食品功能因子/表面活性剂自聚集体系的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多脂溶性食品功能因子都具有多种有益于人类健康的生理功能。但这些功能因子存在不溶于水,易被氧化,不稳定等缺点,处于纳米态的表面活性剂聚集体(微乳液、液晶、自发囊泡等)作为食品功能因子载体具有性能稳定、制备简单、成本低等显著优点。本文分别制备了α-亚麻酸,共轭亚油酸,姜黄素三种食品功能因子的微乳液体系,利用动态光散射、透射电镜、核磁共振、流变学方法等手段,对微乳液体系的粒径、分散度、包封位置、稳定性、动态流变性质,以及体系的相态进行了研究。并进一步用小角X射线散射、流变学方法等,对α-亚麻酸,共轭亚油酸与非离子表面活性剂/水体系中溶致液晶的形成、微观结构、动态流变学性质展开了研究。主要研究结果如下:
     (1)总结了食品功能因子载体领域的研究热点和发展方向,包括环糊精、脂质体、无机纳米材料、表面活性剂自聚集体等;进一步分析了表面活性剂聚集体在食品功能因子载体领域的研究现状。制备了全反式维甲酸阴阳离子复配自发囊泡体系。这些聚集体能同时具有不同亲脂/亲水性能的微环境,但宏观上却是均匀的多相体系,从而在改变液体食品的外观、品质、功效等方面有重要的应用价值。
     (2)以α-亚麻酸(ALA)为油相,以非离子表面活性剂失水山梨醇单油酸酯(Span80)、蓖麻油聚氧乙烯(35)醚(EL-35)为乳化剂,首次制备了无助表面活性剂的ALA微乳液。研究了此四元体系的相形为,pH值对微乳液区域的影响;用电导率法测定出O/W微乳液区;动态光散射及负染色透射电法研究了微乳液的粒径及稳定性;并通过利用核磁共振的测量,推断出ALA在O/W微乳液中的包封位置;同时研究了微乳液的动态流变行为;并将此微乳液体系加入到几种常见饮料中,研究了ALA微乳对饮料稳定性的影响。结果表明,微乳液为粒径为20-40 nm的球状结构;浓度较低时,ALA会增溶在微乳液的内核,但随着ALA浓度的增大,ALA会进入到微乳液亲水层内;微乳液稳态剪切流变的测量显示,体系有两次剪切变稀的过程,分析表明,这两次过程分别为聚集体扭曲、变形和结构破坏重组的过程;微乳液在两个月的存储时间内,粒径无明显变化,稳定性较好,其在各种饮料中也非常稳定,基本不会破坏饮料原有结构及稳定性。
     (3)以共轭亚油酸(CLA)为油相,以非离子表面活性剂聚氧乙烯山梨醇酐单油酸酯(Tween80)、EL-35为乳化剂,乙醇,正辛醇为助表面活性剂,制备了CLA微乳液;并用Tween80和Span80制备了CLA多重乳状液。研究表明,微乳液粒径随表面活性剂浓度的增大而减小,但CLA浓度增加,粒径会发生明显增大。微乳液粒径在30天的存储时间内,粒径无明显变化,稳定性较好。随着存储时间的延长,CLA在微乳液中的浓度会明显下降,对比相同存储环境下,CLA在微乳液中比在乙醇溶液中明显稳定。多重乳状液结果显示:单一乳化剂体系中,相同条件下以Tween80作亲水乳化剂制备的CLA多重乳状液体系稳定性较好。当M(内水相)∶M(油相)∶M(外水相)=1.0∶5.0∶1.3, M(Span80)∶M(Tween80)=9.0,乳化剂含量为9.7%时,多重乳液相对体积达到93%。复合乳化剂在第一相的HLB值为7.4,外水相中Tween80占4.9%,第一相中M(复合乳化剂)∶M(Tween80)=9.0,乳化剂在在第一相中的质量分数为6.7%时,多重乳液相对体积达到94%,稳定性较好。
     (4)以Tween80为乳化剂,乙醇为助表面活性剂,乙酸异戊酯(IA)为油相,制备了Tween80/乙醇/IA/水四元体系的微乳液,将其作为姜黄素载体,测定了体系对姜黄素的最大包封量、包封率及缓释效果。动态光散射结果表明,姜黄素的加入,会明显增大微乳液粒径,但粒径并不随姜黄素浓度的增加而增大;在实验周期内,微乳液粒径随时间略有增大,但变化并不明显,溶液始终澄清、透明,稳定性较好。1H NMR结果表明,姜黄素被包封在O/W微乳液的栅栏层内。微乳液不仅对姜黄素有明显的增溶效果,而且能提高其稳定性。体外透析实验表明,微乳液包封后的姜黄素溶液有更加明显的缓释效果,同时微乳液中姜黄素浓度的增加,可加快透析速率。
     (5)首次制备了以ALA为油相的,双连续立方相Ia3d和层状溶致液晶,并研究了EL-35/ALA/H2O三元体系的相形为。SAXS法研究了体系溶致液晶的微观结构,结果表明,随着体系含水量的增加,立方相液晶的晶胞参数及水通道的半径r依次增大,而疏水/亲水界面上表面活性剂分子的截面积aS并没有明显变化;层状液晶重复间距d增大,而疏水层半径和aS并没有明显变化,ALA主要增溶在胶束内核,ALA浓度增加,层状相中非极性区域的厚度增大。动态流变性质的测量表明,体系液晶样品的储能模量G’都大于损耗模量G’’,一定浓度ALA的加入,对液晶的结构有稳定作用。立方相液晶在44°C时结构开始转变,并在49°C后完全破坏成为O/W微乳液,在温度高于43°C后层状液晶结构被破坏。
     (6)研究了EL-35/AEO2/CLA/H2O体系的拟三元相图,开展了其层状液晶微观结构参数的计算和流变性质的研究。SAXS研究表明,固定表面活性剂相与油相的比例,随着体系含水量的增加,层状相重复间距d,表面活性剂分子在胶束疏水/亲水界面上的有效截面积aS,线性增加,CLA主要增溶在层状相的疏水内核。动态流变性质显示,体系液晶以弹性为主,随着体系含水量的增加,液晶内部的交联度增大,空间结构强度增大,温度扫描结果表明,随着含水量的增加,液晶相转变温度也随之升高。AEO表面活性剂中氧乙烯链的长度增加,界面层排列变疏松,液晶结构强度和形成弹性网络结构的频率依次减小。
Epidemiologic and experimental data have provided evidence for a beneficial effect of water insoluble functional food factors. However, these factors are water-insoluble, especially sensitive to light, temperature and easily to be oxidized. Self-assemblies of surfactants (such as microemulsion, liquid crystal and vesicle) possess several advantages over their solvent-based counterparts, which are thermodynamically stable, nanoscale droplets, easy to prepare and low cost. In this paper,α-Linolenic Acid (ALA), conjugated linoleic acid (CLA), and curcumin microemulsions were prepared. The particle diameter, polydispersity index, encapsulation position, stability and rheological properties of these systems have been observed by dynamic light scattering (DLS), TEM, 1H NMR spectroscopy and rheological techniques. And the microstructures and dynamic rheological properties of lyotropic liquid crystal phases have been studied with the aid of small angle X-ray scattering (SAXS) and rheological techniques for the systems of ALA, CLA with nonionic surfactants and water. In details, the results of the researches as following:
     (1) The most attractive researches in the field of functional food factor carriers, such as cyclodextrin, lipidosome, inorganic nanophase materials and self-assemblies of surfactants, have been summarized. Furthermore, progress in food delivery system study of surfactant aggregates has been intensively analyzed. Spontaneous vesicle systems which were used as all-trans retinoic acid (ATRA) delivery systems were prepared. These nanophase delivery systems will be of great importance in food appearance, quality, and efficacy.
