水解酸化-悬浮载体复合MBR处理抗生素废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素废水水质成分复杂,含有发酵残余基质及营养物、微生物菌丝体、中间代谢产物、溶媒提取过程萃余液、蒸馏釜残液、发酵滤液等,导致该类废水具有有机物浓度高、pH变化大、生物抑制性强等特点,废水处理难度大。随着更加严格的制药工业水污染物排放标准的颁布和实施(GB21903-2008发酵类制药工业水污染物排放标准),制药废水,特别是抗生素类制药废水如何达标排放是目前国内外水处理行业研究的热点,也是制药行业亟待解决的难点。因此,寻找技术经济可行的抗生素废水处理技术十分必要。
     针对抗生素废水水质特点及新的排放标准要求,提出了水解酸化-悬浮载体复合MBR处理抗生素废水的技术路线。水解酸化试验结果表明:在进水水质波动较大的情况下(COD范围为1670~4200mg/L ; SS范围为270~730mg/L),出水水质相对稳定。对影响水解酸化效果的主要参数HRT和温度进行了考察,结果表明:要想达到较好的水解酸化效果(酸化度在50%左右,出水VFA在1500mg/L以上),HRT应控制在10h,温度应控制在20℃~30℃。水解酸化长期运行结果表明:水解酸化极大地改善了废水的生物降解性能,BOD_5/COD由0.29上升到0.49,SCOD/COD由0.67提高至0.92。悬浮载体复合MBR处理经水解酸化预处理抗生素废水的试验结果表明:当HRT为12~18h时,COD去除率在91%~94%,出水COD小于200mg/L;当HRT在24h以上时, COD去除率稳定在95%左右,出水COD小于100mg/L,均满足《发酵类制药工业水污染物排放标准》中的相关标准。对影响悬浮载体复合MBR处理效果的主要影响因素DO和温度进行了考察,对比了悬浮载体复合MBR与普通MBR对经水解酸化预处理的抗生素废水的处理效果,在相同运行条件下,悬浮载体复合MBR对COD、氨氮和TN的去除效果均优于普通MBR,去除率分别提高了4.8%、8.2%和8.3%。
     在分析活性污泥和生物膜共存系统动力学的基础上,通过对系统有机物的物料衡算,构建了活性污泥生物膜共存的悬浮载体复合MBR有机物降解动力学模型,为实际工程应用奠定了理论基础。在试验条件下求得载体生物膜COD半饱和常数K s,COD,sp=114.36 mg/L,载体生物膜最大COD降解速率q|^)_(m ,COD,sp)=3.04mg/(个·d),最大比基质降解速率常数Vmax=0.62d~(-1),基质饱和常数K_s=147.65mg/L,有机物降解速率常数K=V_(max/Ks)=0.004。根据模型对出水COD进行了模拟预测,与实际测定数据相对比,模拟值与实测结果基本吻合。对悬浮载体复合MBR的污泥产率系数Y与衰减系数K_d进行求解,在SRT=100d、HRT=24h、MLSS=12~15g/L条件下,Y=0.09,Kd=0.0144,均小于普通MBR的Y=0.1327,K_d=0.0177。
     采用中心复合设计试验和响应面法确定了影响膜临界通量的主要操作条件。试验结果表明:临界通量随污泥浓度的增大而减小;曝气量在0.05~0.15m~3/h范围内,临界通量随着曝气量的增加呈先增大后减小趋势,当曝气量在0.1m~3/h时,临界通量最大;载体含量在5%~15%范围内,临界通量随载体填充量的增加呈先增大后减小,填充量为10%时达到最大值。基于响应曲面法对污泥浓度、曝气量、载体含量对临界通量影响进行了双因子交互效应分析。结果表明:污泥浓度、曝气量、载体含量均是影响悬浮载体复合MBR膜临界通量的主要因素;曝气量、污泥浓度及载体含量对膜临界通量的影响从大到小依次为污泥浓度>曝气量>载体含量。建立了影响膜临界通量的数学模型,模型预测值与试验值的最大相对误差为6.58%,模型对试验结果具有良好的预测效果,且模型对于膜临界通量具有一定的外推预测效果。得到临界通量的最优操作条件为:污泥浓度5000mg/L、曝气量0.1m~3/h、载体含量10.85%。恒通量连续操作条件下,载体添加延长了运行时间,达到30kPa临界TMP条件,悬浮载体复合MBR需要89h,为普通MBR的2.6倍。膜TMP的平均上升速率(dP/dt)为0.33kPa/h,为普通MBR的37.5%。
     通过SEM和共聚焦显微镜对污染膜表面的微观结构进行了观察,结合ISA3d软件分析了滤饼层的微观结构参数,通过与普通MBR进行对比研究,揭示了悬浮载体对膜污染速率延缓的主要机理。结果表明:相同运行时间条件(34h),悬浮载体对膜污染速率的延缓主要表现在增大了滤饼层空隙率和减小了滤饼层质量,悬浮载体复合MBR膜表面的滤饼体积和滤饼厚度分别为3.2×105μm~3和9.45μm,均小于普通MBR膜表面的5.4×105μm~3和12.6μm,膜表面滤饼比阻为普通MBR的25%。达到相同TMP(30kPa)条件,悬浮载体复合MBR的滤饼体积、平均滤饼厚度、空隙率均大于普通MBR反应器。滤饼层空隙率的增大,抵消了由于膜表面滤饼质量增大对膜阻力增大的负面影响,增强了膜过滤性能。
The quality of antibiotic wastewater is very complicated and hard to treat, which contains fermentation residue substrates and nutrients, microbial mycelium, intermediate metabolites, raffinate of solvent extraction process, distiller raffinate, fermentation filtrate and so on, leading to the wastewater characteristic of high concentrations of organic matter, large pH variations, strong biological inhibition, etc. In addition, with the promulgation and implementation of more stringent pharmaceutical industry water pollutants discharge standards (GB21903-2008.
