白细胞介素35(IL-35)转基因小鼠的建立及过表达IL-35改善小鼠哮喘症状的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的
     哮喘被定义为一种支气管气道慢性炎症,其特征为可逆性气道阻塞,粘液分泌增加和嗜酸性粒细胞、气道中性粒细胞、肥大细胞和T淋巴细胞浸润。在儿童和成人中哮喘是一种最常见的慢性肺部疾病,但是这种疾病是我们目前无法预防或治愈的。世界各地哮喘患病率流行病学调查结果发现儿童哮喘患病率3.3%-29%,成人哮喘患病率1.2%-25.5%,据估计日前全球约有3亿人罹患哮喘。全球哮喘病死率约1/10万,全世界约每年25万人死于哮喘,其中年轻人占很大比例。美国哮喘患者病死率从1979年到1998年20年间上升了2.5倍。我国儿童哮喘患病率调查发现儿童哮喘患病率由0.91%上升到].54%,较10年前上升了64.84%。我国现有的成人流行病学调查结果显示哮喘患病率存在地区性差异。据WHO估计每年由于哮喘而导致的调整伤残生命年(DALYs)达1500万,约占全球疾病负担的1%。在世界范围内计算,哮喘相关的经济花费比肺结核和艾滋病的总数还高。哮喘疾病带给各国政府、家庭及患者十分沉重的经济负担,同时哮喘疾病对患者的口常活动以及心理和社会功能都造成了很大的影响。
     白细胞介素35(IL-35)是山P35和Ebi3二个亚基构成的细胞因子,属于IL-12家族成员,由Treg细胞分泌的一种抗炎和免疫抑制的细胞因子,主要表现为促进抑制性T细胞的增生,促进抑制性细胞因子IL-10和TNF-β的分泌同时抑制促炎症细胞因子IL-17的表达。目前与IL-35相关的疾病研究主要集中在感染性疾病,变态反应性和自身免疫性疾病等几个方面。而小鼠哮喘模型中体外给予IL-35蛋白通过抑制Th17细胞从而抑制小鼠哮喘的发生,我们推测在IL-35转基因小鼠中过表达的IL-35有可能通过调节Treg细胞和Th17细胞等免疫细胞进而影响哮喘炎症的产生过程。研究IL-35可能为变态反应治疗提供重要线索,但是,目前尚无IL-35转基因小鼠体内变态反应调节作用的研究报道,本研究利用IL-35转基因小鼠、OVA刺激诱导的哮喘模型研究IL-35在变态反应中抑制炎症发生的作用及免疫调节机制。
     方法
     利用分子克隆技术及显微注射技术构建过表达IL-35转基因小鼠,采用western blotting技术检测IL-35转基因小鼠中IL-35细胞因子的两个亚基EBI3和p35、IL-12和IL-27的表达情况。利用reblot技术对比分析IL-35转基因小鼠和同窝阴性小鼠血液、脾脏和肌肉细胞中IL-35的两个亚基EBI3和p35是否在同一位置表达。利用流式细胞术对比分析IL-35转基因小鼠和同窝阴性小鼠血液和脾脏中Treg细胞和T17细胞所占的百分比。利用腹腔注射接种1%OVA和铝佐剂每周一次连续接种3周,并于第四周连续5%OVA雾化四次建立小鼠哮喘小鼠模型,通过肺功能检测小鼠气道高反应情况,对比分析IL-35转基因小鼠和同窝阴性小鼠中的哮喘症状。在OVA刺激诱导的小鼠模型中,通过肺部病理学观察IL-35转基因小鼠和同窝阴性小鼠支气管周围的炎性细胞侵润和粘液的渗出情况。利用流式细胞术对比分析IL-35转基因小鼠和同窝阴性小鼠肺盥洗液中Treg细胞和Th17细胞所占的百分比。
     结果
     利用上述方法在整体水平证实:
     (1)建立了IL-35过表达转基因小鼠,western blotting证明IL-35表达量高于IL-12和IL-27。IL-35过表达转基因小鼠外周血和脾脏中Treg细胞的百分比增高。
     (2)建立了OVA小鼠哮喘模型。利用这种模型证实,转基因过表达IL-35能够抑制小鼠气道高反应。减少了支气管周围炎症细胞的浸润和粘液的分泌,说明IL-35在体内能够抑制小鼠的哮喘症状。IL-35能够在体内外活化Treg细胞,抑制Th17细胞分泌IL-17。说明,IL-35抑制小鼠哮喘的重要通路是通过抑制促炎症IL-17细胞因子实现的。
     结论
     总结以上研究结果首次证实以下结论
     (1)IL-35具有明显的抑制哮喘的作用。这种作用是通过促进Treg细胞和抑制Th17细胞的增殖和活化实现的。
     (2)IL-35通过促进Treg细胞增殖抑制细胞因子IL-17分泌的途径抑制哮喘炎症的发生和粘液的分泌。
     综上,过表达IL-35明显改善了小鼠哮喘的症状,主要是通过抑制促炎症细胞因子的产生而发挥作用的。
     人肠道病毒71感染小鼠模型时坏死性肌炎导致的限制性通气不足
     背景
     在小孩人肠道病毒(EV71)感染与手足口病(Hand, foot and mouth disease HFMD)的高度流行密切相关,并且偶尔能引起致死性并发症。但是大多数感染是自限的,引起的并发症包括:无菌性脑膜炎,乙型脑炎,脊髓灰质炎样急性弛缓性麻痹和神经起源的肺水肿或出血,上述是引起致死性症状的主要原因,然而它们的致病机理尚不清楚。因此推测坏死性肌炎引起的肺换气不足是否是引起小鼠死亡的原因之一。
     方法
     利用腹腔注射EV71病毒接种两周龄的ICR小鼠,观察小鼠大体的情况,体重称重和生存期观察,荧光定量PCR(qRT-PCR)检测被感染小鼠组织器官的病毒载量,病理学观察和免疫组化分析骨骼肌中炎症侵润和病毒载量情况,利用肺功能检测仪分析病毒感染组和对照组的吸气时间,呼吸频率,总的潮气量和呼吸容积的情况。
     结果
     本研究对两周龄的ICR小鼠感染EV71的小鼠适应株后,感染的小鼠表现为进行性麻痹并与感染后12天内死亡。由于EV71主要在小鼠的骨骼肌复制并引起严重的坏死性肌炎,然而在脑和其他组织中尚未发现损伤。结论
     呼吸相关的肌肉产生的坏死性肌炎引起严重的限制性肺通气不足和缺氧被认为是EV71感染小鼠模型后致死的主要原因,暗示在EV71感染的小鼠中坏死性肌炎可能是麻痹和致死的一个因素而不是中枢神经系统损伤引起的。
     人SCARB2蛋白提高人肠道病毒71型对转基因小鼠的感染力背景目地