     (2) A novel ALA-in-water microemulsion composed of ALA as the continuous oil phase, water as the dispersed phase, and a mixture of EL-35 / Span80 as the emulsifiers were prepared and investigated as potential food delivery systems. The influences of pH on the microemulsion region were considered. The microstructure and characterization of microemulsion were determined by dynamic light scattering, negative-staining TEM and rheological behavior. The location of ALA molecules in the microemulsion formulations was determined by 1H NMR spectroscopy. The results show that the size of O/W microemulsion droplets depends strongly on the contents of ALA, and the diameter ranges from 22.1 to 42.1 nm. All samples keep a remarkable stability in the experiments of 60 days. The results of DLS and 1H NMR confirmed that the ALA molecules are solubilized in oil core of the O/W microemulsions drops in low ALA concentration. With the addition of ALA, they are solubilized in the hydrophilic shells of the microemulsion. The rheological results showed that the flow behaviour of microemulsion follows shear thinning. All microemulsion samples exhibit two Newtonian regions, and in low shear-rate region, the flow behavior can be described by the Carreau model. Centrifugation and storage experiments were used to test the stability of beverage samples with microemulsion system. The results showed that ALA could be added into juice, coke and sports beverage under a certain conditions.
     (3) CLA-in-water microemulsion based on Tween80, EL-35, ethanol and n-octanol was investigated as potential food delivery systems. The size of O/W microemulsion droplets depends strongly on the contents of surfactants and CLA, and the diameter ranges from 22.1 to 30.7 nm and from 18.3 to 32.8 nm respectively. All samples keep a remarkable stability in the experiments of 30 days. The stability of CLA in microemulsion and ethanol solution was determined by UV-vis spectrophotometry, the results revealed that the stability of the CLA in the microemulsion was increased remarkably. The stability of multiple emulsions showed that the optimum conditions for solo emulsifier system are: M (Span80)∶M (Tween80) =9.0, the mass fraction of the emulsifier in the emulsion is 9.7%, the oil to water mass ratio is 5.0 in first phase, and the mass ratio of first phase to second phase is 6.0∶1.3. The optimum conditions for complex emulsifiers system are: HLB of the emulsifier in the first phase is 7.4, M (mult-emulsifiers)∶M (Tween80)=9.0, and the mass fraction in the emulsion is 6.7%.
     (4) The ternary phase diagram of a curcumin-encapsulated O/W microemulsion system using food-acceptable components, Tween 80 as the surfactants, ethanol as the cosurfactant and isoamyl acetate as the oil phase was constructed. The stability and characterisation of curcumin in microemulsion were investigated. The results indicated that the diameter of microemlsions increased with the addition of curcumin. 1H NMR confirmed that the curcumin molecules are solubilized in palisade layer of the O/W microemulsions drops. microemulsion can significantly increase the solubility of curcumin in water. A permeation study for testing the penetration effect of various curcumin loading in the microemulsions in different dialysates was also performed and discussed.
     (5) The bicontinuous cubic (Ia3d) and lamellar liquid crystals were approved in EL-35/ALA/H2O system. The results of SAXS show that the lattice parameter and water channels radius (r) of cubic phase and the repeated distance (d) of lamellar phase get increased with the increase of water contents, and the area per surfactant at the hydrophobic/hydrophilic interface (aS) has no significant change. ALA is solubilized in the core of the micelle. The storage moduli are bigger than loss moduli for all samples. A certain concentration participation of ALA will stabilize the structure of liquid crystal. The cubic and lamellar phases were discharged into O/W microemulsion at 49 and 43°C, respectively.
     (6) The phase diagram of EL-35/AEO2/CLA/H2O system was prepared. The microstructure and rheological properties were researched by SAXS and rheological technique. The results of SAXS show that the repeated distance (d) and the area per surfactant at the hydrophobic/hydrophilic interface (aS) of lamellar phase get increased with the increase of water contents. CLA is solubilized in the core of the micelle. The dynamic rheology results show that the strength of lamellar phase network and the phase transition temperature are increasing with the increase of water contents. The different in the EO units among the AEO surfactants has an obvious effect on the lamellar phase. The interface layer arranged is looser, the strength of phase network and the crossover frequency decreases with the increase of EO units.
引文
1. Swinbanks D, O'Brien J. Fish-oil miracle additive brings benefits to some. Nature, 1993, 364(6434): 180
    2.程坷伟,许时婴,王璋.甘薯中功能性成分的研究进展[J].食品科技, 2003, (6): 92-94
    3.龚院生,姚惠源.米糠功能因子γ-谷维醇的研究[J].中国粮油学报, 2000, 15(6): 14-18
    4.落合庆一郎.日本健康食品市场动态[J].中外食品, 2006, (6): 48-51
    5.石波,李里特.功能性添加剂木寡糖的制备研究[J].国外畜牧科技, 2000, 27(6): 14-17
    6.王敏,魏益民,高筋明.苦荞黄酮的抗脂质过氧化和红细胞保护作用研究[J].中国食品学, 2006, 6(1): 278-283
    7.倪元颖,李丽梅,李景明等.洋葱的风味形成机理及其生理功效[J].食品工业科技, 2004, (10): 136-139
    8. Kern M. Global trends to improve human health-From basic food via functional food, pharma-food to pharma-farming and pharmaceuticals-Part 1: Basic food, functional food. Agro Food Industry Hi-Tech, 2006, 17(6): 39-42
    9. Liutkevicius A, Tamulionyte D, Sekmokiene D. Functional food development: impact of technological factors on the quality of whey beverages with flaxseed oil. Milchwissenschaft-Milk Science International, 2007, 62(1): 73-76
    10.金宗濂.全球功能食品的市场及其发展趋势[J].食品工业科技, 2005, 9: 7-14
    11.宋健,陈磊,李效军.微胶囊化技术及应用[M].北京化学工业出版社, 2001
    12.谭静,姜子涛.环糊精及其衍生物在食品领域中的应用[J].食品研究与开发, 2008, 29(11): 178-181
    13. Choi M J, Ruktanonchai U, Soottitantawat A, et al. Morphological characterization of encapsulated fish oil withβ-cyclodextrin and polycaprolactone. Food Research International, 2009, 42(8): 989-997
    14.文震,刘波,郑宗坤等.玫瑰精油β-环糊精包合物的制备与表征[J].食品科学, 2009, 30(10): 29-32
    15. Bangham A D, Standish M M, Watkins J C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965, 13: 238-252
