Mater,2010,177(1-3):190-198
    [87]李军,张干,祁士华等,广州市大气中颗粒态多环芳烃(PAHs)的主要污染源,环境科学学报,2004,24(4):661-666
    [88]严传俊,范玮,燃烧学,西安:西北工业大学出版社,2005
    [89]陈生齐,柴油机燃烧过程中多环芳香烃生成机理的多维数值研究,硕士学位论文,天津大学,2008
    [90]解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,1995
    [91] Raj A, Celnik M, Shirley R, et al., A Statistical Approach to Develop aDetailed Soot Growth Model Using Pah Characteristics, Combust Flame,2009,156(4):896-913
    [92] Wang H, Frenklach M, A Detailed Kinetic Modeling Study of AromaticsFormation in Laminar Premixed Acetylene and Ethylene Flames, Combustionand Flame,1997,110(1-2):173-221
    [93]宋景景,柴油机燃烧过程中多环芳香烃生成机理的研究,硕士学位论文,天津大学,2007
    [94] Thomas Mckinnon J, Ho Thermodynamic and Kinetic Issues in the Formationand Oxidation of Aromatic Species ward J B, The Roles of Pah and Acetylenein Soot Nucleation and Growth, Symposium (International) on Combustion,1992,24(1):965-971
    [95] Melius C F, Miller J A, Evleth E M, Unimolecular Reaction MechanismsInvolving C3H4, C4H4, and C6H6Hydrocarbon Species, Symposium(International) on Combustion,1992,24(1):621-628
    [96] Colket M B, Hall R J, Smooke M D, Mechanistic Models of Soot Formation,UTRC report UTRC93-28,1993
    [97] Lindstedt P, Maurice L, Meyer M, Thermodynamic and Kinetic Issues in theFormation and Oxidation of Aromatic Species, Faraday Discuss.,2001,119:409-432
    [98] Melius C F, Colvin M E, Marinov N M, et al., Reaction Mechanisms inAromatic Hydrocarbon Formation Involving the C5H5CyclopentadienylMoiety, Symposium (International) on Combustion,1996,26(1):685-692
    [99] Minutolo P, Gambi G, D'Alessio A, et al., Spectroscopic Characterisation ofCarbonaceous Nanoparticles in Premixed Flames, Atmos Environ,1999,33(17):2725-2732
    [100] Schuetz C A, Frenklach M, Nucleation of Soot: Molecular DynamicsSimulations of Pyrene Dimerization, Proceedings of the Combustion Institute,2002,29(2):2307-2314
    [101] D'Anna A, Violi A, D'Alessio A, et al., A Reaction Pathway for NanoparticleFormation in Rich Premixed Flames, Combustion and Flame,2001,127(1-2):1995-2003
    [102] Abdul I S, Kittelson D, Graskow B, et al., Diesel Exhaust Particle Size:Measurement Issues and Trends, SAE Paper980525,1998
    [103] Vaz J M, Screening Direct Analysis of Pahs in Atmospheric Particulate Matterwith Spme, Talanta,2003,60(4):687-693
    [104]梁汉昌,痕量物质分析气相色谱法,北京:中国石化出版社,2000
    [105] Gundel L A, Dalsey J M, de Carvalho L R F, et al., Polar Organic Matter inAirborne Particles: Chemical Characterization and Mutagenic Activity,Environ Sci Technol,1993,27(10):2112-2119
    [106]朱广艳,PTV用于柴油机燃烧过程中气/颗粒相多环芳香烃分布研究,硕士学位论文,天津大学,2010
    [107]张华伟,柴油机燃烧过程中多环芳香烃测量及演变规律的实验研究,博士学位论文,天津大学,2011
    [108] Westerholm R, Li H, A Multivariate Statistical Analysis of Fuel-RelatedPolycyclic Aromatic Hydrocarbon Emissions From Heavy-Duty DieselVehicles, Environ Sci Technol,1994,28(5):965-972
    [109]邹建国,钟秦,柴油机排放颗粒物组成分析,中国环境监测,2006,22(3):23-26
    [110] Lawson D R, Gurevich M, The Doe/Nrel Environmental Science and HealthEffects Program-an Overview, SAE Paper1999-01-2249,1999
    [111] Fujita E, Watson J G, Chow J C, et al., Northern Front Range Air QualityStudy, Volume C: Source Apportionment and Simulation Methods andEvaluation, Final Report Prepared for Colorado State University,1998