     Discharge standards of water pollutants for pharmaceutical industry), how to make the pharmaceutical wastewater, especially the antibiotic wastewater, achieve the discharge standards becomes not only a hotspot for water treatment industry at home and abroad, but also a nodus for the pharmaceutical industry to be solved urgently. Consequently, it is necessary to investigate a feasible technology in technology and economy for the treatment of antibiotic wastewater. Depending on the characteristic of antibiotics wastewater and new discharge standards, the hydrolytic acidification-suspended carrier hybrid MBR technology was proposed. The results of hydrolytic acidification showed that the effluent quality was relatively stable under a large fluctuation influent quality (COD was 1670~4200mg/L; SS was 270~730mg/L). HRT and temperature as the main operation parameters of hydrolytic acidification were investigated, results showed that the performance of hydrolytic acidification was better under the condition of HRT was 10h and the temperature was controlled at 20℃~30℃(acidifying degrees was around 50%, the effluent VFA was above 1500mg/L). The long-term operation results of acid hydrolysis acidification indicated that the biodegradability of wastewater was improved greatly, BOD5/COD increased from 0.29 to 0.49, SCOD/COD improved from 0.67 to 0.92. The effluent of hydrolytic acidification using suspended carrier hybrid MBR to treat the antibiotic wastewater showed that the COD removal rate was 91%~94% and the effluent COD was less than 200mg/L when the HRT was 12~18h. When the HRT was more than 24h, COD removal rate stabilized around 95% and the effluent COD was less than 100mg/L, the quality met the related water pollutants emission limit (Discharge standards of water pollutants for pharmaceutical industry, Fermentation products categegory). Compared the suspended carrier hybrid MBR with the common MBR in the treatment efficiency after the pretreatment of antibiotics wastewater using hydrolytic acidification, under the same operating conditions, COD, ammonia nitrogen and TN removal efficiencies of suspended carrier hybrid MBR were better than those of common MBR, the removal rate increased by 4.8%, 8.2% and 8.3%.
     On the basis of the activated sludge and biofilm coexistence system dynamics analysis, the MBR organic matter degradation kinetic equation of activated sludge and biofilm coexistence suspended carrier hybrid MBR was built for the practical application and establishing the theoretical foundation through the material balance of organic matter. Under the experimental conditions, the COD half-saturation constant ( K_(s,COD,sp)) of carrier biofilm was 114.36 mg/L, the largest COD consumption rate ( q|^_(m ,COD,sp)) of carrier biofilm was 3.04mg/(number·d) , the maximum specific substrate degradation rate constant (V_(max)) was 0.62d~(-1), substrate saturation constant (K_s) was 147.65mg/L. Organic matter degradation rate constant (K = V_(max/K_s)) was 0.004. The effluent COD was simulated by the model. Comparing with the experimental data, the result was in accordance with the practical operation. By numerically solved of suspended carrier hybrid MBR sludge yield coefficient Y and attenuation coefficient Kd, the conclusion was Y = 0.09, K_d = 0.0144, which were less than those in common MBR (Y=0.1327,K_d=0.0177) under the condition of SRT = 100d, HRT = 24h, MLSS = 12~15g/L.
     The central composite design and response surface method were used to confirm the main operation parameters on affecting membrane flux. Experimental results showed that the critical flux decreased as the mix liquid suspended sludge concentration decreased. The critical flux was first increased and then decreased as the aeration intensity increased, while the aeration intensity was 0.05~0.15m~3/h, the maximum critical flux was obtained when the aeration intensity was 0.1m~3/h. The critical flux was first increased and then decreased as the carrier filling amount increased, when the carrier filling amount was 5% to 15%, the maximum critical flux was obtained when the filling amount was 10%. Based on Response Surface Method, the effect of the sludge concentration, aeration intensity and carrier filling amount on critical flux was analyzed using two-factor interaction effect. The result showed that the mixed liquid suspended sludge concentration, aeration rate and carrier filling amount were main factors of impacting the membrane critical flux in suspended carrier hybrid MBR. The effect of the mixed liquid suspended sludge concentration, aeration intensity and carrier filling amount on membrane critical flux was in sequence that sludge concentration > aeration rate > carrier filling amount. The mathematical model of membrane critical flux was built, and the maximum relative error of the predictive value and experimental value was 6.58%, which indicated that the model prediction had a good effect and had a certain extrapolated prediction for the membrane critical flux. The optimal operating conditions for the critical flux were the mixed liquid suspended sludge filling amount was 10.85%. Under the constant flux continuous operation, adding carrier extended running time to achieve the critical TMP conditions 30kPa, suspended carrier hybrid MBR needed 89h, and it was 2.6 times than common MBR. The TMP average rising rate in suspended carrier hybrid MBR process was (dP/dt) 0.33 kPa/h, which was 37.5% in the common MBR process.