     人肠道病毒71型(EV71)是微核糖核酸病毒科肠病毒属肠病毒种A型RNA病毒,能引起6岁以下儿童的手足口病。但是许多EV71感染会自发的恢复,然而EV71病毒感染偶尔伴随严重的并发症,包括脑干脑炎、无菌性脑膜炎、肺水肿或肺出血、急性弛缓性麻痹和心力衰竭等甚至死亡。
     病毒受体在病毒感染的早期起着决定性作用,主要有宿主范围和组织嗜性决定,细胞实验证实人清道夫受体B2(hSCARB2)是人类EV71的受体之一,本研究拟通过建立人SCARB2转基因小鼠,建立感染能力更高的小鼠模型。
     方法
     构建CMV启动子的SCARB2转基因表达载体,通过显微注射法建立C57BL/6J背景的人SCARB2转基因小鼠,PCR筛选阳性首建鼠。通过Western Blot和免疫组化检测目的蛋白在各组织中的表达。EV71感染转基因小鼠后,通过实时荧光定量PCR和免疫组化检测目的蛋白表达对病毒感染的促进效果。
     结果
     人SCARB2蛋白主要在转基因小鼠的骨骼肌和脑组织中表达,与野生型小鼠相比,转基因小鼠组织中的病毒载量显著提高4到5倍。
     结论
     人SCARB2的体内表达可促进EV71对转基因小鼠的感染,该蛋白在体内具有EV71受体功能。
Backgroud and Objective
     Asthma is defined as a chronic inflammation of the bronchial airways and characterized by reversible airway obstruction, which increased mucus production and infiltration of the airway with eosinophils, neutrophils, mast cells and T-lymphocytes. Asthma is one of the most common chronic lung diseases in children and adults, but it is a disease that we are currently unable to prevent or cure. Worldwide epidemiological survey found that prevalence rate of children asthma is3.3%~29%and prevalence rate of adult asthma is1.2%-25.5%, it was about3hundred million people suffer from asthma in the worldwide. Global asthma death rate was about1/100000, there were about250000people die of asthma each year worldwide, which is a large proportion of young people. America asthma mortality rate increased by2.5times from1979to1998years. Our children asthma prevalence survey found that children asthma prevalence rate increased from0.91%to1.54%, up64.84%between ten years. Adult epidemiological survey showed that asthma prevalence have regional difference. According to WHO estimates that asthma disability adjusted life years (DALYs) reached15000000each year, about1%in the global burden of disease. In the world, the economy of asthma related cost far more than the total number of pulmonary tuberculosis and AIDS, it is very heavy economic burden for governments, families and patients, at the same time, it is a great impact for the patient's daily activities and patient's the psychological and social function.
     Interleukins35(IL-35) is composed of P35subunit and Ebi3subunit, it is a kind of anti-inflammatory and immune suppression of cytokine belong to the IL-12famimlies and secreted by Treg cells.Its main performance for promoting Inhibitory T cell proliferation, promoting inhibitory cytokine TNF and IL-10-β secretion and inhibiting the expression of proinflammatory cytokines IL-17. Currently, IL-35related diseases research mainly focused on infectious diseases, allergic and autoimmune