    [112] Gildemeister A E, Hopke P K, Kim E, Sources of Fine Urban ParticulateMatter in Detroit, Mi, Chemosphere,2007,69(7):1064-1074
    [113] Gupta T, Kothari A, Srivastava D K, et al., Measurement of Number and SizeDistribution of Particles Emitted From a Mid-Sized Transportation MultipointPort Fuel Injection Gasoline Engine, Fuel,2010,89(9):2230-2233
    [114] Andersson J, Wedekind B, Hall D, et al., Detr/Smmt/Concawe ParticulateResearch Program: Light-Duty Results, SAE Paper2001-01-3577,2001
    [115] Aakko P, Nylund N O, Particle Emissions at Moderate and Cold TemperaturesUsing Different Fuels, SAE Paper2001-01-3285,2003
    [116] Ntziachristos L, Mamakos A, Samaras Z, et al., Overview of the EuropeanParticulates Project On the Characterization of Exhaust Particulate EmissionsFrom Road Vehicles: Results for Light-Duty Vehicles, SAE transactions,2004,113(4):1354-1373
    [117] Cole R L, Poola R B, Sekar R, Gaseous and Particulate Emissions From aVehicle with a Spark-Ignition, Direct-Injection Engine, SAEPaper1999-01-1282,1999
    [118] Smallwood G, Snelling D, Gulder O, et al., Transient Particulate MatterMeasurements From the Exhaust of a Direct Injection Spark IgnitionAutomobile, SAE Paper2001-01-3581,2001
    [119] Graskow B R, Kittelson D B, Ahmadi M R, et al., Exhaust ParticulateEmissions From a Direct Injection Spark Ignition Engine, SAEPaper1999-01-1145,1999
    [120] Graskow B R, Kittleson D, Ahmadi M, et al., Exhaust Particulate EmissionsFrom Two Port-Fuel-Injected, Spark-Ignition Engines, SAEPaper1999-01-1144,1999
    [121] Graskow B R, Kittelson D B, Abdul-Khalek I S, et al., Characterization ofExhaust Particulate Emissions From a Spark Ignition Engine, SAEPaper980528,1998
    [122] Hedge M, Weber P, Gingrich J, et al., Effect of EGR On Particle EmissionsFrom a GDI Engine, SAE Paper2011-01-0636,2011
    [123] Samuel S, Hassaneen A, Morrey D, Particulate Matter Emissions and the Roleof Catalytic Converter During Cold Start of Gdi Engine, SAE Paper,2010-01-2122,2010
    [124] Storey J, Barone T, Norman K, et al., Ethanol Blend Effects On DirectInjection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions, SAEInt. J. Engines,2010,3(2):650-659
    [125] Kubach H, Gindele J, Spicher U, Investigations of Mixture Formation andCombustion in Gasoline Direct Injection Engines, SAE Paper,2001-01-3647,2001
    [126] Symonds J, Price P, Williams P, et al., Density of Particles Emitted From aGasoline Direct Injection Engine,12th ETH conference on combustiongenerated nanoparticles. Zurich,2008
    [127] F rnlund J, Holman C, K geson P, Emissions of Ultrafine Particles FromDifferent Types of Light Duty Vehicles, Swedish National RoadAdministration Publication,2001,10:16
    [128] Kwon Y K, Morgan T D B, Scorletti P, et al., Emissions Response of aEuropean Specification Direct-Injection Gasoline Vehicle to a Fuels MatrixIncorporating Independent Variations in Both Compositional and DistillationParameters, SAE Paper1999-01-3663,1999
    [129] Price P, Twiney B, Stone R, et al., Particulate and Hydrocarbon EmissionsFrom a Spray Guided Direct Injection Spark Ignition Engine with OxygenateFuel Blends, SAE Paper2007-01-0472,2007
    [130]刘君华,虚拟仪器图形化编程语言Labview教程,西安:西安电子科技大学出版社,2001
    [131] Heywood J B, Internal Combustion Engine Fundamentals, USA:McGraw-Hill Book Co,1988
