Ti/Ti-Al微层板的设计与EB-PVD工艺制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属热防护系统(TPS)是可重复使用运载器(RLV)的关键技术之一;由于直接与外部的环境接触,金属TPS面板材料的研究成为重中之重。按照能够替代Ni基高温合金薄板的轻量化选材要求,本文采用了电子束物理气相沉积(EB-PVD)技术成功地制备了0.1~0.3mm厚、尺寸为直径为1000mm的圆形Ti/Ti-Al微叠层薄板。文中不仅对EB-PVD的工艺特点进行了考察,同时还借助一些现代分析测试手段研究了微叠层材料的组织结构和宏观力学性能,为材料安全、可靠地使用提供了理论依据。研究内容主要包括:Ti/Ti-Al微叠层薄板材料结构参数的优化设计、微叠层薄板的残余应力分析、工艺参数对材料蒸发和沉积过程的影响、制备工艺方法、微叠层材料组织结构特点及物相组成、微观组织在高温下的演变及层状结构的退化、宏观力学性能及其变形特征、应力对材料高温蠕变性能的影响。
     利用三点弯曲模拟试验考察了微观结构参数变化对材料断裂性能的影响。结果表明,随着材料层数或层厚比的增加,材料的断裂功随之增加,但增加的趋势逐渐减小,当二者超过一定数值时,断裂功不再发生明显变化。
     利用材料力学相关理论和有限元方法考察了材料在成型过程中形成的残余应力。结果表明,微层板的残余应力是位置的函数,在叠层板中心处的轴向残余应力值最大,在边缘处的值最小;Ti层所受的都是残余压应力,TiAl层受到的是残余拉应力;随着层厚比或层数的增加,Ti所受的残余压应力逐渐增大,TiAl层所受的残余拉应力逐渐减小,且变化趋势越来越小。利用X射线衍射法测量了微层板最外两层的残余应力随距离基板中心的变化,结果表明其变化趋势与理论预测结果相一致。
     讨论了工艺参数对制备Ti/Ti-Al微叠层材料工艺过程的影响及可行性。根据靶基距与碰撞几率的函数关系,并综合考虑工艺要求与靶材利用率,将最终靶基距值为310mm;推导了沉积材料中Ti和Al元素的含量的计算公式;试验表明在熔池中加入铌片后,材料蒸发达到稳态的时间明显缩短,达到稳态后的成分与靶材成分更为接近;对沉积过程中Al的再蒸发量和沉积量的比值进行了计算,结果表明可以忽略Al的二次蒸发对材料成分变化的影响。
     Ti/Ti-Al微层板表面质量良好,不同尺度下的AFM形貌表明样品表面层在一定尺度范围内具有较明显的生长动力学过程导致的分形特征。截面的调制结构十分清晰,具有完整的层间镶嵌式界面;沉积Ti、Al元素的T/Tm(Tm为沉积材料的熔点)不同导致了组元层有明显的结构差别,其中Ti-Al层为以等轴晶为主、柱状晶与等轴晶混合型结构为特征;而Ti层主要为柱状晶构成;材料经热压致密化处理后,孔隙明显减少,致密度由94.91%提高到了98.07%。Ti、Al元素的饱和蒸气压的差异导致了Ti-Al镀层成分波动,进而造成了Ti-Al镀层成分的周期变化,并形成多个亚层。构成Ti/Ti-Al微层板的Ti层、Ti-Al层以及界面区分别由α相,γ+α2相、α2相构成。
     高温退火试验表明,Al在高温下向Ti中的扩散,导致了有序相含量的降低;根据Fick第二定律推导了Ti层中Al元素的浓度分布与扩散温度、时间以及Ti层厚度之间的关系方程,可求得不同温度退火不同时间后Al在Ti层内的浓度梯度分布。微观结构演化表明层状结构的退化受到孔洞形成及长大、晶粒的长大以及Ti层被Ti-Al层夹断过程的影响。
     纳米压痕试验结果表明界面区的硬度最高,Ti-Al层其次,Ti层最低,且硬度随着距界面区的距离改变呈现梯度变化,分析认为pile-up效应和界面处的应力集中是造成上述现象的原因。
     添加金属韧化层对TiAl基合金的常高温力学性能均有改善,且热压致密化处理后的材料在性能上有了很大的提高。层间距和层厚比的改变分别通过沉积工艺特点和复合材料的混合律对材料的力学性能有所影响。微层板中的裂纹多次沿着层间界面或层中拐折,表现出良好的断裂延迟特性,其增韧机制则为韧化层的存在导致裂纹发生偏转、微桥接等使裂纹扩展阻力增加。
     考察了650℃时不同应力水平下对Ti/Ti-Al微层板蠕变性能的影响,给出了能够描述减速蠕变阶段和稳态蠕变阶段的本构模型。稳态蠕变阶段的蠕变应力指数n从应力为60~70MPa之间的1.53变到了应力为70~100MPa之间的7.66,表明随着应力的增加,蠕变机制由高密度界面滑移到位错攀移控制的回复蠕变机制的改变。
Metal thermal protection system (TPS) is one of the key techniques of the reusable launch vehicle (RLV). Since contacting with the external environment directly, the research on materials of metal TPS sheet is the most important one. To choose the lightweight materials that can take place of the Ni-based superalloys sheet, Ti/Ti-Al microlaminated round sheets with a diameter of 1000mm as well as thickness of 0.1~0.3mm are fabricated successfully by electron beam-physical vapor deposition (EB-PVD) in this paper. Not only the preparation process and characteristics of EB-PVD are discussed but also the microstructure and properties of the alloys are studied by modern analysis and test methods, which establishes the base for the engineeringl application of Ti/Ti-Al microlaminated sheet. The main contents of the study include: the optimum design of the microstructure parameter for Ti/Ti-Al microlaminated sheet, residual stresss analysis of for Ti/Ti-Al microlaminated, the effect of processing parameters on the processs of evaporation and deposition, preparation method of the Ti/Ti-Al microlaminated sheet, as well as the microstructure and phase composition, the evolution and collapse of microstructure under high temperature, and the impact of stresss on the creep deformation at high temperature for the microlaminate.