    16. Were L M, Bruce B D, Davidson P M, et al. Size, Stability, and Entrapment Efficiency of Phospholipid Nanocapsules Containing Polypeptide Antimicrobials. J Agric Food Chem, 2003, 51: 8073-8079
    17. Xia S Q, Xu S Y. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int, 2005, 38(3): 289-296
    18. Fan M H, Xu S Y, Xia S Q, et al. Effect of Different Preparation Methods on Physicochemical Properties of Salidroside Liposomes. J Agric Food Chem, 2007, 55(8): 3089-3095
    19.田艳燕,段相林,常彦忠.番茄红素脂质体的制备[J].食品科学, 2007, 28(4): 128-132
    20.田艳燕,葛兰,段相林等.番茄红素脂质体的体外释放及大鼠体内药代动力学和抗氧化功能[J].药学学报, 2007, 42(10): 1107-1111
    21.王瑞莲,刘成梅,刘伟.脂质体在食品工业中的应用前景[J].江西食品工业. 2007, 2: 44-45
    22.袁飞,徐宝梁,黄文胜等.纳米技术在世界范围内食品工业中的应用[J].食品科技, 2007, (2): 17-20
    23. Bush A J, Beyer R, Trautman R, et al. Ceramic Micro-Particles Synthesised using Emulsion and Sol-Gel Technology: An Investigation into the Controlled Release of Encapsulants and the Tailoring of Micro-Particle Size. J Sol-Gel Sci Tech, 2004, 32: 85-90
    24. Beyer D L, Jach T E, Zak D L, et al. Edible products having inorganic coatings[P]. Official Gazette of the United States Patent and Trademark Office Patents, 1998, 1209(3): 2280-2281
    25. Lindma B, Danielson L. The definition of microemulsion.Colloids and Surfaces, 1981, 3: 391-392
    26.崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社, 1999, 32-56
    27.沈钟,赵振国,王果庭.胶体与表面化学[M].第3版.北京:化学工业出版社, 2004: 419-518
    28.颜肖慈,罗明道.界面化学[M].北京:化学工业出版社, 2005: 83-97
    29. Hoar T P, Schulman J H. Transparent water-in-oil dispersions oleophatics hydromicelle. Nature, 1943, 152: 102
    30. Kantaria S, Rees G D, Lawrence M J. Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery, J Control Rel, 1999, 60: 355-365
    31. Sarciaux J M, Acar L, Sado P A. Using microemulsion formulations for drug delivery of therapeutic peptides. Int J Pharm, 1995, 120: 127-136
    32. Kemken J, Ziegler A, Muller B W. Investigations into the pharmacodynamic effects of dermally administered microemulsions containing beta-blockers, J Pharm Pharmacol, 1991, 43: 679-684
    33. EI-Nokaly M, Cormell D. Microemulsion and Emulsion in Foods[M]. Washington D C, 1991
    34. Moreno M A, Ballesteros M P, Frutos P. Lecithin-based oil-in-water microemulsions for parenteral use: Pseudoternary phase diagrams, characterization and toxicity studies. J. Pharm Sci, 2003, 92(7): 1428-1437
    35. Brime B, Moreno M A, Frutos G, et al. Amphotericin B in oil-water lecithin-based microemulsions: Formulation and toxicity evaluation. Pharm Sci, 2002, 91(4): 1178-1185
    36. Garti N, Yaghmur A, Leser M E, et al. Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol. J Agric Food Chem, 2001, 49(5): 2552-2562
    37. Pelletier X, Belbraouet S, Mirabel D, et al. A diet moderately enriched in phytosterols lowers plasma cholesterol concentrations in normocholesterolemic humans. Ann Nutr Metab. 1995, 39(5): 291-295
    38. Jones P J H, MacDougall D E, Ntanios F, et al. Dietary phytosterols as cholesterol-lowering agents in humans. Can J Physiol Pharm, 1997, 75: 217-227
    39. Spernath A, Yaghmur A, Aserin A, et al. Self-diffusion nuclear magnetic resonance, microstructure transitions, and solubilization capacity of phytosterols and cholesterol in Winsor IV food-grade microemulsions. J Agric Food Chem, 2003, 51: 2359-2364
    40. Spernath A, Yaghmur A, Aserin A, et al. Food-grade microemulsions based on nonionic emulsifiers: Media to enhance lycopene solubilization. J Agric Food Chem, 2002, 50: 6917-6922
    41. Bramley P M. Is lycopene beneficial to human health? Phytochemistry, 2000, 54(3): 233-236
    42. Rao A V, Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr Res, 1999, 19(2): 305-323
    43. Cooke J P. Nutriceuticals for cardiovascular health. Am J Cardiol, 1998, 82(10A): 43S-45S
    44. Hou M J, Shah D O. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir, 1987, 3(6): 1086-1096
    45. Huibers P D T, Shah D O. Evidence for synergism in nonionic surfactant mixtures: Enhancement of solubilization in water-in-oil microemulsions. Langmuir, 1997, 13(21): 5762-5765
    46.林新华,叶榕.茶多酚在食用植物油中的增溶和抗氧化机理[J].福建医科大学学报, 2001, 35(4): 357-361
    47. Feng J L, Wang Z W, Zhang J, et al. Study on food-grade vitamin E microemulsions based on nonionic emulsifiers. Colloids and Surfaces A. 2009, 339: 1-6
    48.丰隽莉,王正武,俞惠新等. VE的微乳化研究[J].食品与机械, 2006, 22(5): 36-39
    49.孙万成.溶血磷脂制备含沙棘油微乳液的研究[J].现代食品科技, 2006, 22(4): 43-45
    50.颜秀花,王正武,王建磊等.β-胡萝卜素微乳液的制备及其稳定性研究[J].化学通报, 2007, 70(1): 67-72
    51. Chapman D, Fast P G.Studies of chlorophyll-lipid-water systems.Science, 1968, 160(828): 188-189
    52. Brown G H, Wolken J J. Liquid Crystals and Biological Structures.New York: Academic Press, 1979
    53. Mannock D A, Collins M D, Kriechbaum M, et al. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Chem Phys Lipids, 2007, 148(1): 26-50
    54. Misquitta Y, Caffrey M. Rational design of lipid molecular structure: A case study involving the C19 : 1c10 monoacylglycerol, Biophys J, 2001, 81(2): 1047-1058
    55. Kaasgaard T, Drummond C J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. PCCP, 2006, 8(43): 4957-4975
    56. de Campo L, Yaghmur A, Sagalowicz L, et al. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir, 2004, 20(13): 5254-5261
    57. Rappolt M, Hickel A, Bringezu F, et al. Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution X-ray diffraction. Biophys J, 2003, 84(5): 3111-3122
    58. Epand R M, Epand R F, Decicco A, et al. Curvature properties of novel forms of phosphatidylcholine with branched acyl chains. Eur J Biochem, 2000, 267(10): 2909-2915
    59. Briggs J, Caffrey M. The Temperrature-Composition Phase-Diagram and Mesophase Structure Characterization of Monopentadecenoin in Water. Biophys J, 1994, 67(4): 1594-1602
    60. Borne J, Nylander T, Khan A. Microscopy, SAXD, and NMR studies of phase behavior of the monoolein-diolein-water system. Langmuir, 2000, 16(26): 10044-10054
    61. Fong C, Wells D, Krodkiewska I, et al. Diversifying the solid state and lyotropic phase behavior of nonionic urea-based surfactants. J Phys Chem B, 2007, 111(36): 10713-10722
    62. Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials, 2000, 21(3): 223-234
    63. Qiu H, Caffrey M. Phase behavior of the monoerucin/water system. Chem Phys Lipids,1999, 100(1-2): 55-79