     SEM and confocal microscopy analysis on the surface of polluted membrane, combined with an analysis of ISA3d software on the micro-structural parameters of filter cake layer, revealed the main mechanism of suspended carrier on membrane fouling delay rate. Results showed that the suspended carrier on membrane fouling delay rate was mainly manifested by increasing cake porosity and decreasing filter cake layer weight under the same operation time (34h). The filter cake volume and thickness of suspended carrier hybrid MBR membrane surface were 3.2×105μm~3 and 9.45μm, respectively, which were less than common MBR membrane surface 5.4×105μm~3 and 12.6μm, and the cake surface specific resistance of the common MBR was only 25%. To achieve the same TMP (30kPa) conditions, the filter cake volume, average cake thickness and porosity of suspended carrier hybrid MBR were larger than those of common MBR. The increased cake porosity offseted the negative impact of membrane resistance, which was increased by cake weight and enhanced the performance of the membrane filtration.
引文
1.王凯军.秦人伟.发酵工业废水处理.北京:化学工业出版社. 2000: 468~469
    2. H Roman, H Thomas, H Klaus, et al. Occurrence of Antibiotics in the Aquatic Environment. The Science of the Total Environment. 1999, 225(1~2): 109~118
    3.肖洁松,武强.酸析-絮凝法处理抗生素釜底残液的研究.化学工程师. 2005,113(2):56~57
    4.秦向春,陈繁忠,叶恒朋等.超高浓度抗生素废水预处理试验.环境工程. 2006,24(2): 20~22
    5.纪树兰,朱安娜,彭跃莲.纳滤膜浓缩回收制药废水中洁霉素的试验研究.环境科学学报. 2001, 21(S1): 133~136
    6.张林生,杨广平.水杨醛废水纳滤处理中操作压力的影响.水处理技术. 2005,31(6): 76~78
    7.杨俊,李海燕,方御等.内电解法处理依诺沙星制药废水.武汉科技学院学报. 2004,17(4): 15~19
    8.王春平,刘清福,马子川.催化臭氧氧化法降解土霉素废水.工业水处理. 2005, 25(4): 56~58
    9.李耀中,孔欣,周岳溪等.光催化降解三类难降解有机工业废水.中国给水排水. 2003, 19(1): 5~8
    10.张东翔,陆英梅,黎汉生.生物制药废水光催化氧化特性研究.环境保护. 2004, (12): 25~28
    11. K. Eakalak, W. Roger. Mineralization and Biodegradability Enhancement of Low Level p-Nitrophenol in Water Using Fenton’s Reagent. Journal of Environmental Engineering. 2005, 131(2): 327~331
    12. Alaton, S. Dogruel, E. Baykal, et al. Combined Chemical and Biological Oxidation of Penicillin Formulation Effluent. Journal of Environmental Management. 2004, 73(2): 155~163
    13.陈一申,朱敏,刘瑜.小诺霉素发酵废水好氧生物处理试验研究.上海环境科学. 1997, 16(4): 26
    14.乔洪棋,毕东,揭成渝.四环素工业废水生化处理工艺的研究.重庆环境科学. 1994, 16(1): 5
    15.许玫英,曾国驱,蔡小伟等.生物膜法和SBR法相结合处理难降解制药废水的研究.微生物学通报. 2002, 29(3): 46~49
    16.胡晓东,胡冠民,景有海. SBR法处理高浓度土霉素废水的试验研究.给水排水. 1995, 21(7): 21~22
    17.罗建中,齐水冰,梁慧军. SBR法处理抗生素片剂制药废水.上海环境科学, 2001,20(8):25~28
    18.祁佩时,李欣,刘云芝. UNITANK工艺处理制药废水中试.中国给水排水, 2004, 20(10): 43~45
    19.巩有奎,张林生.抗生素废水处理研究进展.工业水处理. 2005, 25(12): 1~5
    20.林锡伦. UASB处理抗生素废水.化工环保. 1991, 11(2): 95~98
    21.王晓军.上流式厌氧污泥床法在处理抗生素废水中的应用.环境保护科学. 1996, 22(4): 17~19
    22.买文宁,周荣敏.厌氧复合床处理抗生素废水技术.环境污染治理技术与设备. 2002, 3(5): 23~27
    23.买文宁,周荣敏,王震.两相厌氧系统处理乙酰螺旋霉素废水.郑州大学学报(工学版). 2002, 23(3): 25~28
    24.杨景亮,罗人明,黄群贤. UASB+AF处理维生素C废水的研究.环境科学. 1994, 15(6): 54~58
    25.张杰,相会强,徐桂芹.抗生素生产废水治理技术进展.哈尔滨建筑大学学报. 2002, 35(2): 44~48
    26.邱波,郭静,韶敏等. ABR反应器处理制药废水的启动运行.中国给水排水. 2000, 16(8): 42~44
    27.史瑞明,王峰,杨玉萍.抗生素废水处理现状与研究进展.山东化工. 2007, 36(11): 10~14
    28.祁佩时,李欣,韩洪彬等.复合式厌氧-好氧反应器处理制药废水的试验研究.哈尔滨工业大学学报. 2004, 36(12): 1721~1723
    29.刘红丽,皱联沛,谢文君等.微电解-UASB-MBR法联用处理抗生素废水的试验研究.化学工程师. 2005, 116(5): 18~22
    30.郑金声,孟琪莉,林祥宁等.厌氧-好氧-气浮法处理抗生素污水工程实例.给水排水. 1999, 25(8): 36~38
    31.周平,钱易,李炳伟等.厌氧-好氧混凝工艺处理抗生素废水.中国给水排水. 1996, 12(2): 4~6
    32.杨俊仕,李旭东等.水解酸化-AB生物法处理抗生素废水的试验研究.重庆环境科学. 2000, 22(6): 19~23
    33.马寿权,韦巧玲.抗生素制药生产废水治理研究.重庆环境科学. 1995, 17(6): 23~27
    34.林世光,罗国维,卢平等.洁霉素生产废水处理的研究.环境科学. 1994, 15(5): 43~45
    35.陈元彩.高浓度阿维霉素生产废水治理与资源回收技术研究.重庆环境科学. 1999, 21(1): 40~43
    36.魏廉琥,计海鹰,熊建中.抗生素生产废水治理试验研究.环境与开发. 1998, 13(1): 40~43