diseases. Nevertheless, IL-35cytokine can promote syndrome of asthma model in mice by inhibiting numbers of Th17cells in vitro, we hypothesized that overexpression of IL-35may be adjusting the immune cells numbers of Treg cells and Th17cells in IL-35transgenic mice, which affect the inflammation process of asthma. It is likely to provide important clues for allergy treatment by studying the regulation effect of IL-35in allergic reaction.However, there is no research reports about of allergic regulating effect in IL-35transgenic mice, In this study,we used IL-35transgenic mice and asthma model challenged by OVA to study the inflammation role of IL-35in the suppression of allergic respect and regulating mechanism on the immunization.
     Methods
     Using molecular cloning techniques and microinjection technology to build overexpression IL-35transgenic mice, using western blotting technique to detect the expression of EBI3subunit and p35subunit of IL-35, the expression of IL-12and IL-27in IL-35transgenic mice and negative littermates (NTG) mice respectively. Analysis the distribution of EBI3subunit and p35subunit of IL-35in blood, spleen and muscle cells of IL-35transgenic mice and negative littermates mice by using western reblot. Quantitatively analyzed the percentage of Treg cells and Thl7cells blood, spleen and pulmonary washing lotion in IL-35transgenic mice and negative littermates mice by flow cytometry. In order to establish mouse model of asthma in IL-35transgenic mice and negative littermates mice, we continuously intraperitoneally inoculated with1%OVA and aluminium adjuvant once a week for3weeks, and the fourth week in a row with four days challeng by5%OVA atomization. Detected airway hyperresponsiveness of mouse model of asthma by the pulmonary function testing, the comparativly analysize asthma syndrome of IL-35transgenic mice and nontransgenic mice. Pathology observed the inflammatory cell exudation and bronchial mucus infiltration of lungs in OVA-challenged IL-35transgenic mice and OVA-challenged negative littermates mice. Comparativly analysize the percentage of Treg cells and Thl7cells of pulmonary washing lotion in mouse model of IL-35transgenic mice and negative littermates mice by flow cytometry.
     Results
     The results of the experiments in vivo supported that:
     (1) Established transgenic over-expression of IL-35, IL-35expression quantity higher than that of IL-12and IL-27was proved by western blotting, the percentage of Treg cells increased in peripheral blood and spleen in overexpression IL-35transgenic mice.