    [132]张宾,全气缸取样装置中燃烧分析系统及多脉冲喷油模式的开发,硕士学位论文,天津大学,2007
    [133] Lancaster D R, Kireger R B, Lienesch J H, Measurement and Analysis ofEngine Pressure Data, SAE Paper750026,1975
    [134] Caris D F, Nelson E E, A New Look at High Compression Engines, SAETransactions,1959,67:112-124
    [135] Rassweiler G M, Withrow L, Motion Pictures of Engine Flames Correlatedwith Pressure Cards, SAE Paper380139,1938
    [136] Heywood J B, Higgins J M, Watts P A, et al., Development and Use of aCycle Simulation to Predict SI Engine Efficiency and NOx Emissions, SAEPaper790291,1979
    [137]秦静,谢辉,张岩等,四冲程汽油机Cai燃烧放热率模型研究,内燃机学报,2006,24(3):242-249
    [138]周龙宝,刘巽俊,高宗英,内燃机学,北京:机械工业出版社,2005
    [139]刘永长,内燃机原理,武汉:华中科技大学出版社,2001
    [140] Http://www.Cambustion.Com/Sites/Default/Files/Instruments/Dms/Dms01V05.Pdf
    [141]张炜,柴油机缸内微粒的微观结构、表面官能团及氧化特性研究,博士学位论文,天津大学,2010
    [142] Berger S D, Mckenzie D R, Martin P J, Eels Analysis of VacuumArc-Deposited Diamond-Like Films, Phil Mag Lett,1988,57(6):285-290
    [143] Yuan J, Brown L M, Investigation of Atomic Structures of Diamond-LikeAmorphous Carbon by Electron Energy Loss Spectroscopy, Micron,2000,31(5):515-525
    [144]鲁占灵,张兵临,姚宁等,非晶碳膜中sp2和sp3相的检测方法,材料导报,2006,20(6):98-101
    [145]张志力,Brydson R,Westwood A等,类玻璃碳材料的EELS分析,稀有金属材料与工程,2007,36(A02):757-759
    [146] Vaaraslahti K, Keskinen J, Giechaskiel B, et al., Effect of Lubricant On theFormation of Heavy-Duty Diesel Exhaust Nanoparticles, Environ Sci Technol,2005,39(21):8497-8504
    [147] Kayes D, Hochgreb S, Mechanisms of Particulate Matter Formation inSpark-Ignition Engines.1. Effect of Engine Operating Conditions, Environ.Sci. Technol,1999,33(22):3957-3967
    [148] Vander Wal R L, Tomasek A J, Soot Oxidation: Dependence upon InitialNanostructure, Combust Flame,2003,134(1-2):1-9
    [149] Alfè M, Apicella B, Barbella R, et al., Structure-Property Relationship inNanostructures of Young and Mature Soot in Premixed Flames, Proceedingsof the Combustion Institute,2009,32(1):697-704
    [150] Vander Wal R L, Mueller C J, Initial Investigation of Effects of FuelOxygenation On Nanostructure of Soot From a Direct-Injection Diesel Engine,Energ Fuel,2006,20(6):2364-2369
    [151] Su D S, Jentoft R E, Müller J O, et al., Microstructure and OxidationBehaviour of Euro Iv Diesel Engine Soot: A Comparative Study withSynthetic Model Soot Substances, Catal Today,2004,90(1):127-132
    [152] Vander Wal R L, Soot Nanostructure: Definition, Quantification andImplications, SAE transactions,2005,114(4):429-436
    [153] Song J, Alam M, Boehman A L, et al., Examination of the Oxidation Behaviorof Biodiesel Soot, Combust Flame,2006,146(4):589-604
    [154] Vander Wal R L, Bryg V M, Hays M D, Fingerprinting Soot (Towards SourceIdentification): Physical Structure and Chemical Composition, J Aerosol Sci,2010,41(1):108-117
    [155] Palotás á B, Rainey L C, Sarofim A F, et al., Effect of Oxidation On theMicrostructure of Carbon Blacks, Energ Fuel,1996,10(1):254-259
    [156] Coury C, Dillner A M, A Method to Quantify Organic Functional Groups andInorganic Compounds in Ambient Aerosols Using Attenuated TotalReflectance Ftir Spectroscopy and Multivariate Chemometric Techniques,Atmos Environ,2008,42(23):5923-5932