    37.卞华松,陈玉莉,张仲燕.片那霉素废水处理工艺探索.上海环境科学. 1995, 14(8): 21~23
    38.沈耀良,王宝贞.水解酸化工艺及其应用研究哈尔滨建筑大学学报. 1999,
    32(6):35~38
    39.张希衡.废水厌氧处理工程.北京:中国环境科学出版社. 1996: 383~386
    40.赵瑞芬,杨会龙,刘军等.水解酸化在抗生素废水处理中的应用.河北工业科技. 2006, 23(6): 330~333
    41.范永哲,戚鹏.水解酸化法预处理青霉素、土霉素废水试验研究.环境保护科学. 2002, 28(6): 19~21
    42.李世善.水解酸化-UASB-AB工艺在抗生素生产废水处理工程中的应用.给水排水. 2002, 28(15): 44~49
    43.马立艳.厌氧水解-CASS工艺在抗生素废水处理中的应用.科学技术与工程. 2008, 8(10): 2624~2627
    44.许炉生,朱靖.微电解-水解酸化-生物接触氧化工艺处理抗生素废水.江苏环境科技. 2003, 16(2): 9~11
    45.陈业钢,祁佩时.水解酸化-厌氧工艺处理高浓度抗生素废水研究.上海环境科学. 2002, 21(8): 463~472
    46. K. Yamamoto, H. Hiasa, M. Talat, et al. Direct Solid Liquid Separation Using Hollow Fiber Membranes in Activated Sludge Aeration Tank. Water Science and Technology. 1989, 21: 43~54
    47. C. V. Smith, P. P. Gergorio, R. M. Talcott. The Use of Ultrafiltration Membrane for Activated Sludge Separation. In: Proceedings of the 24th Annual Purdue Industrial Waste Conference. West Lafayette, Indiana. 1969: 1300~1310
    48. F. W. Hardt, L. S. Clesceri, N. L. Nemerow. Solids Separation byUltrafiltration for Concentrated Activated Sludge. Journal of the Water Pollution Control Federation. 1970, 42(12): 1235~1248
    49. M. J. Hammer, J. A. Borchard. Dialysis Separation of Sewage Sludge. Digestion. Journal of Sanitary Engineering. 1969, 95(5): 905~926
    50. H. E. Crethlein. Anaerobic Digestion and Membrane Separation of Domestic Wastewater. Journal of the Water Pollution Control Federation. 1978, 50: 754~763
    51. S.Kimura. Japan’s Aqua Renaissance 90’Project. Water Science and Technology. 1991, 25(10): 95~105
    52. T. V. Tran. Advanced Membrane Filtration Process Treats Industrial Wastewater Efficiently. Chemical Engineering Progress. 1985, 81(3): 29~33
    53. K. H. Krauth, K. F. Staab. Substitution of the Final Clarifier by Membrane Filtration within the Activated Sludge Process with Increased Pressure. Desalination. 1988, 68(2~3): 179~189
    54. K. Yamamoto, M. Hissa, T. Mahmood, et al. Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Water Science and Technology. 1989, 21(4~5): 43~54
    55. T. Melina, B. Jeffersonb, D. Bixioc. Membrane Bioreactor Technology for Wastewater Treatment and Reuse. Desalination. 2006, 187(1~3): 271~282
    56.岑运华.膜生物反应器在污水处理中的应用.水处理技术. 1991, 17(5): 319~323
    57.郑祥,魏源送,樊耀波等.膜生物反应器在我国的研究进展.给水排水. 2002, 28(12): 105~110
    58.林喆,赵庆祥,陆美红等.膜分离活性污泥法的研究.城市环境和城市生态. 1994, 7(1): 6~11
    59.樊耀波,王菊思.水与废水利用中的膜生物反应器技术.环境科学. 1995, 16(5): 79~81
    60.邢传宏,钱易, T. Eric.超滤膜-生物反应器处理生活污水及其水力学研究,中国给水排水. 1997, 18(5): 19~22
    61.樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究.环境科学学报. 1997, 17(1): 68~74
    62.顾平,周丹,杨造燕.应用膜生物反应器处理生活污水中的中试研究.中国给水排水. 1998, 14(5): 6~8
    63.杨友强,陈中豪,李友明.超滤法处理造纸化机浆废水的研究.中国给水排水. 1999, 15(12): 50~52
    64.孟耀斌,文湘华,钱易等.分置式膜-生物反应器处理生活污水的抗冲击负荷能力.环境科学. 2000, 21(5): 22~26
    65.郑祥,朱小龙,樊耀波.膜生物反应器处理毛纺废水的中试研究.环境科学. 2001, 22(7): 91~94
    66.邬向东,雍文斌,李力.膜生物反应器在石化污水处理与回用中的应用.中国膜工业信息. 2005, 109(3): 11~19
    67.孙从明. MBR工艺处理制药废水.环境科学导刊. 2009, 28(1): 69~71
    68.邱滔,张建文,胡琦等.膜生物反应器工艺处理高浓度前处理印染废水研究.环境科学与技术. 2008, 31(8): 93~96
    69.桂萍,黄霞.膜生物反应器最佳组合工艺及其污水处理特性研究.给水排水. 1996, 22(10): 56
    70.杨造燕,匡志花,顾平.膜生物反应器无剩余污泥排放的研究.城市环境和城市生态. 1999, 12(1): 16~18
    71.何圣兵,王宝贞,王琳.生物膜-膜生物反应器处理生活污水的试验研究.给水排水. 2002, 28(11): 21~23
    72.刘硕,王宝贞,王正等.复合式膜生物反应器强化脱氮除磷的试验研究.现代化工. 2006, 26(5): 40~44
    73.常颖,王宝贞,高欣.复合式膜生物反应器的小区污水回用试验研究.哈尔滨工业大学学报. 2003, 35(2): 152~156
    74.张军,王宝贞,聂梅生.复合淹没式膜生物反应器处理生活污水的特性研究.中国给水排水. 1999, 15(9): 13~16
    75.马东华,李杰.复合式膜生物反应器处理生活污水的特性研究.兰州交通大学学报(自然科学版). 2006, 25(1): 62~68
    76.王湛.膜分离技术基础.北京.化学工业出版社. 2000: 267~268
    77. S. Chang, P. L. Clech, B. Jefferson, Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. Journal of Environmental Engineering. 2002, 128(11): 1017~1029