     The effect of microstructure parameters on failure performance of microlaminate was studied by simulation of three-point bending test. The results showed that the fracture work increases gradually with the increasing of layer number or thickness ratio. However, the extent of increasement reduced gradually and when the two parameters exceeded a certain value, the fracture work would not be changed.
     Correlative theory in materiall mechanics and FE method were used to study the residual stress formed during the preparation processs of microlaminate sheet. It was demonstrated that the residual stresss is a function of the locateon along radial direction of microlaminate sheet. It was pointed out that the value of residual stress reached its maximum at the centure and reached its minimum at the edge of microlaminated sheet. Residual stresss in Ti layers and Ti-Al layers was compressive stress and tension stress respectively. With increasing of layer number or thickness ratio, compressive stress would rise gradually and compressive stress would reduce gradually. X ray diffraction was used to determine residual stress distribution of outmost two layers of deposited microlaminated sheet. Results showed that residual stress decreases gradually along the radius from center to edge of sheet metal. The trend of residual stress of actual measurement is similar to that gained with numerical method.
     The influence and the feasibility of processing parameters on the preparation technology have been discussed. According to the function between target-substrate distance and the collision probability, combined with the processs requirements and utilization ratio of target materials, the optimal source-substrate distance was fixed as 310mm. The effect of saturation vapor pressure on the evaporation process of Ti-Al alloy source was discussed, and the experimental result showed that the addition of Nb into molten pool make it earlier to reach the steady-state compare to that without addition of Nb, and the composition of deposit with Nb addition at steady-state was much closer to that of source materials. From the calculation result of the ratio of re-evaporating capacity with depositing capacity of Al on the substrate, it can be concluded that the effect on deposit by re-evaporation of Al could be neglected.
     The surface quantity of Ti/Ti-Al microlaminated sheet is well. AFM patterns of outer layer at different scales indicate a fractal characteristic due to growing kinetics. The modulation architecture and inlaid interlaminar interfaces can be seen from the cross-section of microlaminate. The difference of melting points between Ti and Al led to the distinctive structure: the Ti-Al layers were mainly constituted of equiaxed grains and Ti layers were constituted of column grains. The porosity decreased obviously when the as-deposited materials were densificated by hot-pressed technology and the density has been increased from 94.91% to 98.07%.
     Because of the deviation of saturated vapor pressure between Ti and Al element, the component showed a gradient change periodically along the normal direction of Ti-Al layers and results in several sub-layers. The Ti layers, Ti-Al layers and interfacial layers were constituted ofαphase,γ+α2 phase andα2 phase respectively.
     The test results of high temperature annealing showed that the ordered phase reduced due to the diffusion of Al into Ti. Based on the Fick's second law, the function between the concentrateion of Al in Ti with diffuseion temperature, time and the thickness of Ti is estabilished from which the concentration distribution of Al in Ti according to different temperature and time. Research results showed that the break down of layered architecture was induced by pore formation, grain growth and the grain boundary grooving.
     It was found that the nanohardness and elastic modulus of Ti layer and Ti-Al layer are of gradient distribution according to the distance to the interface layer which may be results from the pile-up effect and the stress concentrateion at interface.
     The addition of Ti ductileity layer can improve the mechanical properties of Ti-Al alloy at room and high temperature and hot-pressed densificated technology is necessary to get a finer performance. The change of interlaminar space and the thickness ratio will affect the mechanical properties by means of deposition characteristic and mixed rule of composite respectively. The cracks will stagger along the interlaminar interface or the layer due to which microlaminate expresses a good characteristic of delayed fracture. The toughening mechanisms are that the crack deflection and micro-bridge connection caused by the toughening layers increases crack propagation resistance.
     Finally, the impact of vared stresses on the creep property for Ti/Ti-Al microlaminate at 650℃was investigated and the constituteive equations which could be used to describe the slowing creep stage and the steady creep stage was obtained. During the steady creep stage, the creep stresss exponent changed from 1.53 under a stresss of 60~70MPa to 7.66 in the stress range of 70~100MPa, it indicated that with the increasement of stress, the creep mechanism will transmited from the interface slide to the recovery creep controlled by dislocateion climbing.
引文
1杨卫丽,陈宇杰.高超声速巡航导弹及其关键技术.现代军事. 2003, 10: 36~38
    2毕士冠.国外超声速巡航导弹的发展战略与技术途径讨论(上).飞航导弹. 2007, 1: 1~9
    3邓以高,尚安利,雷军委.高超声速巡航导弹关键技术的探讨.海军航空工程学院学报. 2005, 20(2): 215~217
    4国外高超声速巡航导弹研制的进展. http://www.defence.org.cn/article-14-56147.html
    5 John T.Dorsey, Carl C.Poteet, Roger R.Chen. Metallic thermal protection system technology development: concepts, requirements and assessment overview. AIAA. 2002-0502: 1~19
    6曹义,程海峰,肖加余,李永清.美国金属热防护系统研究进展.宇航材料工艺. 2003, 33(3): 9~12
    7 Blosser, M.L. Investigation of fundamental modeling and thermal performance issues for a metallic thermal protection system design. AIAA. 2002-0503:1~17