    64. Kamo T, Nakano M, Leesajakul W, et al. Nonlamellar liquid crystalline phases and their particle formation in the egg yolk phosphatidylcholine/diolein system. Langmuir, 2003, 19(22): 9191-9195
    65. Barauskas J, Landh T. Phase behavior of the phytantriol/water system. Langmuir, 2003, 19(23): 9562-9565
    66. Rappolt M. In: Leitmannova A, editor. Planar lipid bilayers and liposomes, vol.5. The Netherlands: Elsevier book series, 2006: 253-283
    67. Hartley P G, Alderton M R, Dawson R M, et al. Biofunctionalized surfactant mesophases as polyvalent inhibitors of cholera toxin. Bioconjug Chem, 2007, 18: 1442-1449
    68. Battaglia G, Tomas S, Ryan A J. Lamellarsomes: metastable polymeric multilamellar aggregates. Soft Matter, 2007, 3: 470-475
    69. Sagalowicz L, Michel M, Adrian M, et al. Crystallography of dispersed liquid crystalline phases studded by cryo-transmission on electron microscopy. J microscopy, 2006, 221: 110-121
    70. Lindstrom M, Ljusberg-Wahren H, Larsson K, et al. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids, 1981, 16: 749-754
    71. Mariani P, Rustichelli F, Saturni L, et al. Stabilization of the monoolein Pn3m cubic structure on trehalose glasses. Eur Biophy J, 1999, 28: 294-301
    72. Mezzenga R, Grigorov M, Zhang Z, et al. Order-to-order transitions in lyotropic liquid crystals. Langmuir, 2005, 21: 6165-6169
    73. Saturni L, Rustichelli F, Di Gregorio G M, et al. Sugar-induced stabilization of the monoolein Pn3m bicontinuous cubic phase during dehydration. Physical Review E, 2001, 64 (art. no. 040902)
    74. Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci, 2009, 147-148: 333-342
    75.于网林,赵国玺.囊泡的形成与两亲分子结构[J].化学通报, 1996, 6: 21-25
    76. Rasi S, Mavelli F, Luisi P L. Cooperative micelle binding and matrix effect in oleate vesicle formation. J Phys Chem B, 2003, 107: 14068-14076
    77. Lonchin S, Luisi P L, Walde P, et al. A matrix effect in mixed phospholipid/fatty acid vesicle formation. J Phys Chem B, 1999, 103: 10910-10916
    78. Morigaki K, Walde P. Giant vesicle formation from oleic acid/sodium oleate on glass surfaces induced induced by adsorbed hydrocarbon molecules. Langmuir, 2002, 18: 10509-10511
    79. Morigaki K, Dallavalle S, Walde P, et al. Autopoietic self-reproduction of chiral fatty acidvesicles. J Am Chem Soc, 1997, 119: 292-301
    80. Namani T, Walde P. From decanoate micelles to decanoic acid/ dodecylbenzenesulfonate vesicles. Langmuir, 2005, 21: 6210-6219
    81. Morigaki K, Walde P. Fatty acid vesicles. Curr Opin Colloid Interface Sci, 2007, 12, 75-80
    82. Liu F, Wang Z W,G u M Y, et al. Entrapment Efficiency of All-trans Retinoic Acid in Surfactant Vesicles. J Dispersion Sci.Tech, 2009, 30(10): 1442-1448
    83. Lam A C, Schechter R S. The theory of diffusion in microemulsion. J Colloid Interface Sci, 1987, 120: 56-63
    84. Lawrence M J. Surfactant systems: microemulsions and vesicles as vehicles for drug delivery. Eur J Drug Metab Pharmacokinet, 1994, 3: 257
    85. Lindman B, Moseley M E, Stilbs P. Fourier transform NMR self-difusion and microemulsion structure. J Colloid Interface Sci, 1981, 83: 569-582
    86. Khoshnevis P, Mortazavi S A, Lawrence M J, et al. In-vitro release of sodium salicylate from water-in-oil phospholipids microemulsions. J Pharm Pharmacol, 1997, 49(S4): 47-53
    87. Yu Z J, Neuman R D. Reversed Micellar Solution-to-Bicontinuous Microemulsion Transition in Sodium Bis(2-Ethylhexyl) Phosphate/n-Heptane/Water System. Langmuir, 1995, 11: 1081-1086
    88. Angelico R, Palazzo G, Colafemmina G, et al. Water Diffusion and Headgroup Mobility in Polymer-like Reverse Micelles: Evidence of a Transition. J Phys Chem B, 1998, 102: 2883-2889
    89. Mehta S K, Kavatjit X X, Bala K. Phase behaviour, structural efects, volumetric and transport properties in onoaqueous microemulsions. Phys Rev E, 1999, 59: 4317-4325
    90. Cirkel P A, Van der Ploeg J P M, Koper G J M. Branching and percolation in lecithin worm like micelles studied by dielectrics pectroscopy. Phys Rev E, 1998, 57: 6875-6883
    91. Feldman Y, Kozlovich N, Nir I, et al. Dielectric spectroscopy of microemulsions. Colloids Surfaces A, 1997, 128: 47-61
    92. Bolzinger M A, Thevenin M A, Grossiord J L, et al. Characterization of a Sucrose Ester Microemulsion by Freeze Fracture Electron Micrograph and Small Angle Neutron Scatering Experiments. Langmuir, 1999, 15: 2307-2315
    93. Vinson P K, Sheehan J G, Miller W G, et al. Viewing microemulsions with freeze-fracture transmission electron microsoopy. J Phys Chem, 1991, 95: 2546-2550
    94. Von Corswant C, Olsson C, Soderman O. Efect of Adding Isopropyl Myristate to Microemulsions Based on Soybean Phosphatidylcholine andTriglycerides. Langmuir, 1998, 14: 3506-3511
    95. Palazzo G, Lopez F, Giustini M, et al. Role of the Cosurfactant in theCTAB/Water/n-Penanol/n-Hexane Water-in-Oil Microemulsion. 1. Pentanol Efect on the Microstructure. J Phys Chem B, 2003, 107: 1924-1931
    96. Regev O, Ezrahi S, Aserin A, et al. A Study of the Microstructure of a Nonionic Microemulsion by Cryo-TEM, NMR, SAXS, and SANS. Langmuir, 1996, 12: 668-674
    97. Eastoe J, Hetherington K J, Sharpe D, et al. Mixing of Alkanes with Surfactant Monolayers in Microemulsions. Langmuir, 1996, 12: 3876-3880
    98. Zemb T N, Barnes I S, Derian P J, et al. Scattering as a critical test of microemulsion structural models. Progr Colloid Polymer Sci, 1990, 81: 20-29
    99. Auvray L, Cotton J P, Ober R, et al. Evidence for zero mean curvature microemulsions. J Phys Chem, 1984, 89: 4586-4589
    100. Zhao Y F, Fan X H, Wan X H. Unusual Phase Behavior of a Mesogen-Jacketed Liquid Crystalline Polymer Synthesized by Atom Transfer Radical Polymerization. Macromolecules, 2006, 39: 948-956
    101. Horváth-SzabóG, Czarnecki J, Masliyah J. Liquid Crystals in Aqueous Solutions of Sodium Naphthenates. J Colloid Interface Sci, 2001, 236: 233-241
    102. Wang Z N, Zheng L Q, Inoue T.Effect of sucrose on the structure of a cubic phase formedfrom a monoolein/water mixture. J.Colloid Interface Sci, 2005, 288: 638-641
    103. Mezzenga R, Lee W B, Fredrickson G H. Design of liquidcrystalline foods via field theoretic computer simulations. Trends in Food Sci Technology, 2006, 17: 220-226