     (2) Established mouse model of asthma. It confirmed that transgenic overexpression of IL-35can inhibit airway hyperresponsiveness in mice by using this model. Reduced the inflammatory cells infiltration and mucus secretion in the surrounding of bronchus, this explain that IL-35can inhibit mouse asthma symptoms in vivo. IL-35can activate the Treg cells in vivo, inhibit the secrete of IL-17by inhibiting the numbers of Th17cells, the signaling pathway IL-35inhibit mouse asthma is one of the important pathways by inhibiting proinflammatory IL-17cytokine.
     Conclusions
     Taken togerther, our results indicated that:
     (1) IL-35has obvious inhibitory effect in mouse asthma.It affect by promoting Treg cells and inhibiting proliferation and activation of Th17cells.
     (2) IL-35could inhibit inflammation and mucus secretion in mouse astnma by promoting Treg cell proliferation and inhibiting the secretion of IL17cytokine. In conclusion, overexpression of IL-35can significantly improve the mouse asthma symptoms, it play the role in mainly inhibiting production of proinflammatory cytokine.
     Necrotizing myositis caused restrictive hypoventilation in human enterovirus71infected-mouse model
     Backgroud and Objective
     EV71infection is associated with a high prevalence of Hand, foot and mouth disease (HFMD) in children and occasionally causes lethal complications. Most of the infections were self-limited, while the complications including aseptic meningitis, encephalitis or poliomyelitis-like acute flaccid paralysis, and neurological originated pulmonary edema or hemorrhage were the main causes of lethal symptoms, the pathogenesis of which were remained to be clarified. Hence we presumed that caused hypoventilation caused by Necrotizing inflammation is one of the causes of death in mice.
     Methods
     EV71virus inoculated two weeks old ICR mice by intraperitoneal (i.p.) injection, then we observe situation of the mice body generally, the weight of the mice bady and survival situation of mice, detecting infected viral load of tissues and organs by fluorescence quantitative PCR (qRT-PCR), pathological and immunohistochemical analysis inflammation and viral load of skeletal muscle in infected mice, we can analyze inspiratory time, respiratory rate, tidal volume and respiratory total volume of virus infection group of mice and control group of mice by pulmonary function detector.
     Results
     In present study, two-week-old ICR mouse were infected with a mouse-adapted EV71strain, and then the infected-mice demonstrated progressive paralysis and died within12days post infection. EV71mainly replicates in skeletal muscle tissues and caused severe necrotizing myositis, whereas the lesion in CNS and other tissues was not observed.
     Conclusions
     The necrotizing myositis of respiratory-related muscles caused severe restrictive hypoventilation and subsequently hypoxic, which was supposed as one reason of death for the EV71-infected mouse, suggesting that necrotic myositis caused may be a reason of paralysis and death beside of CNS injury in EV71-infected mice.
     Human SCARB2enhanced the infection of human enterovirus71on transgenic mice
     Backgroud and Objective
     Human enterovirus71(EV71) is a RNA virus of the micro RNA virus enterovirus, it can cause hand, foot and mouth disease in children under6years old.But some of EV71infections will spontaneous recovery, and EV71infection accompany serious complications occasionally, including the brain stem, aseptic meningitis, encephalitis, pulmonary edema and pulmonary hemorrhage, heart failure and acute flaccid paralysis and even death.the virus receptors play a pole role in the early days ofthe virus infection, mainly include host range and tropism of tissue.
     Human SCARB2was identified as one of the functional receptors of EV71in vitro, so establish more higher infection ability transgenic mice by establishment of hunman SCARB2transgenic mice in present study.
     Methods
     The transgenic vector was constructed by inserting the human SCARB2gene under the CMV promoter and then were subjected to establish transgenic mice by microinjection. the genotype of transgenic line was identified by PCR and the expression level of target protein was detected by Western blot. Viral load in the tissues of transgenic mice was detected by immunohistochemical staining and quantitative real-time PCR.
     Results
     One line of transgenic mice in C57BL/6J background with high levels of SCARB2expression in skeletal muscle and brain was identified. Upon infection with EV71, the virus burden of4to5times in muscle and brain of transgenic mice were significantly higher than that of wild type mice.