    8王鑫,阎杰,于云峰.高超声速天地往返飞行器研究.测控技术. 2006, 25(7): 83~86
    9 Blosser M.l., et.al. Advanced metallic thermal protection system development. AIAA. 2002- 0504: 14~17
    10韩鸿硕.国外航天器防热系统和材料的应用研究现状.宇航材料工艺. 1994, 24(6):1~4
    11曲敬信,王泓宏.表面工程手册.北京:化学工业出版社. 2003: 327~333
    12 Ward C. M., Froes F. H.. Developments in the synthesis of light metals. JOM, 1994, 46(1): 28~31
    13 Kim Y. W.. Intermetallic alloys based on gamma titanium aluminide. JOM. 1989, 41(7): 24~30.
    14岳云龙,吴海涛,王志杰,张联盟. TiAl金属间化合物的研究进展.济南大学学报(自然科学版). 2004, 18(1): 31~34
    15马培燕,傅正义.微叠层结构材料的研究现状.材料科学与工程. 2002,20(4): 589~593
    16 Guo H.B., Gong S.K., Xu H.B.. Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings. Mater Sci & Eng A. 2002, A325(1): 261~269
    17李晓海,陈贵清,韩杰才,孟松鹤. EB-PVD法制备微层材料的研究.宇航材料工艺. 2005, 35(6):13~16
    18 Ma L., He X.D., Li Y.. Optimized design and preparation of Ti/TiAl laminated composite. Trans. Nonferrous Met. Soc. China, 2005, 15(3): 48-52
    19黄金昌,吴爱珍.金属间化合物高技术结构材料.稀有金属材料与工程. 1989, 6: 49~55
    20 Wolfenden A., Manmouche M.. Elastic modulus measurements on transition metal aluminides. JOM. 1983,35(12): 90
    21 Kavatata T., Kanai T., Izumi O.. Positive temperature dependence of the yield stress in TiAl L10 type superlattice intermetallic compound single crystals at 293~1273K. Acta Metall. 1985, 33(7): 1355~1366
    22 Varin R.A., Winnicka M.B.. Plasticity of structural intermetallic compounds. Mater Sci & Eng A. 1991, A137: 93~103
    23 Li Z.C., Wang S.H.. Planar defect energies by the embedded atom method and dissociated super dislocation configurations in the L10-type TiAl compound. Mater Sci & Eng A. 1992, A152(1): 18~25
    24李影,苏彬.镍基单晶高温合金的反常屈服行为与变形机制.材料工程. 2004, 3: 45~48
    25 Lall C., Chin S., Pope D.P.. The orientation and temperature dependence of yield stress of Ni3(A1,Nb) single crystals. Metall Trans A. 1979, 10A(6): 1323~1332
    26 Fleischer R. L., Taub A.I.. Selecting high-temperature structural intermetallic compounds: the materials science approach. JOM. 1989, 41(9): 8~11
    27 Westbrook J.H.. Properties of intermetallic alloys. Intermetallics. 1998,6(4): 339~342
    28 Imayev V.M., Imayev R.M., Salishchev G.A.. On two stages of brittle-to-ductile transition in TiAl intermetallic. Intermetallics. 2000, 8(1):1~6
    29 Liu, C.T.. Recent advances in ordered intermetallics. Materials Chemistry and Physics. 1995, 42(2): 77~86
    30孔凡涛,陈子勇,田竞,陈玉勇.提高TiAl基合金室温塑性的方法.稀有金属材料与工程. 2003, 32(2): 81~86
    31 George E.P., Liu C.T., Lin H., Pope D.P.. Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al. Mater Sci & Eng A . 1995, A192-193(Part 1): 277~288
    32 Watanabe Tadao, Tsurekawa Sadahiro. Toughening of brittle materials by grain boundary engineering. Mater Sci & Eng A. 2004, A387-389(complete): 447~455
    33 Wang J. S.. Dislocation nucleation and the intrinsic fracture behavior of L12 intermetallic alloys. Acta Mater. 1998, 46(8): 2663~2674
    34 Djanarthany, S., Viala, J.-C., Bouix, J.. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics. 2001, 72(3): 301~319
    35 Naka S., Thomas M., Khan T.. Potential and prospects of some intermetallic compounds for structural applications. Mater Sci & Tech. 1992, 8(4): 291~298
    36 Uenishi, K., Kobayashi, K. F.. Processing of intermetallic compounds for structural applications at high temperature. Intermetallics. 1996, 4(S1): S95~S101
    37彭超群,黄伯云,贺跃辉. Ni-Al系、Fe-Al系和Ti3Al金属间化合物研究进展.特种铸造及有色合金. 2001, 6: 27~29
    38 Jarvis D.J., Voss D.. Impress integrated project---an overview paper. Mater Sci & Eng A. 2005, A413-414(Complete): 583~591
    39钱九红,祁学忠. TiAl(γ)基钛合金的研究与应用.稀有金属. 2002, 26(6): 477~481
    40严文,杨勇,刘江南,朱定一. Fe-Al金属间化合物的研究概况及应用前景.兵器材料科学与工程. 1992, 15(6): 10~14
    41汤文明,唐红军等. Fe-Al金属间化合物基复合材料的研究进展.中国有色金属学报. 2003,13(4): 811~826
    42郑瑞廷.γ-TiAl基合金室温组织与性能的关系研究及显微组织的优化设计.北京航空航天大学博士学位论文. 2002:3
    43刘轶,傅新琳. TiAl金属间化合物研究.沈阳航空工业学院学报. 2001, 18(1): 27~29
    44 Yamaguchi M.. High temperature intermetallics-with particular emphasis on TiAl. Mater Sci & Tech. 1992,8(4): 299~307
    45 Jurner C.D., Powers W.O., Wert J.A.. Microstructure, deformation and fracture characteristics of an Al67Ni8Ti25 intermetallic alloy. Acta Metall. 1989, 37(10): 2635~2643
    46李臻熙. TiAl基合金组织控制对力学性能的影响.北京航空材料研究院博士学位论文. 2000: 3
    47张永刚,韩雅芳,陈国良等编.金属间化合物结构材料.北京:国防工业出版社. 2003: 686~687
    48王薇.γ-TiAl基合金的高温循环氧化行为及离子注入防护研究.北京航空航天大学博士学位论文. 1999: 2