    [157] Melton T R, Inal F, Senkan S M, The Effects of Equivalence Ratio On theFormation of Polycyclic Aromatic Hydrocarbons and Soot in PremixedEthane Flames, Combust Flame,2000,121(4):671-678
    [158] Song J, Effect of Fuel Formulation On Soot Properties and Regeneration ofDiesel Particulate Filters, USA: ProQuest Information and Learning Company,2005
    [159] Vander Wal R L, Tomasek A J, Soot Nanostructure: Dependence uponSynthesis Conditions, Combust Flame,2004,136(1):129-140
    [160] Smith D M, Akhter M S, Jassim J A, et al., Studies of the Structure andReactivity of Soot, Aerosol Sci Tech,1989,10(2):311-325
    [161] Fernandez-Alos V, Watson J K, Wal R, et al., Soot and Char MolecularRepresentations Generated Directly From Hrtem Lattice Fringe Images UsingFringe3D, Combust Flame,2011,158(9):1807-1813
    [162] Farias T L, K ylü ü, Carvalho M G, Effects of Polydispersity ofAggregates and Primary Particles On Radiative Properties of Simulated Soot,Journal of Quantitative Spectroscopy and Radiative Transfer,1996,55(3):357-371
    [163] Brasil A M, Farias T L, Carvalho M G, A Recipe for Image Characterizationof Fractal-Like Aggregates, J Aerosol Sci,1999,30(10):1379
    [164] Schauer J J, Lough G C, Shafer M M, et al., Characterization of MetalsEmitted From Motor Vehicles, Health Effects Institude,2006,88
    [165] Koeylue U, Xing Y, Rosner D E, Fractal Morphology Analysis ofCombustion-Generated Aggregates Using Angular Light Scattering andElectron Microscope Images, Langmuir,1995,11(12):4848-4854
    [166] Lee K O, Zhu J, Ciatti S, et al., Sizes, Graphitic Structures and FractalGeometry of Light-Duty Diesel Engine Particulates, SAE Paper2003-01-3169,2003
    [167]王磊,正庚烷燃烧过程中柴油机缸内微粒微观形貌及结构的研究,硕士学位论文天津大学,2011
    [168] Wentzel M, Gorzawski H, Naumann K H, et al., Transmission ElectronMicroscopical and Aerosol Dynamical Characterization of Soot Aerosols, JAerosol Sci,2003,34(10):1347-1370
    [169] Hurt R H, Crawford G P, Shim H S, Equilibrium Nanostructure of PrimarySoot Particles, Proceedings of the Combustion Institute,2000,28(2):2539-2546
    [170] Hurt R H, Sarofim A F, Longwell J P, Gasification-Induced Densification ofCarbons: From Soot to Form Coke, Combustion and Flame,1993,95(4):430-432
    [171] Vander Wal R L, Tomasek A J, King J D, A Method for StructuralCharacterization of the Range of Cylindrical Nanocarbons: Nanotubes toNanofibers, Carbon,2005,43(14):2918-2930
    [172] Boehman A L, Song J, Alam M, Impact of Biodiesel Blending On Diesel Sootand the Regeneration of Particulate Filters, Energ Fuel,2005,19(5):1857-1864
    [173] Vander Wal R L, Tomasek A J, Pamphlet M I, et al., Analysis of HrtemImages for Carbon Nanostructure Quantification, Journal of NanoparticleResearch,2004,6(6):555-568
    [174] Li Z, Song C, Song J, et al., Evolution of the Nanostructure, FractalDimension and Size of in-Cylinder Soot During Diesel Combustion Process,Combust Flame,2011,158(8):1624-1630
    [175] Sharma H, Jain V K, Khan Z H, Characterization and Source Identification ofPolycyclic Aromatic Hydrocarbons (PAHs) in the Urban Environment ofDelhi, Chemosphere,2007,66(2):302-310
    [176] Yang H H, Chen C M, Emission Inventory and Sources of PolycyclicAromatic Hydrocarbons in the Atmosphere at a Suburban Area in Taiwan,Chemosphere,2004,56(10):879-887