     Conclusion
     hSCARB2is a functional receptor of EV71in vivo, as expression of it could promote the infection of EV71on transgenic mice.
引文
[1]Busse WW, Coffman RL, Gelfand EW, et al. Mechanisms of persistent airway inflammation in asthma. A role for T cells and T-cell products[J]. Am J Respir Crit Care Med 1995; 152(1):388-393.
    [2]Piccinni MP, Maggi E, Romagnani S. Environmental factors favoring the allergen-specific Th2 response in allergic subjects [J]. Ann N Y Acad Sci 2000; 917:844-852.
    [3]Ray A, Cohn L. Th2 cells and GATA-3 in asThma:New insights into the regulation of airway inflammation [J]. J Clin Inves 1999; 104(8):985.
    [4]Zhu Z, Zheng T, Homer RJ, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation [J]. Science 2004; 304(5677):1678-1682.
    [5]Siddiqui S, Martin JG. Structural aspects of airway remodeling in asthma [J]. Curr Allergy Asthma Rep 2008; 8(6):540-547.
    [6]Bosse Y, Pare PD, Seow CY. Airway wail remodeling in asthma:From the epithelial layer to the adventitia [J]. Curr Allergy Asthmo 2008; 8(4):357.
    [7]Mosmann TR, Coffman RL. TH1 and TH2 cells:Different patterns of lymphokine secretion lead to different functional properties [J]. Annu Rev Immunol 1989; 7:145-173.
    [8]Sur S, Lam J, Bouchard P, et al. Immunomodulatory effects of IL-12 on allergic lung inflammation depend on timing of doses [J]. J Immunol 1996; 157(9):4173-41780.
    [9]Gavett SH, O'Hearn DJ, Li X, et al. Interleukin 12 inhibits antigen-induced airway hyperre sponsiveness, inflammation, and Th2 cytokine expression in mice [J]. J Exp Med 1995; 182(5):1527-1536.
    [10]Iwamoto I, Nakajima H, Endo H, et al. Interferon g regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells [J]. J Exp Med 1993; 177(2):573-576.
    [11]Shibata Y, Foste LA, Bradfield JF, et al. Oral administration of chitin down-regulates ng eosinophilia in the allergicmouse [J]. J Immunol 2000; 164(3):1314-1321.
    [12]Shibata Y, Foster LA, Kurimoto M, et al. Immunoregulatory roles of IL-10 in innate immunity:IL-10 inhibits macrophage production of IFN-gammainducing factors but enhances NK cell serum IgE levels and production of IFN-gamma [J]. J Immunol 1998; 161(8):4283-4288.
    [13]Hasegawa A, Hayashi K, Kishimoto H, Yang M, Tofukuji S, Suzuki K, et al. Color-coded real-time cellular imaging of lung T-lymphocyte accumulation and focus formation in a mouse asthma model [J]. J Allergy Clin Immunol 2010; 125(2):461-466.
    [14]沈华浩,王苹莉.支气管哮喘小鼠模型应用评价[J].中华结核和呼吸杂志2005;28(4):284-285.
    [15]Henderson DC, Moran DM.Antibody response of mice to intragatric and parenterlly administered aeroallergens [JJ.Int Ach Allergy Appl Imminol 1986; 79:66-71.
    [16]Garssen J N ijkamp FP, van Der Vliet H,et al.T-cell-mediated induction of ariway Hyperreactivity in mice [J]. Am Rev Respir Dis 1991; 144:931-938.
    [17]Kucharewicz I, Bodzenta-Lukaszyk A, Buczko W. Experimental asThma in rats [J]. Pharmacol Rep 2008; 60(6):783-788.
    [18]Kung TT, Jones H, Adams GK 3rd, et al. Characterization of a murine model of allergic pulmonary inflammation [J]. Int Arch Allergy Immunol 1994; 105(1):83-90.
    [19]Zhang Y, Nijkamp FP, van Der H,et al.T-cell-mediated induction of airway hyperreactivty in mice[J]. Am Rev Respir Dis 1991; 144:931-938.