    49 Kim Y. W.. Intermetallic alloys based on gamma titanium aluminid. JOM. 1989,41(7): 24~30
    50 Tsujimoto T., Hashimoto K.. High temperature ordered intermetallic alloys Ⅲ. Mater Res Soc Symp Proc. 1989, 133: 391~398
    51周龙光.计算机模拟计算钛铝金属间化合物和储氢碳纳米管的微观结构与力学性能.东北大学博士学位论文. 2001: 6
    52 Chan K.S., Kim Y.W.. Relationships of slip morphology, microcracking and fracture resistance in a lamellar TiAl alloy. Metall Mater Trans A. 1994, 25A(6): 1217~1228
    53 Chan K.S., Donald S.. Fagigue and fracture behavior of a fine-grained lamellar TiAl alloy. Metall Mater Trans A. 1997, 28 A (1): 79~89
    54刘伟东,屈华,刘志林.双相TiAl合金α2/γ界面电子结构计算与增韧机制分析.稀有金属材料与工程. 2005, 34(2): 199~204
    55陈小群,黄伯云,贺跃辉等.高延性TiAl基合金微观组织特征.金属学报. 1997, 33(7): 683~689
    56 Chan K.S., Onstott J.n Jumar K.S.. The fracture resistance of a binary TiAl alloy. Metall Mater Trans A. 2000,31A(2): 71~80
    57 Pond R.C., Shang P., Cheng T.T., Aindow M.. Interfacial dislocation mechanism for diffusional phase transformations exhibiting martensitic crystallography: formation of TiAl+Ti3Al lamellae. Acta Mater. 2000, 48(5): 1047~1053
    58何鹏,冯吉才,韩杰才,钱乙余. TiAl金属间化合物及其连接技术的研究进展.焊接学报. 2002, 23(4): 84~86
    59 Chan K.S., Kim Y.W.. Influence of microstructure on crack-tip micro-mechanics and fracture behaviors of a two-phase TiAl alloy. Metall Trans A. 1992, 23A(6): 1663~1677
    60山口正治,马越佑吉著;丁树森译.金属间化合物.北京:科学出版社. 1991: 12
    61李文,孔晓华. TiAl反常屈服行为的电子理论.有色金属. 1999, 51(4): 63~67
    62 Dundurs J.. Edge-bonded dissimilar orthogonal elasic wedges under normal and shear loading. J Appl Mech. 1969, 36: 650~652
    63 McNaney J.M., Cannon R.M., Ritchie R.O., et. al.. Limitations on the use of the mixed-mode delaminating beam test specimen: Effects of the size of the region of K-dominance. Mechanics of Materials. 1997, 25(4): 291~308
    64李志强,曲伟,韩杰才. Al-Ti-TiO2体系燃烧合成及其反应过程研究.无机材料学报. 2002, 17(2): 293~298
    65 Rao K.P., Zhou J.B.. Characterization and mechanical properties of in situ synthesized Ti5Si3/TiAl composite. Mater Sci & Eng A. 2003, A356(1-2): 208~218
    66张全成,何贵玉,吴建生等. TiNb/Ti-48Al-2Cr-2Nb复合材料的力学性能和断裂特征.稀有金属材料与工程. 2001, 30(5): 372~375
    67 Ritchie R.O., Venkateswara Rao K.T. Cyclic fatigue-crack growth in toughened ceramics and intemetallics at ambient to elevated temperatures. Proceedings of the 11th Biennial European Conference on Fracture--ECF11—held in Poitiers—Futurescope, France. 1996:53~69
    68 Kim, Jin-Hak, Tabaru Tatsuo, et.al. Mechanical properties and fracture behavior of an NbSS/Nb5Si3 in-situ composite modified by Mo and Hf alloying. Mater Sci & Eng A. 2004, A372(1-2): 137~144
    69 Pike L.M., et. al. Environmental effects on the tensile properties of two Ni3Si-based alloys. Scripta Materialia. 2000, 42( 3): 265~270
    70 Hao Y.L., Yang R., Hu Q. M.. Bonding characteristics of micro-alloyed B2 NiAl in relation to site occupancies and phase stability. Acta Mater. 2003, 51(18): 5545~5554
    71 Hao Y.L., Yang R., Song Y., et.al. Concentration of point defects and siteoccupancy behavior in ternary NiAl alloys. Mater Sci & Eng A. 2004, A365(1): 85~89
    72 Jang, S.C., Chang, L.J. Effect of heat treatment on the microstructure change and mechanical properties for the Ni–19Si–3Nb–0.15B intermetallic alloy. Materials Chemistry and Physics. 2003, 82(1):128~133
    73 Sundar R.S., Deevi S.C.. Effect of heat-treatment on the room temperature ductility of an ordered intermetallic Fe-Co-V alloy. Mater Sci & Eng A. 2004, A369(1-2): 364~369
    74 Liu, C.T., Maziasz, P. J.. Microstructural control and mechanical properties of dual-phase TiAl alloys. Intermetallics. 1998, 6(7-8): 653~661
    75 Tang J. C., Huang B.Y., He Y.H., et.al. Hall–Petch relationship in two-phase TiAl alloys with fully lamellar microstructures. Materials Research Bulletin. 2002,37(7): 1315~1321
    76 Bencher C.D., Sakaida A., et. al. Toughening mechanisms in ductile niobium-reinforced niobium aluminide(Nb/Nb3Al) in situ composites. Metall Mater Trans A. 1995, 26A(8): 2027~2033
    77 Evans A.G.., McMeeking R.M.. On the toughening of ceramics by strong reinforcements. Acta Metall. 1986, 34(12): 2435~2441
    78 Matage P.A.. Deformation of crack-bridging ductile reinforcements in toughened brittle materials. Acta Metall. 1989, 37(12): 3349~3359
    79 Chan K.S.. Toughening mechanisms in titanium aluminides. Metall Mater. 1993, A24(3): 569~582