    78. S. Chang, S. O. Bag, C. H. Lee. Effects of Membrane Fouling on Solute Rejection during Membrane Filtration of Activated Sludge. Process Biochemistry. 2001, 36(8~9): 855~860
    79. S. P. Hong, T. H. Bae, T. M. Tak, et al. Fouling Control in Activated SludgeSubmerged Hollow Fibermembrane Bioreactors. Desalination. 2002, 143(3): 219~22
    80. S. Chang, P. L. Clech. Bruce Jefferson, et al. Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. Journal of Environmental Engineering. 2002, 128(11): 1018~1029
    81. H. Fang, X. Shi. Pore Fouling of Microfiltration Membranes by Activated Sludge. Journal of Membrane Science. 2005, 264(1~2): 161~166
    82. M. Meireles, P. Aimar, V. Sanchez. Effect of Protein Fouling on the Apparent Pore Size Distribution of Sieving Membranes. Journal of Membrane Science. 1991, 56(1): 13
    83. Y. Shimizu, M. Rokudai, S. Thoya, et al. Effect of Membrane Resistance on Filtration Characteristics for Methanogenic Waste. Kakaku Kogaku Ronbunshu. 1990,16:45
    84. D. Y. Kweon, S. Vigneswaran, A. G. Fane, et al. Experimental Determination of Critical Flux in Cross-flow Microfiltration. Separation and Purification Technology. 2000, 19(2): 169~181
    85. O. Futamura, M. Katoh, K. Takeachi. Organic Wastewater Treatment by Activated Sludge Process Using Integrated Type Membrane Separation. Desalination. 1994, 98(1~3): 17~25
    86. J. Pieracci, J. V. Crivello, G. Belfort. Photochemical Modification of 10 kDa Polyethersulfone Ultrafiltration Membranes for Reduction of Biofouling. Journal of Membrane Science. 1999, 156(2): 223~240
    87. L. Defrance, M. Jaffrin, B. Gupta, et al. Contribution of Various Constituents of Activated Sludge to Membrane Bioreactor Fouling. Bioresource Technology. 2000, 73(2): 105~112
    88. K. D. Zoh, M. K. Stenstrom. Application of a Membrane Bioreactor for Treating Explosives Process Wastewater. Water Research. 2002, 36(4): 1018~1024
    89. H. Nagaoka, S. Ueda, A. Miya. Influence of Bacterial Extracellular Polymers on the Membrane Separation Activated Sludge Process. Water Science and Technology. 1996, 34(9): 165~172
    90. A. Pollice, A. Brookes, B. Jefferson, et al. Sub-critical Flux Fouling in Membrane Bioreactor-a Review of Recent Literature. Desalination. 2005,174(3): 211~230
    91. H. Harada, K Momonoi, S. Yamazaki, et al. Application of Anaerobic-UF Membrane Reactor for Treatment of a Wastewater Containing High Strength Particulate Organics. Water Science and Technology. 1994, 30(12): 307~319
    92. T. Melin, B. Jefferson, D. Bixio, et al. Membrane Bioreactor Technology for Wastewater Treatment and Reuse. Desalination. 2006, 187(1~3): 271~282
    93. A. L. Lim, R. Bai. Membrane Fouling and Cleaning in Microfiltration of Activated Sludge Wastewater. Journal of Membrane Science. 2003, 216(1~2): 279~290
    94. H. Nagaoka, S. Yamanishi, A. Miya. Modeling of Biofouling by Extracellular Polymers in a Membrane Separation Activated Sludge System. Water Science and Technology. 1998, 38(4~5): 497~504
    95. M. C. Gao, M. Yang, H. Li, et al. Nitrification and Sludge Characteristics in a Submerged Membrane Bioreactor on Synthetic Inorganic Wastewater. Desalination. 2004, 170(2): 177~185
    96.李春杰,耿琰,周琪等. SMSBR处理焦化废水的膜污染机理研究.中国给水排水. 2002, 18(4): 5~9
    97.林红军,陆晓峰,段伟等.膜生物反应器中膜过滤特征及膜污染机理的研究.环境科学. 2006, 27(12): 2511~2517
    98.赵建伟,丁蕴铮,苏丽敏等.膜生物反应器及膜污染的研究进展.中国给水排水. 2003, 19(5): 31~34
    99.傅金祥,徐微,安娜等.温度对IMBR膜过滤能量损失与膜污染的影响研究.沈阳建筑大学学报(自然科学版). 2005, 21(2): 142~145
    100.赵奎霞,张传义. MBR中膜污染的全过程控制.河北工程技术专科学校学报. 2003, (1): 12~15
    101.王颖,黄霞,袁其朋.膜-生物反应器处理高浓度有机废水膜污染影响因素的研究.膜科学与技术. 2004, 24(1): 1~5