    104.李冀新,张超,罗小玲.α-亚麻酸研究进展[J].粮食与油脂, 2006, 2: 10-12
    105. Liu C G, Desai K. Preparation and charaterization of self-assembled nanoparticles based on linolenic-acid modified chitosan. J Ocean Univ China, 2005, 4(3): 234-239
    106.赵晓燕,马越.亚麻酸的研究进展[J].中国食品添加剂, 2004, 1: 27-30
    107.金赛红.α-亚麻酸对炎症介质的调节作用[J].杭州医学高等专科学校学报, 2002, 23(5-6): 232-234
    108.陶国琴,李晨,周秀琴.α-亚麻酸的保健功效及应用[J].食品科学, 2000, 21: 140-143
    109.赵德义,徐爱遐,张博勇.紫苏籽油的成分与生理功能的研究[J].河南科技大学学报(农学版), 2004, 24: 47-50
    110. Bemelmans W J, Broer J, Feskens E J, et al. Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovacular risk factors: the mediterranean alpha-linolenic enriched groningen dietary intervention (MARGARIN) study. Am J Clin Nutr, 2002, 75: 221-227
    111. Djousse L, Pankow J S, Eckfeldt J H, et al. Relation between dietary linolenic acid andcoronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr, 2001, 74: 612-619
    112. Djousse L, Arnett D K, Carr J J, et al. Dietary linolenic acid is inversely associated with calcified atherosclerotic plaque in the coronary arteries: the National Heart, Lung, and Blood Institute Family Heart Study. Circulation, 2005, 111: 2921-2926
    113. Albert C M, Oh K, Whang W, et al. Dietaryα-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation, 2005, 112: 3232-3238
    114. Ren J, Chung S H. Anti-inflammatory Effect ofα-Linolenic Acid and Its Mode of Action through the Inhibition of Nitric Oxide Production and Inducible Nitric Oxide Synthase Gene Expression via NF-κB and Mitogen-Activated Protein Kinase Pathways. J Agric Food Chem, 2007, 55: 5073-5080
    115. Zhang W, Wang R, Han S F, et al.α-Linolenic acid attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells via PI3K/Akt/eNOS pathway. Nutrition, 2007, 23: 762-770
    116. Ros E, Nú?ez I, Pérez-Heras A, et al. A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial.Circulation, 2004, 109: 1609-1614
    117. Suresh Y, Das U N. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: Effect of omega-3 fatty acids. Nutrition, 2003, 19: 213-228
    118. Ghafoorunissa I A, Natarajan S. Substituting dietary linoleic acid with alpha-linolenic acid improves insulin sensitivity in sucrose fed rats. Biochim Biophys Acta, 2005, 1733: 67-75
    119. Truong H, DiBello J R, Ruiz-Narvaez E, et al. Does genetic variation in the Delta(6)-desaturase promoter modify the association between alpha-linolenic acid and the prevalence of metabolic syndrome? Am J Clin Nutr, 2009, 89(3): 920-925
    120. Wu D, Chen X J, Shi P Y, et al. Determination of alpha-linolenic acid and linoleic acid in edible oils using near-infrared spectroscopy improved by wavelet transform and uninformative variable elimination. Anal Chim Acta, 2009, 634(2): 166-171
    121.范文洵.α-亚麻酸及其代谢产物和EPA和DHA[J].生物科学进展, 1988, 19(2): 111-112
    122.继成.α-亚麻酸绿色保健食品[J].中国制药信息, 2006, 22(10): 14-17
    123. Manthey F A, Lee R E, Hall C A.Processing and Cooking Effects on Lipid Content and Stability ofα-Linolenic Acid in Spaghetti Containing Ground Flaxseed. J Agric Food Chem, 2002, 50(6): 1668-1671
    124. Cheng S Q, Fu X G, Liu J H, et al. Study of ethylene glycol/TX-100/ionic liquidmicroemulsions. Colloids and Surfaces A, 2007, 302: 211-215
    125. Li N, Gao Y, Zheng L Q, et al. Studies on the Micropolarities of bmimBF4/TX-100/Toluene Ionic Liquid Microemulsions and Their Behaviors Characterized by UV-Visible Spectroscopy. Langmuir, 2007, 23: 1091-1097
    126. Papadimitriou V, Sotiroudis T G, Xenakis A. Olive Oil Microemulsions: Enzymatic Activities and Structural Characteristics. Langmuir, 2007, 23: 2071-2077
    127. Buhler E, Appell J, Porte G J. Loose Complexation of Weakly Charged Microemulsion Droplets and a Polyelectrolyte. Phys Chem B, 2006, 110: 6415-6422
    128. Campbell C J, Njue C K, Nuthankki B, et al. Influence of Thickness on Catalytic Efficiency of Cobalt Corrin-Polyion Scaffolds on Electrodes in Microemulsions. Langmuir, 2001, 17: 3447-3453
    129. Summers M, Eastoe J, Davis S. Formation of BaSO4 Nanoparticles in Microemulsions with Polymerized Surfactant Shells. Langmuir, 2002, 18: 5023-5026
    130. Zhang H, Feng F Q, Fu X W, et al. Antimicrobial effect of food-grade GML microemulsions against Staphylococcus aureus. Eur Food Res Technol, 2007, 226: 281-286
    131. Acosta E, Nguyen J T, Witthayapanyanon A, et al. A. Linker-based bio-compatible microemulsions. En Viron Sci Technol, 2005, 39: 1275-1282
    132. Garti N. Microemulsions as microreactors for food applications. Curr Opin Colloid Interface Sci, 2003, 8: 197-211
    133. Glatter O, Orthaber D, Stradner A, et al. Sugar-ester nonionic microemulsion: Structural characterization. J Colloid Interface Sci, 2001, 241: 215-225
    134. Koike H, Imai M, Suzuki I. Enrichment of triglyceride docosahexanoic acid by lipase used as a hydrolysis medium in lecithin-based nano-scale molecular assemblage. Biochem Eng J, 2007, 36: 38-42
    135.薛美玲,张积树,于永良等.微乳液变型及W/O型导电机理的研究[J].青岛化工学院学报, 1998, 19(1): 21-26
    136. Podlogar F, Gasperlin M, Tomsic M, et al. Structural characterisation of water–Tween 40/Imwitor 308–isopropyl myristate microemulsions using different experimental methods. Inter J Pharm, 2004, 276: 115-128
    137. John H V, Harnold M. Characterization of vesicles by classical light scattering. J Colloid Interface Sci, 1991, 146, 330-339
    138.张川,蒋雪涛,杨根金.核磁共振法测定喃氟咤温度敏感性脂质体的相转变温度[J].药学学报, 1997, 32(1): 69-71
    139. Wang J L, Wang Z W, Zhou M, et al. Preparation and in vitro release test of insulin loaded W/O microemulsion. J Dispersion Sci Technol, 2008, 29: 756-762
    140. Lv F F, Li N, Zheng L Q, et al. Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. Eur J Pharm Biopharm, 2006, 62: 288-294
    141. Zana R. Surfactant solution: New methods of investigation[M]. Marcel Dekker, Inc., New York, 1987, p209
    142.江体乾.化工流变学[M].华东理工大学出版社, 2004. 8
    143. Carreau P J, Kee D D, Daroux M. An analysis of the viscous behaviour of polymeric solutions. Can J Chem Eng, 1979, 57: 135-140
    144. Macha? I, ?i?ka B, Macha?ova L. Terminal falling velocity of spherical particles moving through a Carreau model fluid. Chem Eng Proces, 2000, 39: 365-369
    145. Pestana K C, Formariz T P, Franzini C M, et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Colloids and Surfaces B, 2008, 66: 253-259