    [20]Yang L, Cohn L, Zhang DH, et al. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation [J]. J Exp Med 1998; 188(9): 1739-1750.
    [21]Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma [J]. J Allergy Clin Immunol 2006; 117(6):1277-1278.
    [22]Mattes J, Foster PS. Regulation of eosinophil migration and Th2 cell function by IL-5 and eotaxin[J]. Curr Drug Targets Inflamm Allergy 2003; 2(2):169-174.
    [23]Del prete G, Maqqi E, Parronchi P, et al. IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatauts [J]. J Immunol 1998; 140(12):4193-4198.
    [24]林志荣,王维刚,严惠敏,等.卵清蛋白诱导129Sv小鼠建立哮喘模型的方法[J].中国细胞生物学学报2011;33(9):964-968.
    [25]刘芬,文丽君,刘海燕.IL-35研究进展免疫学杂志[J].IMMUNOLOGICAL JOURNAL 2011;28(7):630-632.
    [26]Stem FJ, Podlaski JD, Hulmes YE, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B.lymphoblastoid cells [J]. PNAS 1990; 87:6808-6812.
    [27]Wolf SF, Temple PA, Kobayashi M, et al.Cloning of cDNA for natural killer cell stimulatory factor,a heterodimeric cytokine with multiple biological efects on T and natural killer cells[J].J Immunol 1991; 146:3074-3081.
    [28]Oppnmnn B, Lesley R, Blom B, et al. New p19 protein engages 1L-121MO to form a eytokine, IL-23, with biological activities similar as well as distinct from IL-12 [J]. Immunity 2000; 13:715-725.
    [29]Pflanz S, Timails JC, Cheung J, et al.IL-27,a heteredimefic eytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cellsl[J].Immunity 2002; 16:779-790
    [30]Hibbert L, Pflanz S, Waal Malefyt RD, et al. IL-27 and IFN-alpha signal via Statl and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells [J]. J Interferon Cytokine Res 2003; 23:513-522.
    [31]Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function [J]. Nature 2007; 450(7169):566-569.
    [32]Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells [J]. Eur J Immunol 2007; 37(11):3021-3029.
    [33]Devergne O, Birkenhach M, Kieft E. Epstein.Barr vims.induced gene 3 and p35 subunit of intedeukin 12 form a novel hetered imeric hematopoietin [J]. PNAS 1997; 94:12041-12046.
    [34]Li X, Mai J, Virtue A, et al. IL-35 Is a Novel Responsive Anti-inflammatory Cytokine-A New System of Categorizing Anti-inflammatory Cytokines [J]. PLoS ONE 2012; 7(3): e33628. doi:10.1371/journal.pone.0033628.
    [35]Chua AO, Chizzonite R, Desai BB, et al. Expression cloning of a human IL-12 receptor component.A newmember of The cytokine receptor superfamily with strong homology to gp130 [J]. Immunol 1994; 153:128-136.
    [36]Chua AO, Wilkinson VL, Presky DH, et al. Cloning and characterization of a mouse IL-12 receptor-beta component [J]. Immunol 1995; 155:4286-4294.
    [37]Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a novel cytokine receptor subunit, IL-23R [J]. Immunol 2002; 168:5699-5708.
    [38]Lauren WCollison, Greg MDelgoffe, Clifford SGuy, et al. The composition and signaling of the IL-35 receptor are unconventional [J].nature immunology 2012; 13(3):290-299.doi:10.1038/ni.2227.
    [39]. Collison LW, Delgoffe GM, Guy CS, et al. The composition and signaling of the IL-35 receptor are Unconventional [J]. Nat Immunol; 13(3):290-299. doi:10.1038/ni.2227.
    [40]. Bacon CM, Petricoin EF 3rd, Ortaldo JR, et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 inhuman lymphocytes. Proc Nat1 Acad Sci U S A. 1995; 92:7307-7311. [PubMed:7638186].
    [41]Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties [J]. Immunity 2006; 24:677-688
    [42]McGeachy MJ, Cua DJ. T cells doing it for themselves:TGF-beta regulation of Th1 and Th17 cells [J]. Immunity 2007; 26:547-549.