    80 Budiansky B., Amazlgo J.C., Evans A.G.. Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. J Mech Phys Solids. 1988,36(2): 167~187
    81 Dave H.E., Evans A.G.. Ductile reinforcement toughening ofγ-TiAl: effects of debonding and ductility. Acta Metall. 1990, 38(8): 1491~1502
    82 Kobayashi T., Shockey D.A.. Microstructural toughening mechanisms inγ-TiAl: 20PctTiCb as determined by frasta. Metall Mater Trans A. 1993, A24(3): 883~894
    83 Bloyer D.R., Venkateswara Rao K.T., Ritchie, R.O.. Laminated Nb/Nb3Al composites: effect of layer thickness on fatigue and fracture behavior. Mater Sci & Eng A. 1997, A239-240(1-2): 393~398
    84何贵玉,胡世平等.连续Ti纤维增强TiAl化合物基复合材料的研制.西北工业大学学报. 1995, 13(3): 345~349
    85 Yeh, C.L., Chen, W.H.. Preparation of Nb5Si3 intermetallic and Nb5Si3/Nb composite by self-propagating high-temperature synthesis. Journal of Alloys and Compounds. 2005, 402(1-2): 118~123
    86 Hengchu C., Jan P.A., Evans A.G.. Mechanical properties of an in situ synthesized Nb/Nb3Al layered composite. Mater Sci & Eng A. 1994, A185(1-2): 87~95
    87 Deven H.E., Evans A.G.. Twin toughening in titanium aluminide. Acta Matall. 1991,39(6): 1171~1176
    88张永刚,陈昌麒.钛铝金属间化合物基合金中的孪生与孪生交互作用.航空学报. 2000, 21(s): 1~5
    89史晶宇,张永刚,高旻,段晓峰.γ-TiAl基合金块状组织中孪晶与反相畴界的相互作用.稀有金属材料与工程. 2001, 30(5): 361~364
    90 Loiseau A., Lasalmonie A.. Influence of the thermal stability of TiAl on its creep behaviour at high temperature. Mater Sci & Eng A. 1984, A67(2): 163~172
    91 Takahashi T., Nagai H.n Oikawa H.. Creep characteristics in Ti50Al single phase polycrystals. Mater Trans JIM. 1989, 30: 1044~1056
    92尹海燕,吴海涛,陈胜等. TiAl基合金高温性能研究进展.济南大学学报(自然科学版). 2006,20(1): 4~7
    93 Husang S.C.. Microstructures and property tradeoffs in wrought TiAl-base alloy. Metall Trans A. 1992, 23A(1): 375~387
    94 Maruyama K., Kim H.Y., Zhu H.. Creep of lamellar TiAl alloys: degradation, stabilization and design of lamellar boundaries. Mater Sci & Eng A. 2005, A387-389(complete): 910~917
    95 Appel F.. Mechanistic understanding of creep in gamma-base titanium aluminide alloys. Intermetallics. 2001, 9(10-11): 907~914
    96 Appel F., Wagner R.. Microstructure and deformation of two-phaseγ-titanium aluminides. Mater Sci & Eng R: Reports. 1998, R22(5):187~268
    97 Zhu H., Seo D.Y., Maruyama K., Au P. Effect of microstructural stability on creep behavior of 47XD TiAl alloys with fine-grained fully lamellar structure. Scripta Materialia. 2005, 52(1): 45~50
    98 Maruyama K., Yamamoto R., Nakakuki H., Fujitsuna N.. Effects of lamellar spacing, volume fraction and grain size on creep strength of fully lamellar TiAl alloys. Mater Sci & Eng A. 1997, A239-240(1-2): 419~428
    99 Schillinger W., Clemens H., Dehm G., Bartels A.. Microstructural stability and creep behavior of a lamellarγ-TiAl based alloy with extremely fine lamellar spacing. Intermetallics. 2002, 10(5): 459~466
    100 Zhu H.L., Seo D.Y., Maruyama K., Au P.. Effect of lamellar spacing on microstructural instability and creep behavior of a lamellar TiAl alloy. Scripta Materialia. 2006, 54(12): 1979~1984
    101 Hayes R.W., Mcquay P.A.. A first report on the creep deformation and damage behavior of a fine grained fully transformed lamellar gamma TiAl alloy. Scripta Metallurgica et Materiala. 1994, 30(2): 259~264
    102 Worth B.D., Jones J.W., Allison J.E.. Creep deformation in near-γTiAl:Ⅱ: Influence of microstructure on creep deformation in Ti-48Al-aV-0.3C. Metall Trans A. 1995, 26A(11): 2961~2972
    103李书江,刘自成.一种高铌TiAl合金的蠕变性能.稀有金属材料与工程. 2002, 32(1): 31~36
    104朱世杰.不连续纤维增强Ti基复合材料蠕变形变与断裂.材料工程. 1994, 8-9: 85~87
    105陈雅丽.未来航空发动机涡轮叶片用材的最新形式——微叠层复合材料.航空工程与维修. 2001,5: 10~12
    106 www.paton-icebt.kiev.ua
    107梅志,顾明元,吴人洁.金属基复合材料界面表征及其进展.材料科学与工程. 1996, 14(3): 1~5
    108 Koehler J.S.. Attempt to design a strong solid. Phys Rev B. 1970, 2(2): 547~551
    109 Pacheco E.S., Mura T.. Interaction between a screw dislocation and a bimetallic interface. J.Mech.Phys. Solids. 1969, 17: 163~170
    110 Krzanowski J.E.. The effect of composition profile sharp on the strength of metallic multiplayer structures. Scipta Metall Meter. 1991, 25: 1465~1470
    111 Mirkarimi P.B., Hultman L., Barnett S.A.. Enhanced hardness in lattice-matched sigle-crystal TiN/V0.6Nb0.4N superlattices. Appl.Phys Lett. 1990, 57(25): 2654~2656
    112 Nix W.D.. Mechanical properties of thin films. Metall Trans A. 1989, 20A(9): 2217~2245