    102.马莉,堵国成,陈坚等.一体式膜生物反应器出水方式对膜污染的影响.环境科学. 2004, 25(2): 85~88
    103.蒋俐骅,徐国勋,李稳.活性污泥与悬浮填料膜生物反应器的膜污染比较.中国给水排水. 2006, 22(19): 71~74
    104.王丽萍,张传义,蒋波.膜生物反应器膜污染的水力学控制试验研究.能源环境保护. 2005, 19(2): 27~33
    105.郑祥,樊耀波.膜生物反应器运行条件的优化及膜污染的控制.给水排水. 2001, 27(4): 41~44
    106.赵建伟,丁蕴铮,苏丽敏等.膜生物反应器及膜污染的研究进展.中国给水排水. 2003, 19(5): 31~34
    107.吴志超,杨德立.平板膜生物反应器中临界通量问题研究.环境污染与防治, 2005, 27(6): 423~426
    108.王颖,黄霞,袁其朋.膜-生物反应器处理高浓度有机废水膜污染影响因素的研究.膜科学与技术. 2004, 24(1): 1~5
    109.黄圣散,吴志超.膜生物反应器次临界通量运行的膜污染特性研究.环境污染与防治. 2005, 27(7): 512~522
    110. V. Urbain, B. Mobarry, V de Silva, et al. Integration of Performance, Molecular Biology and Modeling to Describe the aActivated Sludge Process. Water Science and Technology. 1998, 37(4~5): 223~229
    111.马红芳,赵志领,陈秀锋.膜生物反应器中不稳定流对膜污染特性的影响.山西大学学报(自然科学版). 2009, 32(1): 125~129
    112.沈菊李,徐又一,张欣欣等.具有自由端的梳状中空纤维膜生物反应器中的膜污染控制研究.环境科学. 2009, 30(1): 160~165
    113.卜庆杰,朱洪涛,文湘华等.新型膜生物反应器中膜丝长度对临界通量的影响.环境科学学报. 2008, 28(3): 446~451
    114. K. C. Yu, X. H. Wen, Q. J. Bu, et al. Critical Flux Enhancements with Air Sparging in Axial Hollow Fibers Cross-flow Microfiltration of Biologically Treated Wastewater. Journal of Membrane Science. 2003, 224(1~2): 69~79
    115. I. Chang, S. Judd. Air Sparging of a Submerged MBR for Municipal Wastewater Treatment. Process Biochemistry 2002, 37(8): 915~920
    116. H. C. Chua, T. C. Arnot, J. A. Howell. Controlling Fouling in Membrane Bioreactors Operated with a Variable Throughput. Desalination. 2002, 149(1~3): 225~229
    117. S. Ognier, C. Wisniewski, A. Grasmick. Membrane Bioreactor Fouling in Sub-critical Filtration Conditions: a Local Critical Flux Concept. Journal of Membrane Science. 2004,229(1~2):171~177
    118. I. P. Le-Clech, B. Jefferson, I. S. Chang, et al. Critical Flux Determination by the Flux-step Method in a Submerged Membrane Bioreactor. Journal of Membrane Science. 2003, 227(1~2): 81~93
    119. C. Psoch, S. Schiewer. Long-term Study of an Intermittent Air Sparged MBR for Synthetic Wastewater Treatment. Journal of Membrane Science. 2005, 260(1~2): 56~64
    120. R. W. Field, D. Wu, J. A. Howell, et al. Critical Flux Concept for Microfiltration Fouling. Journal of Membrane Science. 1995, 100(3): 259~272
    121. L. Defrance, M. Y. Jaffrin. Reversibility of Fouling Formed in Activated Sludge Filtration. Journal of Membrane Science. 1999, 157(1): 73~841
    122. G. T. Seo, C. D. Moon, S. W. Chang, et al. Long Term Operation of High Concentration Powdered Activated Carbon Membrane Bioreactor for Advanced Water Treatment. Water Science and Technology. 2004, (50): 81~87
    123. G. T. Seo, H. I. Ahan, J. T. Kim, et al. Domestic Wastewater Reclamation by Submerged Membrane Bioreactor with High Concentration Powdered Activated Carbon for Stream Restoration. Water Science and Technology. 2004, 50(2): 173~178
    124.李春杰,耿琰,周琪等. SMSBR中PAC对膜污染的防治作用.中国给水排水. 2002, 18(6): 5~9
    125.曹占平,张景丽,张宏伟.投加粉末活性炭对膜生物反应器性能的影响.化工进展. 2008, 27(9): 1429~1434
    126.张凤君,周海林,沈福东.复合式膜生物反应器膜污染机理研究.环境污染与防治. 2005, 27(9): 666~669
    127.杨期勇,陈季华,陈亦军.颗粒悬浮填料复合式膜生物反应器的过滤性能研究.膜科学与技术. 2006, 26(6): 28~32
    128.尤朝阳,王世和,张军等.膜生物反应器填料上微生物特性及其处理效果.中国给水排水. 2006, 22(7): 89~92
    129.肖文胜,徐文国.组合填料-膜生物反应器处理生活污水生产性试验.水处理技术. 2006, 32(11):71~73
    130.韩剑宏,孙京敏,任立人.水解酸化-膜生物反应器处理抗生素废水.北京科技大学学报. 2007, 29(6): 565~568
    131.孙振龙,陈绍伟,吴志超等.一体式平片膜生物反应器处理抗生素废水研究.工业用水与废水. 2003, 34(1): 33~35
    132.鲁南,普红平.膜生物反应器处理抗生素废水.化工环保. 2004, 24(Z1): 234~235
    133.白晓慧,陈英旭.一体式膜生物反应器处理医药化工废水的试验.环境污染与防治. 2000. 22(6): 19~21
    134.孙孝龙,普红平.一体式膜生物反应器(SMBR)处理抗生素废水研究.四川环境. 2003, 22(5): 12~14
    135. P. R. Neal, H. Li, A. G. Fane, et al. The Effect of Filament Orientation on Critical Flux and Particle Deposition in Spacer-filled Channels. Journal of Membrane Science. 2003, 214(2): 165~178