    146. Kramer J K G, Parodi P W, Jensen R G, et al. Rumenic acid: A proposed common name for the major conjugated linoleic acid isomer found in nature products. Lipids, 1998, 33(8): 835-835
    147. Lee K N, Storkson J M, Pariza M W. Dietary conjugated linoleic acid changes fatty acid composition in different tissues by decreasing monounsaturated fatty acids. 1995, Institute of Food Tech. Annual Meeting (Abstr), p183
    148. Ip C, Chin S F, Scimeca J A, et al. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res, 1991, 51: 6118-6124
    149. Belury M A, Nickel K, Bird P C E, et al. Dietary conjugated linoleic acid modulation of phorbol ester skin tumor promotion. Nutr. Cancer, 1996, 26: 149-157
    150. Whale K, Heys S D, Rotondo D. Conjugated linoleic acids: are they beneficial or detrimental to health? Progress in Lipid Research, 2004, 43: 553-587
    151. Diniz Y S, Santos P P, Assalin H B, et al. Conjugated linoleic acid and cardiac health: Oxidative stress and energetic metabolism in standard and sucrose-rich diets. European J. Pharmacology, 2008, 579: 318-325
    152. Houseknecht K L, Heuvel J P V, Moya-Camarena S Y, et al. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun, 1998, 244: 678-682
    153. Yu Y, Correll P H, Heuvel J P. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR-dependent mechanism. Biochim Biophys Acta, 2002, 1581: 89-99
    154. Simón E, Macarulla M T, Churruca I, et al. Trans-10, cis 12 conjugated linoleic acid prevents adiposity but not insulin resistance induced by an atherogenic diet in hamsters. JNutr Biochem, 2006, 17: 126-131
    155. Smedman A, Vessby B. Conjugated linoleic acid supplementation in humans - metabolic effects. Lipids, 2001, 36: 773-781
    156. Corl B A, Mathews Olive S A, Lin X, et al. Conjugated linoleic acid reduces body fat accretion and lipogenic gene expression in neonatal pigs fed low- or high-fat formulas1-3. J Nutr, 2008, 138: 449-454
    157. Smedman A, Vessby B. Conjugated linoleic acid supplementation in humans - metabolic effects. Lipids, 2001, 36, 773-781
    158.马永生,金礼吉,徐永平.共轭亚油酸降低动物脂肪沉积机理研究进展[J],中国饲料, 2007, (12): 5~11
    159. Campbell W, Drake M A, Larick D K. The Impact of Fortification with Conjugated Linoleic Acid (CLA) on the Quality of Fluid Milk.J Dairy Sci, 2003, 86: 43-51
    160. Jimenez M, Garciab H S, Beristain C I. Sensory evaluation of dairy products supplemented with microencapsulated conjugated linoleic acid (CLA). LWT, 2008, 41: 1047-1052
    161.石强,吾满江?艾力.共轭亚油酸微胶囊化的乳化工艺研究[J].食品科学, 2006, 27(11): 310-315
    162. Charman S A, Charman W N, Rogg M C, et al. Self-emulsifying systems formulation and biological evaluation of an investigative lipophilic compound. Pharm Res, 1992, 9: 87-94
    163.周凌华,张灏,郑小平等.共轭亚油酸紫外检测方法的研究[J].乳业科学与技术, 2007, 5: 267-270
    164.杨锦宗,兰云军.微乳状液制备技术及其发展状况[J].精细化工, 1995, 12(4): 7-10.
    165. Mehta S K, Bala K. Tween-based microemulsions: a percolation view. Fluid Phase Equilib, 2000, 172: 197-209
    166. Gregory W G. Shear and elongational rheology of ternary microemulisons. Clloids and surfaces A, 1995, 103: 273-279
    167. Chen C M, Warr G G. Rheology of ternary microemulsions. J Phys Chem, 1992, 96: 9492-9497
    168. Sj?blom J, Lindberg R, Friberg S E. Microemulsions - phase equilibria characterization, structures, applications and chemical reactions. Adv Colloid Interface Sci, 1996, 65: 125-287
    169. Kogan A, Aserin A, Garti N. Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. J Colloid Interface Sci, 2007, 315: 637-647
    170. Wicks Z W, Anderson E A, Culhane W J. Morphology of water-soluble acryliccopolymer solutions. J Coat Tech, 1982, 54: 57-61
    171. Meng W, Wu L, Chen D. Ambient Self-crosslinkable Acrylic Microemulsion in the Presence of Reactive Surfactants. Iranian Polymer J, 2008, 17(7): 555-564
    172. Chen L F, Shang Y Z, Liu H L, et al. Effect of the spacer group of cationic gemini surfactant on microemulsion phase behavior. J Colloid Interface Sci, 2006, 301: 644-650
    173.刘华杰,柳松.多重乳状液的稳定性及其在食品工业中的应用[J].食品研究与开发, 2007, 28(3): 169-172
    174.王传好,曹光群,孙谦. W/O/W型多重乳状液的制备及应用概述[J].日用化学工业, 1991, (3): 23-31
    175.刘华杰,柳松.白油W/O/W型多重乳状液的稳定性研究[J].日用化学工业, 2007, 37(2): 88-91
    176.刘华杰,柳松.甜橙油多重乳状液的稳定性研究[J].食品与机械, 2007, 23(3): 48-50
    177. Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6(3): 259-270
    178. Shao Z M, Shen Z Z, Liu C H, et al. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer, 2002, 98(2): 234-340
    179.张秀丽,马健飞,吴咏今等.姜黄素对表皮葡萄球菌腹膜炎大鼠腹膜TNF-α表达的影响[J].解剖科学进展, 2008, 14(4): 420-422
    180.王雪梅,张建胜,高云涛.姜黄素体外清除活性氧自由基及抗氧化作用研究[J].食品工业科技, 2008, (7): 94-95, 98
    181.张瑜,黄秀旺,许建华等.姜黄素固体分散制剂抗小鼠脂肪肝的实验研究[J].中国药业, 2008, 17(21): 7-9
    182. Odot J, Albert P, Carlie A, et al. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer, 2004, 111(3): 381-387
    183.沃兴德,洪行球,高承贤.姜黄素长期毒性试验[J].浙江中医学院学报, 2000, 24(1): 61-65
    184.沃兴德,洪行球,高承贤.姜黄素最大耐受量试验[J].浙江中医学院学报, 2000, 24(2): 55
    185. Wang Y J, Pan M H, Cheng A L, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal, 1997, 15(12): 1867-1876
    186. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat.Acta Pharmacol Toxicol, 1978, 43(2): 86-92
    187. Ireson C R, Jones D J, Orr S, et al. Metabolism of the cancer chemopreventive agent curcumin in human and tat intestine.Caner Epidemiologic Biomarkers Prev, 2002, 11(1):105-111
    188. Ireson C R, Orr S, Jones D J, et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res, 2001, 61(3): 1058-1064
    189. Tonnesen H H, Masson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm, 2002, 244(1-2): 127-135
    190. Paradkar A, Ambike A A, Jadhav B K, et al. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm, 2004, 271(1-2): 281-286
    191. Virender K, Shaila Angela L, Srinivas M, et al. Biodegradable microspheres of curcumin for treatment of inflammation. Indian J Physiol Pharmacol, 2002, 46(2): 209-217
    192.陈进,陈卫东,崔玉杰.姜黄素滴丸制备工艺的研究[J].中国药物与临床, 2007, 2(7): 135-137
    193.林巧平,郭仁平,许向阳.注射用姜黄素脂质体的制备及其质量评价[J].中国天然药物, 2007, 5(3): 207-210
    194. Tirumalasetty P P, Eley J G. Permeability enhancing effects of the alkylglycoside, octylglucoside, on insulin permeation across epithelial membrane in vitro. J Pharm Pharm Sci, 2006, 9: 32-39
    195.张龙芳,陈文弦,赵大庆等.两种方法制备兔小肠粘膜下层的对比研究[J].医学研究生报, 2007, 20(11): 1147-1150
    196.彭顺金,张贵军,陈正国等. Span及Tween类物质的组成、性能、表征与应用[J].聚合物乳液通讯, 1997, 16(1): 27-34.