    113 Srolovitz D.J., Yalisove S.M., Bilello J.C.. Design of multiscalar metallic multiplayer composites for high strength, high toughness, and low CTE mismatch. Metall Mater Trans A. 1995, 26A(7): 1805~1813
    114 Lehoczky S.L.. Strength enhancement in thin-layered Al-Cu laminates. J Appl Phys.1978, 49(11): 5479~5485
    115 Mammoli A.A., Graham A.L., Reimanis I.E., Tullock D.L.. The effect of flaws on ther propagation of cracks at bi-materials inferfaces. Acta Metall et Mater. 1995, 43(3): 1149~1156
    116 Bui V.Q., Marechal E., Nguyen-Dang H.. Imperfect interlaminar interfaces in laminated composites: interlaminar stresses and strain-energy release rates. Comp Sci & Tech. 2000, 60(1): 131~143
    117 He J.W., Jia M., et.al.. Cracking in the soft interface layer of an Al-alloy laminate. International Journal of Fatigue. 2003, 25(5):421~426
    118王仁卉,鄢炎发等. Al/Al2O3复合材料界面应力场的LACBED研究电子显微学报. 1993, 12(2): 157
    119 Rozeveld S.J., Howe J.M., Schmauder S.. Measurement of residual strain in An Al/SiCw composite using convergent-beam electron diffraction. Acta Metallurgica et Materialia. 1992, 40(S1): S173~S193
    120 Josell D., Spaepen F.. Determination of the interfacial tension by zero creep experiments on multilayers. Acta Metal et Mater. 1993; 41(10): 3007~3027
    121 Heerden D.V., et.al. The stability of Nb/Nb5Si3 microlaminates at high temperature. Metall Trans A. 2001, 32A(9): 2363~2371
    122 Lewis A.C., Josell D., Weihs T.P.. Stability in thin film multilayers and microlaminates: the role of free energy,structure,and orientation at interfaces and grain boundaries. Scripta Materialia. 2003; 48(9):1079~1085
    123安兵.多层膜界面能测量及其结构稳定性研究.华中科技大学博士学位论文. 2003: 1~107
    124 Josell D., Spaepen F.. Determination of the interfacial tension by zero creep experiments on multilayers—I. theory. Acta Metall et Mater. 1993, 41(10): 3007~3015
    125 Henshall G.A., Strum M.J.. Simulations of creep in ductile-phase toughenedNb5Si3/Nb in-situ composite. Mat Res Soc Symp Proc. 1995, 364: 937~942
    126 Wen S.P., Zeng F., Gao Y., Pan F.. Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Materialia. 2006, 55(2): 187~190
    127 Shen Y.L., Suresh S.. Steady-state creep of metal-ceramic multilayered materials. Acta Mater. 1996, 44(4): 1337~1348
    128易剑,赫晓东,李垚.微叠层材料及其制备工艺研究进展.宇航材料工艺.2005, (5):16~21
    129 Kuang H., Castro R.G.., Bartlett A.H., Petrovic J.J.. Structure of plasma sprayed MoSi2/Al2O3 microlaminate tubes. Scripta Metallurgica et Materialia, 1995, 32(2): 179~183
    130 Tench D.M., White J.T.. Comsiderations in electro-deposition of compositional modulated alloys. J Electrochem Soc. 1990,137(10): 3061~3066
    131孙志华,刘明辉.应用电沉积方法制备纳米多层膜的研究现状.腐蚀与防护. 2002, 23(3): 114~115
    132姚素微,桂枫等.电沉积纳米金属多层膜研究.天津大学学报. 2001, 34(2): 261~264
    133 V. P. Kobyakov. Fabrication, microstructure and properties of chemical vapour deposited AlN/Mo laminated composites. Journal of Materials Science. 1997, 32: 4347~4353
    134 Ding Y., Nortwood D.O., Alpas A.T., et. al.. Fabrication of microlaminated Al/Al2O3 composites by magnetron sputtering for tribological applications. Suface and Coating Technology. 1993, 62(1-3): 448~453
    135 Kusano E., Kitagawa M., Nanto H.. et. al.. Hardness enhancement by compositionally modulated strucre of Ti/TiN multilayer films. J. Vac. Sci. Tech A. 1998, 16(3):1272~1276
    136 Kuruppu M.L., Negrea G., Ivanov I.P. et. al.. Monolithic and multiplayer Cr/CrN, Cr/Cr2N, CrN2/CrN coating on hard and soft sustrates. J. Vac. Sci. Tech A. 1998, 16(3): 1949~1955
    137 Heerden D. V., Gavens A. J., Foecke T., Weihs T. P.. Evaluation of vapor deposited Nb/Nb5Si3 microlaminates. Materials Science and Engineering. 1999, A261(1-2):212~216
    138 Xu W. H., Meng X. K., Yuan C. S., A. Ngan H. W., Wang K. L., Liu Z. G...The synthesis and mechanical property evaluation of Ni/Ni3Al microlaminates. Materials Letters. 2000, 46(5):303~308
    139史丽萍,赫晓东,李垚,杜善义. EB-PVD金属/陶瓷微层复合材料的研究与应用.宇航材料工艺. 2003, (5):17~20
    140刘福顺,宫声凯,徐惠彬.大功率EB-PVD陶瓷热障涂层的研究与应用.航空学报. 2000, 21S: 30~34
    141 Smith L. C., Brydson R., Tsakiropoulos P., Dunford D., C. Close M. W.. Synthesis and characterisation of Titanium/Aluminium nanolaminates. Journal of Magnetism and Magnetic Materials. 1996, 156:17~18
    142 Aurongzeb D., Holtz M., Daugherty M., et al. Influence of nanocrystal growth kinetics on interface roughness in Nickel–Aluminum multilayers. Applied Physics Letters. 2003, 83(26):5437~5439