    [43]Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature 2007; 448:480-483
    [44]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells [J]. Nature 2007; 448:484-487.
    [45]Ivanov Ⅱ, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells [J]. Cell 2006; 126:1121-1133
    [46]Stockinger B. Good for Goose, but not for Gander:IL-2 interferes with Th17 differentiation [J]. Immunity 2007; 26:278-279.
    [47]吴长有.TH17细胞:一种新的效应CD4+T细胞亚群[J].细胞与分子免疫学杂志2006;22:695-697.
    [48]Laurence A, Tato CM, Davidson TS, et al.Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation [J]. Immunity 2007; 26:371-381.
    [49]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells [J]. Immunity 2006; 24:179-189.
    [50]Yang Jl, Yang M, Htut TM, et al. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgammat [J]. Eur J Immunol 2008; 38:1204-1214.
    [51]Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+T cells [J]. Immunity 2002; 16:b779-790.
    [52]Nedbala W,Wei X Q, Cai B, et al.IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells [J].Eur J Immunol 2007; 37:3021-3029.
    [53]Kempe S, Heinz P, Kokai E, et al. Epstein-barr virusinducedgene-3 is expressed in human atheroma plaques [J]. Am J Pathol 2009; 175:440-447.
    [54 Devergne O, Birkenbach M, Kieff E. Epstein-Barr virus-induced gene 3 andthe p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin [J]. Proc Natl Acad Sci USA 1997; 94:12041-12046.
    [55]Lee SM, Gao B, Dahl M, et al. Decreased FoxP3 gene expression in the nasal secretions from patients with allergicrhinitis[J]. Otolaryngol Head Neck Surg 2009; 140:197-201.
    [56]Whitehead GS, Wilson RH, Nakano K, et al.IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease [J]. J Allergy Clin Immunol 2012; 129(1):207-215.
    [57]Karagiannidis C, Akdis M, Holopainen P, et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma [J]. J Allergy Clin Immunol 2004; 114:1425-1433.
    [58]Bousquet J, Demoly P, Michel FB. Specific immuno therapy in rhinitis and asthma [J]. Ann Allergy Ast hma Immunol 2001; 87:38-42.
    [59]王建,赵辉,李净,等.多因素复合制作气虚血瘀证脑缺血动物模型的实验研究.中国实验动物学报2001;4;1005-4847(2001)04-0216-05.
    [60]Schwarze J, Gelfand EW.Respiratory viral infection as promoters of allergic sensitization and astnma in animal models [J].Eur Respir J 2002; 19:341-349.
    [61]Ward MD,Madson SL,Sailatad DM,et al,Allergen-triggered airway hyperresponsiveness and lung pathology in mice senstized with the biopesticide Metarhizium anisopliae [J]. Toxicology 2000; 143:141-154.
    [62]Shen HH,Ochkur SI,McGarry MP,et al.A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse [J]. J Immunol 2003; 170:3296-3305.
    [63]van Oosterhout AJ, Fattah D,van Ark I,et al.Eosinophil infiltration precedes development of airway hyperreactivity and mucosal exudation after intranasal admnistration of interleukin-5 to mice [J].J Allergy Cln Immunol 1995; 96:104-112.
    [64]Wills-Karp M, Karp CL.Biomedicine.Eosinophils in astnma:remodeling a tangled tale [J].Science 2004; 305:1726-1729.
    [65]Mosmann TR, Moore KW. The role of IL-10 in cross regulation of TH1 and TH2 responses [J]. Immunol Today 1991; 12:A49-53.
    [66]Brewer JM, Conacher M, Hunter CA. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling [J]. J Immunol 1999; 163:6448-6454.
    [67]Weaver CT, Hatton RD. Interplay between the TH17 and TReg cell lineages:a (co-evolutionary perspective [J]. Nat Rev Immunol 2009; 12:883-889.
    [68]Sakaguchi S, Ono M, Setoguchi R. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease [J]. Immunol Rev 2006; 212:8-27.
    [69]Wenzel SE. Asthma:defining of the persistent adult phenotypes [J]. Lancet 2006; 368:804-13.