    197. Shah Micelles D O. Microemulsions, and Monolayers-Science and Technology, Marcel Dekker, New York, 1998.
    198. Park K M, Hwang K J, Kim C K, et al. Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process. Int J Pharm, 1999, 183(2): 145-154
    199. Chen H, Chang X, Weng T, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Controlled Release, 2004, 98(3): 427-436
    200. Escribano E, Calpena A C, Queralt J, et al. Assessment of diclofenac permeation with different formulations: Anti-inflammatory study of a selected formula. Eur J Pharm Sci, 2003, 19(4): 203-210
    201. Peltola S, Saarinen-Savolainen P, Kiesvaara J, et al. Microemulsions for topical delivery of estradiol. Int J Pharm, 2003, 254(2): 99-107
    202. Sintov A C, Shapiro L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Controlled Release, 2004, 95(2): 173-183
    203. Braun P V, Osenar P, Stupp S I.Semiconducting super lattices template bymolecular assemblies. Nature, 1996, 380: 325-328
    204. Kresge C T, Leonowicz M E, Roth W J, et al. Ordered meso-porous molecular sieves synthesized by a liquid - crystal templatemechanism. Nature, 1992, 359: 710-712
    205. Schular P J, Lernaer P M, Kuehne D L. Improving chemical flood efficiently with micellar-alkaline-polymer processes. SPE, 1986, 14934: 135-152
    206. Clark S R, Pitts M J, Smith S M, et al. Design and application of an alkaline-surfactant-polymer recovery system to the West Kichl field. SPE, 1988, 17538: 515-522
    207. Carrm G, Corish J, Corrigan O I. Drug delivery from a liquid crystalline base across visking and human stratum corneum. Int J Pham, 1997, 157(1): 35-42
    208. Makai M, Casnyi E, Nemeih Z S, et al. Structure and drug release of lamellar liquid crystals containing glycerol. Int J Pham, 2003, 256(1): 95-107
    209. Nelson R C, Lawson J B, Thigpen D R, et al. Cosurfactant enhanced alkaline flooding. SPE, 1984, 12672: 413-424.
    210.林梅钦,吴肇亮.用乳状液稳定性实验考察化学驱中油滴聚并[J].石油学报(石油加工), 2000, 16(2): 1-6
    211. Enastr M S. Cubic phase as drug delivery. Polymer Preprint, 1990,31(2): 157-159
    212.李薇薇,刘玉玲,李广福.一种新型的LCD清洗剂[J].电子工业技术, 2005, 20(1): 35-39
    213.李干佐,李英,肖洪地等.溶致液晶体系研究及其在三次采油中的应用[J].高等化学学报, 2001, 22: 108-111
    214.田晓红,蒋青,谢明贵.溶致液晶的结构及应用研究进展[J].化学研究与应用, 2002, 14(2): 119-122
    215. Tschierske C M. Self organization of amphotropic liquid crystals. Prog Polym Sci, 1996, 21: 775-852
    216. Livdant F, Leforestier A. Condensed phase of DAN; Structure and phase transitions. Prog Polym Sci, 1996, 21: 1115-1164
    217. Shah J C, Sadhale Y, Chilukuri D M. Cubic phase gels as drug delivery systems. Adv Drug Delivery Rev, 2001, 47(2-3): 229-250
    218. Larsson K. Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem,1989, 93(21): 7304-7314
    219. Engstr?m S. Cubic phases as drug delivery systems. Polym Prep (Am Chem Soc,Div Polym Chem), 1990, 3l(2): 157-158
    220. Vill V, Hashim R. Carbohydrate liquid crystals: structure-property relationship of thermotropic and lyotropic glycolipids. Curt Opin Colloid Interface Sci, 2002, 7(5-6): 395-409
    221. Templer R H. Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr Opin Colloid Interface Sci, 1998, 3(4): 255-263
    222. Tardieu L A, Luzzati V. Polymorphism of lipids. A novel cubic phase-a cage-like network of rods with enclosed spherical micelles. Bioehim Biophys Acta, 1970, 219(1): 11-17
    223. Chung H, Caffrey M. The curvature elastic-energy function of the lipid-water cubic mesophase. Nature, 1994, 368(6468): 224-226
    224. Von Schnering H G, Nesper R. Nodal surfaces of fourier series: fundamental invariants of structured matter. Z Phys B, Condensed Matter, 1991, 83(3): 407-412
    225. Larsson K. Aqueous dispersion of cubic lipid-water phases. Curr Opin Colloid Interface Sci, 2000, 5(1): 64-69
    226. Wyatt D M, Dorschel D. A cubic phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs Pharm.Pharml Technol, 1992, 16(10): 116-130
    227. Sadhale Y, Shah J C. Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel. Inter J Pharm, 1999, 191(1): 51-64
    228. Ericsson B, Eriksson P O, Leofroth J E, et al. Cubic phases as delivery systems for peptide drugs. Polymeric drugs drug delivery systems, 1991, 469: 251-265
    229. Nielsen L S, Schubert L, Hansen J. Bioadhesive drug delivery systems - I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Euro J Pharm Sci, 1998, 6(3): 231-239
    230. Lee Y C, Chung I J. Lyotropic liquid crystalline phase of polyesteramides with different ratio of amide to ester groups in a main chain. Poly Bulletin, 1992, 28(4): 441-447
    231. Comelles F, Sánchez-Leal J, González J J. Influence of fatty acid structure on liquid crystal formation in systems with anionic surfactant, diethyleneglucol ethylether and water. Eur J Lipid Sci Technol, 2005, 107(5): 291-296
    232. Simon K A, Sejwal P, Gerecht R B, et al. Water-in-water emulsions stabilized by non-amphiphilic interactions: polymer-dispersed lyotropic liquid crystals.Langmuir, 2007, 23(3): 1453-1458
    233. Kijima T, Nishida Y, Fujikawa D, et al. Long-chain alcohol induced phase trasition inlyotropic mixed polyoxyethylene-type surfactant liquid-crystal. J Mol Liquids, 2007, 133(1-3): 54-60
    234. Israelachvili J N, Mitchell D J, Ninham B W. Theory of self assembly of hydeacarbon amphiphiles into micelles and bilayers. J Chem Soc, 1976, 72, 1525-1568
    235. Mitchell D J, Ninham B W. Micelles, vesicles and microemulsions. J Chem Soc, 1981, 77(4): 601-629
    236. Warisnoicharoen W, Lansley A B, Lawrence M J. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Parm Sci, 2000, 198(1): 7-27
    237. Chevalier Y, Zemb T. The structure of micelles and microemulsions. Rep Prog Phys, 1990, 53(3): 279-371