    143 Aschentrup A., Hachmann W., Westerwalbesloh T., et.al. Determination of layer-thickness fluctuations in Mo/Si multilayers by cross-sectional HR-TEM and X-ray diffraction. Appl. Phys. A. 2003, 77:607~611
    144 Xu H. B., Jin X. S., Bi X. F., Gong S. K.. Preparation of FeSi/Cu nano-multilayer materials and their magnetic properties. Thin Solid Films. 2000, 375(1-2): 296~299
    145 Wolfe D. E., Singh J., Narasimhan K.. Synthesis of Titanium Carbide/Chromium carbide multilayers by the coevaporation of multiple ingots by electron beam physical vapor deposition. Surface and Coatings Technology. 2002, 160:206~218
    146金雪松,毕晓昉,欧盛荃,宫声凯,徐惠彬. K18/Mo纳米多层材料的力学性能及高温稳定性.金属学报. 2000, 36(1):99~103
    147 Li Y., Zhao J. P., Zeng G., Guan C. L., He X. D.. Ni-Ni3Al Microlaminate composite produced by EB-PVD and the mechanical properties. Materials Letters. 2004, 58:1629~1633
    148 Han J. C., Li Y., He X. D., Meng S. H., Zeng G., Chen H. P.. Preparation and mechanical properties of NiCoCrAlY/NiCr laminates by electron beam physical vapor deposition. Trans. Nonferrous Met. Soc. China. 2005, 15(S3): 53~56
    149金雪松.金属纳米多层材料的制备及性能研究.北京航空航天大学博士学位论文. 1999: 6~7
    150温元凯,李济民.金属热膨胀的规律性.金属材料研究. 1976, 14(12): 956~963
    151刘文胜,黄伯云等. TiAl合金的结构特征与物理常数.材料导报. 2000, 14(9): 19~21
    152曾东.层状陶瓷的强韧性研究.清华大学博士学位论文. 2001: 34~35
    153刘国庆杨庆东. ANSYS工程应用教程.北京:中国铁道出版社. 2003
    154 Hwu K.L..and Derby B.. Fracture of metal/ceramic laminates-П. Crack growth resistance and toughenss. Acta. Mater. 1999, 47(2): 545~563
    155 Wang R.Z.., Wen H.B.., et.al. Observations of damage morphologyies in nacre during deformation and fracture. J. Mater .Sci. 1995,30: 2299~2304
    156 Jia-Wen He, Min Jia., et.al. Cracking in the soft interface layer of an Al-alloy laminate. International Journal of Fatigue. 2003,25(5): 421~426
    157张定铨,何家文.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社.1999:35~38
    158 Beele W., Marijnissen G., Lieshout A. V.. The Evolution of Thermal Barrier Coatings: Status and Upcoming Solutions for Today’s Key Issues. Surfaceand Coatings Technology. 1999, 120-121:61~67
    159郭富安, V. Ji,张永刚,陈昌麒.γ-TiAl基金属间化合物合金的显微组织与内应力研究.稀有金属材料与工程. 2001, 30(2):105~108
    160朱贤方, J. S. Williams, L. C. Lim, S. Zhang,吴自勤.物理汽相淀积薄膜的微结构和内应力.物理. 1998, 27(1):37~40
    161田民波,刘德令.薄膜科学与技术手册.北京:机械工业出版社. 1991: 143~157
    162李先林,郝俊杰,刘连顺.陶瓷薄膜的气相制备及热力学应用.河北理工学院学报. 2001, 23(S):37~41
    163苏盛彪.预应力陶瓷与层状陶瓷复合材料应力分析与设计.中国建筑材料科学研究院博士学位论文. 2002: 39~43
    164 Jones. R.M.复合材料力学.朱颐龄等译.上海:上海科学出版社. 1981
    165刘锡礼,王秉权.复合材料力学基础.北京:中国建筑工业出版社. 1984: 161~163
    166 Lyutovich A., Maile K.et.al. Characterisation of the generateon of ions in electron beam evaporator for the control of metal deposition processes. Suface and Coating Technology. 2002, 151-152(1): 105~109
    167唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社. 1998: 27
    168郑德修,黄运添.确定真空沉积起始压强的方法.真空. 1984, 04: 31~37
    169韩杰才,李晓海,陈贵清,孟松鹤. EB-PVD制备箔材的厚度均匀性研究.航空材料学报. 2006, 26(1): 36~39
    170 Pieterse N., Focke W. W.. Diffusion-controlled evaporation through a stagnant gas: estimating low vapour pressures from thermogravimetric data. Thermochimica Acta. 2003, 406(1-2):191~198
    171 Yang C. C., Li J. C., Jiang Q.. Effect of pressure on melting temperature of silicon determined by clapeyron equation. Chemical Physics Letters. 2003, 372(1-2): 156~159
    172 Barragan M., Woods S., Julien H. L.. Thermodynamic equations of state forhydrazine and monomethyl hydrazine. Combustion and Flame. 2002, 1319(1-2):316~328
    173 B.Wolf.. Handbook of Ion Sources. CRC Press, New York, NY. 1995: 333
    174梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社. 1993
    175刘贵仲.几种金属间化合物熔炼过程中铝挥发行为.哈尔滨工业大学博士学位论文. 2003: 95
    176 Movchan B. A., Demchishin A. V.. Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide. Fiz. Metal. Metalloved, 1969; 28: 83~90
    177单英春,赫晓东,李明伟,李垚. EB-PVD工艺中基板温度对材料形成过程的影响.宇航材料工艺. 2006, 36(1): 41~44
    178单英春. EB-PVD薄板沉积的多尺度模拟.哈尔滨工业大学博士学位论文. 2006: 62~65
    179 Takakazu, Hiroyuki Umehara, Ryuichi Hayashi. The synthesis of TiAl intermetallic films by a rf magnetron sputtering and the mechanical properties of the microcomposites with SiC fibers. J. Mater. Res. 1994, 9(4): 1028~1034
    180 Wen L.S. A transmission electron microscopy study on TiN Films deposited by ion plating. J Vac Sci Technol. 1986, A4(6): 2682~2685.