    [177] Lim M K C H, Ayoko G A, Morawska L, et al., Effect of Fuel Compositionand Engine Operating Conditions On Polycyclic Aromatic HydrocarbonEmissions From a Fleet of Heavy-Duty Diesel Buses, Atmos Environ,2005,39(40):7836-7848
    [178]岳敏,谷学新,邹洪等,多环芳烃的危害与防治,首都师范大学学报:自然科学版,2003,24(003):40-44
    [179] Wang H, Frenklach M, A Detailed Kinetic Modeling Study of AromaticsFormation in Laminar Premixed Acetylene and Ethylene Flames, CombustFlame,1997,110(1-2):173-221
    [180]刘巽俊,内燃机的排放与控制,北京:机械工业出版社,2005
    [181]李方成,黎苏,白洪林等,汽油机多环芳香烃的生成规律,燃烧科学与技术,2010,16(3):210-214
    [182] Frenklach M, Warnatz J, Detailed Modeling of Pah Profiles in a SootingLow-Pressure Acetylene Flame, Combust Sci Technol,1987,51(4-6):265-283
    [183] Kazakov A, Wang H, Frenklach M, Detailed Modeling of Soot Formation inLaminar Premixed Ethylene Flames at a Pressure of10Bar, Combust Flame,1995,100(1-2):111-120
    [184] Tao F, Golovitchev V I, Chomiak J, Application of Complex Chemistry toInvestigate the Combustion Zone Structure of DI Diesel Sprays UnderEngine-Like Conditions, COMODIA2001,2001, p.92-100
    [185]赵昌普,“BUMP燃烧室”内混合气形成及缸内气流运动的研究,博士学位论文,天津大学,2003
    [186]王福军,计算流体动力学分析CFD软件原理与应用,北京:清华大学出版社,2004
    [187]解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,2005
    [188] Gosman A D, Ioannides E, Aspects of Computer Simulation of Liquid-FueledCombustors, Journal of Energy,1983,7(6):482-490
    [189] Bai C, Gosman A D, Development of Methodology for Spray ImpingementSimulation, SAE Paper950283,1995
    [190] Dukowicz J K, Quasi-Steady Droplet Phase Change in the Presence ofConvection, Los Alamos Scientific Lab., NM (USA),1979
    [191] Huh K Y, Gosman A D, A Phenomenological Model of Diesel SprayAtomization, In Proc. ICMF, Tsukuba, Japan,1991
    [192] Huh K Y, Lee E J, Koo J Y, Diesel Spray Atomization Model ConsideringNozzle Exit Turbulence Conditions, Atomization Spray,1998,8(4):453-469
    [193] Nordin P A, Complex Chemistry Modeling of Diesel Spray Combustion, PhDthesis, Chalmers University of Technology,2001
    [194] Naber J D, Reitz R D, Modeling Engine Spray/Wall Impingement, SAEtransactions,1989,97:118-140
    [195] Wachters L, Westerling N, The Heat Transfer From a Hot Wall to ImpingingWater Drops in the Spheroidal State, Chem Eng Sci,1966,21(11):1047-1056
    [196] Colin O, Benkenida A, Angelberger C,3D Modeling of Mixing, Ignition andCombustion Phenomena in Highly Stratified Gasoline Engines, Oil&gasscience and technology,2003,58(1):47-62
    [197] Nishida K, Hiroyasu H, Simplified Three-Dimensional Modeling of MixtureFormation and Combustion in a DI Diesel Engine, SAE Paper2003-01-3169,2003
    [198] Tatschl R, Pachler K, Fuchs H, et al., Multidimensional Simulation of DieselEngine Combustion-Modeling and Experimental Verification, Proceedingsof the Fifth Conference ‘The Working Process of the Internal CombustionEngine’, Graz, Austria,1995
    [199] Tesner P A, Smegiriova T D, Knorre V G, Kinetics of Dispersed CarbonFormation, Combust Flame,1971,17(2):253-260
    [200] Magnussen B F, Hjertager B H, On Mathematical Modeling of TurbulentCombustion with Special Emphasis On Soot Formation and Combustion,Symposium (International) on Combustion,1977,16(1):719-729
    [201] Krestinin A V, Detailed Modeling of Soot Formation in HydrocarbonPyrolysis, Combust Flame,2000,121(3):513-524