    238. Malcolmson C, Lawrence M J. Three-component non-ionic oil-in-water microemulsions using polyoxyethylene ether surfactants, Colloids and Surfaces B, 1995, 4(2): 97-109
    239. Kunieda H, Kabir H, Aramaki K. Phase behavior of mixed polyoxyethylene-type nonionic surfactants in water. J Molecular Liquids, 2001, 90(1-3): 127-166
    240. Tanford C. Micelle shape and size. J Phys Chem, 1972, 76(21): 3020-3024
    241. Turner D C, Wang Z G, Gruner S M, et al. Structural study of the inverted cubic phases of di-dodecyl alkyl-β-D-glucopyranosyl-rac-glycerol. J Phys II, 1992, 2(11): 2039-2063
    242. Briggs J, Chung H, Caffrey M. The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. J Phys II, 1996, 6(5): 723-751
    243. Hato M, Yamashita I, Kato T, et al. Aqueous phase behavior of a
    1-o-phytanyl-β-D-xyloside /water system. Glycolioid-based bicontinuous cubic phase of crystallographic space groups Pn3m and Ia3d. Langmuir, 2004, 20(26): 11366-11373
    244. Siddig M A, Radiman S, Muniandy S V, et al. Strycture of cubic phases in ternary systems Glucopone/water/hydrocarbon. Colloids Surfaces A, 2004, 236(1-3): 57-67
    245. Cordobes F, Munoz J, Gallegos C. Linear ciscoelasticity of the direct hexagonal liquid crystalline phase for a heptane/nonionic surfactant/water system. J Colloid Inter Sci, 1997,
    187: 401-417
    246.王红霞,张高勇.非离子表面活性剂液晶的线性粘弹性研究[J].化学学报, 2001, 59: 1888-1893
    247. Nemeth Z, Palinkas J, Halasz L, et al. Rheological and structural properties of binary nonionic surfactant-water lamellar system. Tenside Surf. Det, 1999, 36: 88-95
    248. Cordobes F, Munoz J, Gallegos C. Linear viscoelasticity of the direct hexagonal liquid srysatlline phase for a heptane/nonionic surfactant/water system. J Colloid Inter Sci, 1997,
    187: 401-417
    249. Galatanu A N, Chronakis I S, Anghel D F, et al. Thernary phase diagram of the Triton X-100/poly (acrylic acid)/water system. Langmuir, 2000, 16: 4922-4928
    250. Alfaro M C, Guerrero A F, Munoz J. Dynamic viscoelasticity and flow behavior of a polyoxyethylene glycol nonylphenyl ether/toluene/water system. Langmuir, 2000, 16: 4711-4719
    251. Nemeth Z, Halasz L, Palinkas J, et al. Rheological behavior of a lamellar liquid crystalline surfactant-water system. Colloid Surf. A, 1998, 145: 107-119
    252. Pouzot M, Mezzenga R, Leser M, et al. Structural and Rheological Investigation of Fd3m Inverse MicellarCubic Phases. Langmuir, 2007, 23: 9618-9628
    253. Mezzenga R, Meyer C, Servais C, et al. Shear Rheology of Lyotropic Liquid Crystals: A Case Study. Langmuir, 2005, 21: 3322-3333
    254. Castelletto V, Parras P, Hamley I W, et al. A Rheological and SAXS Study of the Lamellar Order in a Side-on Liquid Crystalline Block Copolymer. Macromolecules, 2005, 38: 10736-10742
    255. Osborne D W, Middleton C A, Rogers R L. Alcohol-free microemulsions. J Disp Sci Tech, 1988, 9: 415-523
    256. Carfors J, Blute I, Schmidt V. Lidocaine in microemulsion-a dermal delivery system. J Disp Sci Tec, 1991, 12: 467-482
    257. Attwood D, Mallon C, Taylor C J. A study on factors influencing the droplet size in nonionic oil-in-water microemulsions. Int J Pharm, 1992, 88: 417-422
    258. Kunieda H, Ushio N, Nakano A, et al. Three-phase behaviour in a mixed sucrose alkanoate and polyethyleneglycol alkyl ether system. J Colloid Interface Sci, 1993, 159: 37-44
    259. Lawrence M J. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev, 2000, 45: 89-121
    260. Kraft M P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev, 2001, 47: 209-228
    261. Savic R, Luo L B, Eisenberg A, et al. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science, 2003, 300(5619): 615-618
    262. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharm aceutical applications. Adv Drug Deliv Rev, 2003, 55:403-419
    263. Anderson B C, Pandit N K,Mallapragada S K. Understanding drug release from poly(ethylene oxide)-b-poty(propylene oxide)-b-poly(ethylene oxide)gels. J Controlled Release, 2001, 70: 157-167
    264. Engstrom S, Norden T P, Nyquist H. Cubic phases for studies of drug partition into lipidbilayers. Eur J Pharm Sci, 1999, 8: 243-254
    265. Franco J, Munoz J, Gallegos C. Transient and steady flow of a lamellar liquid crystalline surfactant/water system. Langmuir, 1995, 11: 669-673
    266.李彦,张庆敏,黄福志等.表面活性剂溶致液晶体系研究进展[J].大学化学, 2000, 15(1): 5-9
    267. Berni M G, Lawrence C J, Machin D. A review of the rheology of the lamellar phase in surfactant system. Adv Colloid Inter Sci, 2002, 98: 217-243
    268. Zipfel J, Behausen J, Lindner P. Shear-induced structure in lamellar phase of amphiphilic block copolymers. J Phys Chem, 1999, 1: 3905-3910
    269. Zipfel J, Behausen J, Lindner P, et al. Influence of shear on lyotropic lamellar phases with different membrane defects. J Phys Chem B, 1999, 103(15): 2841-2849
    270. Partal P, Kowalski A J, Machin D, Rheology and microstructural transitions in the lamellar phase of a cationic surfactant. Langmuir, 2001, 17: 1331-1337
    271. Durreschmidt T, Hoffman H. Organogels from ABA triblock copolymers. Colloid Polym Sci, 2001, 279: 1005-1012
    272. Svensson B, Alexandridis P, Olsson U. Self-assembly of a poly(ethylene oxide)/poly(propylene oxide)block copolymer (Pluronic P104, (EO)27(PO)61(EO)27) in the presence of water and xylene. J Phys Chem B, 1998, 102: 7541-7548
    273. Montalvo G, Valiente M, Rodenas E. Rheological properties of the L phase and the hexagonal, lamellar, and cubic liquid srystals of the CTAB/benzyl/alcohol/water system. Langmuir, 1996, 12: 5202-5208
    274.王红霞,张高勇.非离子表面活性剂液晶的线性粘弹性研究[J].化学学报, 2001, 59: 1888-1893
    275. Wang Z N, Diao Z Y, Liu F, Li G Z, Zhang G Y. Microstructure and rheological properties of liquid crystallines formed in Brij97/water/IPM system. J Colloid Interface Sci, 2006, 297: 813-818