    181王庆山.努氏硬度及其与维氏硬度的换算.机车车辆工艺. 2001, 2: 43~44
    182 Pharr, G.M., Oliver W.C., Brotzen F.R.. On the generality of the relationshipamong contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 1992, 7(3): 613~617
    183 Oliver W.C., Pharr G. M.. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7(6): 1564~1580
    184齐红基,程传福,袁景梅等.用离子束溅射方法制备的钛薄膜表面形貌分析.光学学报. 2003, 23(4): 480~484
    185 Terry S.G.. Evolution of Microstructure during the Growth of Thermal Barrier Coatings by Electron-Beam Physical Vapor Depostition. University of Caifornia Doctor Thesis. 2001:197
    186 Barbara S.. Evolution of Microstructure during the Growth of Thermal Barrier Coatingsby Electron-Beam Physical Vapor Deposition. Dissertation for PhD. Degree in materials, University of California. 2001:7~8
    187黄伯云,曲选辉.钛铝有序合金研究综述.材料导报. 1992, 6(2): 22~28
    188 Reddya R. G., Yahya A. M., Brewer L.. Thermodynamic Properties of Ti–Al Intermetallics. Journal of Alloys and Compounds. 2001, 321:223~227
    189梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社. 1993: 43~383
    190王永康.多弧离子沉积制备Ti1-xAlxN涂层的微观结构与性能.哈尔滨工业大学博士学位论文. 2001: 57
    191 Stowell W. R.. Single Source Evaporation of a Niobium Based Alloy Containing Volatile Constituents. J. Vac. Sci. Technol. 1973, 10(4):489~493
    192 Movchan B. A., Marinski G. S.. Gradient protective coatings of different application produced by EB-PVD. Surface and Coatings Tehcnology. 1998, 100-101:309~315
    193曾岗,李明伟等. TiAl合金的电子束蒸发行为.稀有金属材料与工程. 2007, 36(10): 1759~1762
    194 Zhang F., Chen S. L., Chang Y. A. and Kattner U. R.. A thermodynamic description of the Ti-Al system. Intermetallics. 1997, 5(6): 471~482
    195 Rowe R. G., Skelly D. W., Larsen M., et.al. Microlaminated high temperature intermetallic composites. Scripta Metall. Mater. 1994, 31(11): 1487~1492
    196 Odette G. R., Chao B. L., Sheckherd J. W. and Lucas G. E.. Ductile phase toughening mechanisms in a TiA-TiNb laminate composite. Acta Metall.Mater. 1992, 40(9): 2381~2389
    197 VanHeerden D., Gavens A.J., et.al. The stability of Nb/Nb5Si3 microlaminates at high temperature. Metall. Mater Trans. 2001, 32A: 2363~2371
    198 Ludtke knoedler H., Lucas G.E., Levi C.G.. Morphological stability of copper-silver multilayer thin films at elevated temperature. Metall .Mater Trans. 2003, 34A: 1043~1054
    199 Hillert M.. On the theory of normal and abnormal grain growth. Acta Metall. 1965, 13(3): 227~338
    200 Rowe R. G., Skelly D. W., Larsen M., et.al. Microlaminated high temperature intermetallic composites. 1994, 34(11): 1487~1492
    201 Hainsworth S.V., Page T.F.. Nanoindentation studies of the chemomechanical effect in sapphire. J. Mater .Sci. 1994, 29: 5529~5540
    202薛文斌,邓志威等.铝合金微弧氧化膜与基体界面区的硬度和弹性模量分布.金属学报. 1999, 35(6): 638~642
    203 ZHANG De-ming, CHEN Gui-qing, et.al. Macro-microscopic morphology and phase analysis of TiAl-based alloys sheet fabricated by EB-PVD method. Transactions of Nonferrous Metals Society of China. 2007, 17(4): 777~782
    204李晓海. EB-PVD制备大尺寸Ni基高温合金薄板的研究.哈尔滨工业大学博士学位论文. 2007: 31
    205 Murakami M.. Thermal strain in thin lead filmsШ: dependences of the strain on film thickenss and on grain size. Thin Solid Film. 1992, 7: 2040~2048
    206张跃,褚武扬等. TiAl型金属间化合物解理断口的纳米尺度研究.金属学报. 1995, 31(5): 191~196
    207冯瑞.金属物理学(第三卷)金属理学性能.北京:科学出版社. 1999: 560
    208 Prevey P. S.. Current applications of X-ray diffraction residual stress measurement. Developments in Materials Characterization Technologies. 1996: 103~110
    209 Marques M. J., Dias A. M., Gergaud P., Lebrun J. L.. A methodology development for the study of near surface stress gradients. Mater Sci & Eng A. 2000, 287A(1-2): 78~86
    210范雄.金属X射线学.北京:机械工业出版社. 1988:15~18
    211米谷茂.残余应力的产生和对策.北京:机械工业出版社. 1983:36~42