    136. V. Chen, A. G. Fane, S. Madaeni, et al. Particle Deposition during Membrane Filtration of Colloids: Transition Between Concentration Polarization and Cake Formation. Journal of Membrane Science. 1997, 125(1): 109~122
    137.孙京敏,任立人,王路光等.水解酸化-膜生物反应器处理青霉素废水研究.哈尔滨工业大学学报. 2007, 39(8): 1241~1244
    138.刘军,郭茜,翟永彬.厌氧水解生物法处理城市污水的研究.给水排水. 2000, 26(7): 10~13
    139. R. E.斯皮思.工业废水的厌氧生物技术.北京:中国建筑工业出版社. 2001: 3~6
    140.韩相奎,王树堂,刘壮.接触氧化-水解酸化-SBR法处理中药废水.中国给水排水. 2003, 19(9): 69~70
    141.金一中,魏岩岩,陈小平.水解酸化-SBR工艺处理印染废水的研究.中国环境科学. 2004, 24(4): 489~491
    142.梁存珍,杨敏,马文林等.水解酸化-反硝化-硝化组合工艺处理土霉素废水的效果.环境科学. 2005, 26(1): 127~129
    143. R. Banner, S. Opsahl. Molecular Indicators of the Source and Transformations of Dissolved Organic Matter in the Mississippi River Plume. Org Geochem. 2007, 32(4): 597~611
    144. J. Suvilampi, A. Lehtomaki, J. Rintala. Comparison of Laboratory-scale Thermophilic Biofilm and Activated Sludge Processes Integrated with a mesophilic Activated Sludge Process. Bioresource Technology. 2003,88(3):207~214
    145. H. Harada, K. Momonoi. Application of Anaerobic-UF Membrane Reactor for Treatment of a Wastewater Containing High Strength Particulate Organics. Water Science and Technology. 1996, 30(12): 307~319
    146. C. Jarusutthirak, G. Amy. Role of Soluble Microbial Products (SMP) in Membrane fFouling and Flux Decline. Environmental science & technology.2006, 40(3): 969~974
    147. X. D. Hao, Hans J D, Groenestijn J W. Conditions and Mechanisms Affecting Simultaneous Nitrification and Denitrification in a Pasveer Oxidation Ditach. Bioresource Technology. 1996,59(197):207~215
    148.顾平,姜立群,杨造燕.中空膜生物床处理生活污水的中试研究.中国给水排水. 2000, 16(3): 5~8
    149.刘锐,黄霞,陈吕军等.一体式膜生物反应器处理洗浴污水.中国给水排水. 2001, 17(1): 5~8
    150.邹联沛,王宝贞. SRT对膜生物反应器出水水质的影响研究.中国给水排水. 2000, 16(7): 16~18
    151.朴芬淑,赵玉华,张莉莉.膜生物反应器低温自补偿作用的探讨.沈阳大学学报. 2006, 18(2): 67~69
    152.高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响.高技术通讯. 2002, 12(12): 88~93
    153.欧阳科,刘俊新.不排泥运行条件下膜生物反应器污泥活性的研究.给水排水. 2008, 34(7): 46~51
    154.李春杰,耿琰,周琪等. SMSBR中PAC对膜污染的防治作用.中国给水排水. 2002,18 (6): 5~9
    155.刘锐,黄霞,钱易,等.膜生物反应器中的溶解性微生物产物的研究进展.环境污染治理设备与技术. 2002, 3(1): 1~7
    156.刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社. 2000: 60~61
    157.孟凡刚,张捍民,于连生等.废水生物处理.环境科学. 2006, 27(7): 1348~1352
    158. T. Sriwiriyarat, C. W. Randal, D. Sen, et al. Computer Program Development for the Design of Integrated Fixed Film Activated Sludge Wastewater Treatment. Journal of Environmental Engineering Processes. 2005, 131(11):1540-1549
    159.张自杰.排水工程(下册)第三版.北京:中国建筑工业出版社. 2000: 102~103
    160.何圣兵,蒋轶锋,王宝贞. MBR中溶解氧和污泥负荷对污泥产量的影响.水处理技术. 2005, 31(9): 17~20
    161.罗虹,顾平,杨造燕.投加粉末活性炭对膜阻力的影响研究.中国给水排水. 2001,17(2): 1~4
    162. Y. Z. LI, Y. L. HE, Y. H. LIU, et al. Comparison of the Filtration Characteristics between Biological Powdered Activated Carbon Sludge and Activated Sludge in Submerged Membrane Bioreactors. Desalination, 2005,174(3):305~313
    163. R. W. Field, D. Wu, J. A. Howell, et al. Critical Flux Concept for Microfiltration Fouling. Journal of Membrane Science, 1995, 100(3): 259~272
    164. G. Guglielmi, D. P. Saroj, D. Chiarani, et al. Sub-critical Fouling in a Membrane Bioreactor for Municipal Wastewater Treatment: Experimental Investigation and Mathematical Modeling. Water Research. 2007, 41(17): 3903~3914
    165. P. Le-Clech, B. Jefferson, S. J. Judd. Impact of Aeration Solids Concentration and Membrane Characteristics on the Hydraulic Performance of a Membrane Bioreactor. Journal of Membrane Science. 2003, 218(1): 117~129
    166. R. S. Trussella, R. P. Merlob, S. W. Hermanowiczc, et al. Influence of Mixed Liquor Properties and Aeration Intensity on Membrane Fouling in a Submerged Membrane Bioreactor at High Mixed Liquor Suspended Solids Concentrations. Water Research, 2007, 41(5): 947~958
    167. P. R. Neal, H. Li, A. G. Fane, et al. The effect of filament orientation on critical flux and particle deposition in spacer-filled channels. Journal of Membrane Science. 2003, 214(2): 165~178
    168. M. M?ntt?ri, M. Nystr?m. Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry. Journal of Membrane Science. 2000, 170(2): 257~273
    169. J. A. Howell. Sub-critical Flux Operation of Microfiltration. Journal of Membrane Science. 1995, 107(1~2): 165~171
    170.俞开昌,文湘华,卜庆杰等.次临界通量操作下的膜污染机理研究.环境污染治理技术与设备. 2004, 5(1): 23~27
    171.林红军,陆晓峰,段伟等.膜生物反应器中膜过滤特征及膜污染机理的研究.环境科学. 2006, 27(12): 2511~2517
    172. I. S. Chang, C. H. Lee. Membrane Filtration Characteristics in Membrane-coupled Activated Sludge System the Effect of Physiological States of Activated Sludge on Membrane Fouling. Desalination. 1998, 120(3): 221~233
    173. J. Lee, W. Y. Ahn, C. H. Lee. Comparison of the Filtration Characteristics between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor. Water Research. 2001, 35(10): 2435~2445
    174.赵方波,于水利,李谦等.淹没式膜生物反应器膜面泥饼层的微结构特征.中国给水排水, 2006, 22(9): 5~9.
    175.孟凡刚,张捍民,李艳松等.分形理论在膜污染研究中的应用.哈尔滨工业大学学报, 2005, 37(10): 1352~1414.
    176. B. J. James, J. Yang, X. D. Chen. Membrane Fouling during Filtration of Milk: A Microstructural Study. Journal of Food Engineering. 2003, 60(4): 431~437
    177. R.W. Field, D. Wu, J.A. Howell, et al. Critical Flux Concept for Microfiltration Fouling. Journal of Membrane Science. 1995, 100(3): 259~272
    178. B. D.Cho, A. G. Fane, Fouling Transients in Nominally Sub Critical Flux Operation of a Membrane Bioreactor. Journal of Membrane Science. 2002, 209(2): 391~403
    179.卜庆杰,文湘华,黄霞.新型膜-生物反应器在不同通量下的膜污染特性研究.环境污染治理技术与设备. 2005, 6(3): 85~90
    180. S. Rosenberger, H. Evenblij, S. Poele, et al. The importance of Liquid Phase Analyses to Understand Fouling in Membrane Assisted Activated Sludge Processes-six Case Studies of Different European Research Groups. Journal of Membrane Science. 2005, 263(1~2): 113~126
    181.张鹏,吴志超,敖华军.污泥的粘度与浓度、温度三者关系式的实验推导.环境污染治理技术与设备. 2006, 7(3): 72~74
    182. A. L. Lim, I. R. Ba. Membrane Fouling and Cleaning in Microfiltration of Activated Sludge Wastewater. Journal of Membrane Science. 2003, 216(1~2): 279~290
    183. K. H. Choo, C. H. Lee. Membrane Fouling Mechanisms in the Membrane-coupled Anaerobic Bioreactor. Water Resource. 1996, 30(8): 1771~1780
    184.卜庆杰,朱洪涛,文湘华.新型膜-物反应器中膜丝长度对临界通量的影响.环境科学学报. 2008, 28(3): 446~451
    185. Y. L. Jin, W. N. Lee, C. H. Lee, et al. Effect of Do Concentration on Biofilm Structure and Membrane Filterability in Submerged Membrane Bioreactor. Water Research. 2006, 40(15): 2829~2836
    186. M. Ferrando, A. R?ek, M. Zator, et al. An Approach to Membrane FoulingCharacterization by Confocal Scanning Laser Microscopy. Journal of Membrane Science. 2004, 250(1~2): 283~293
    187. H. Beyenal, C. Donovan, Z. Lewandowski, et al. Three-dimensional Biofilm Structure Quantification. Journal of Microbiological Methods. 2004, 59(3): 395~413
    188. Y. L. Jin, W. N. Lee, C. H. Lee, et al. Effect of DO Concentration on Biofilm Structure and Membrane Filterability in Submerged Membrane Bioreactor. Water Research, 2006, 40(15): 2829~2836
    189. Y. Shimizu, K. Uryu, A. Ohtubo, et al. Effect of Particle Size Distributions of Activated Sludges on Cross-flow Microfiltration Flux for Submerged Membranes. Journal of Fermentation and Bioengineering, 1997, 83(6): 583~589