    [70]Chunhua Ma, Zhanqiang Mal, Qiang Fu,et al. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice [J]. Fitoterapia 2013; 87:57-64.
    [71]Elsner J, Kapp A. Regulation and modulation of eosinophil effector functions [J]. Allergy 1999; 54:15-26.
    [72]Elias JA, Lee CG, Zheng T. New insights into the pathogenesis of asthma. J Clin Invest 2003; 111:291-297.
    [73]Doganci A, Eigenbrod T, Krug N. The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo [J]. J Clin Invest 2005; 115:313-325.
    [74]Seroogy CM, Gern JE. The role of T regulatory cells in asthma [J]. J Allergy Clin Immunol 2005; 116:996-999.
    [75]Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis [J]. Arthritis Rheum 2009; 60(6):1647-1656.
    [76]Toosi S, Bystryn JC. Potential role of interleukin-17 in the pathogenesis of bullous pemphigoid [J]. Med Hypotheses 2010; 74(4):727-728.
    [77]Ishizu T, Osoegawa M, Mei F-J. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis [J]. Brain 2005; 128:988-1002.
    [78]Wakashin H, Hirose K, Maezawa Y. IL-23 and Th17 cells enhance Th2-Cell-mediated eosinophilic airway inflammation in mice [J]. Am J Respir Crit Care Med 2008; 178:1023-32.
    [79]Sun Y, Zhou Q, Yao W. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma [J]. Chin Med J 2005; 118:953-956.
    [80]Wilson RH,Whitehead GS, Nakano H. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness [J]. Am J Respir Crit Care Med 2009; 180:720-730.
    [81]Bullens DMA, Truyen E, Coteur L. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx [J]. Respir Res 2006; 7:135-143.
    [82]Gregory S. Whitehead, MSc, Rhonda H. Wilson, et al. IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease [J]. J ALLERGY CLIN IMMUNOL JANUARY 2012; 207-215.
    [83]Chaudhry A, Rudra D, Treuting P, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner [J]. Science 2009; 326:986-991.
    [1]Schmidt NJ, Lennette EH, et al.An apparently new enterovirus isolated from patients with disease of the central nervous system [J]. J Infect Dis 197; 129:304-309.
    [2]Ang LW, Koh BK, Chan KP, et al. Epidemiology and control of hand, foot and mouth disease in Singapore,2001-2007. Ann Acad Med Singapore 2009; 38:106-112.
    [3]Ma E, Chan KC, Cheng P, et al.The enterovirus 71 epidemic in 2008-public health implications for Hong Kong [J]. Int J Infect Dis 2010;14:e775-780.
    [4]Sarma N, Sarkar A, Mukherjee A, et al. Epidemic of hand, foot and mouth disease in West Bengal, India in August,2007:a multicentric study [J]. Indian J Dermatol 2009; 54:26-30.
    [5]Shimizu H, Utama A, Onnimala N, et al. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region [J]. Pediatr Int 2004; 46:231-235.
    [6]Shimizu H, Utama A, Yoshii K, et al. Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997-1998 [J]. Jpn J Infect Dis 1999; 52:12-15.
    [7]Chan LG, Parashar UD, Lye MS, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia:clinical and pathological characteristics of the disease. For the Outbreak Study Group [J]. Clin Infect Dis 2000; 31:678-683.
    [8]Chang LY, Huang LM, Gau SS, et al.Neurodevelopment and cognition in children after enterovirus 71 infection [J]. N Engl J Med 2007; 356:1226-1234.
    [9]Chang LY, Lee CY, Kao CL, et al. Hand, foot and mouth disease complicated with central nervous system involvement in taiwan in 1980-1981 [J]. J Formos Med Assoc 2007; 106:173-176.
    [10]Chang LY, Lin TY, Hsu KH, et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease [J]. Lancet 1999; 354:1682-1686.
    [11]Abubakar S, Chee HY, Shafee N, et al. Molecular detection of enteroviruses from an outbreak of hand, foot and mouth disease in Malaysia in 1997 [J]. Scand J Infect Dis 1999; 31:331-335.
    [12]Ortner B, Huang CW, Schmid D, et al. Epidemiology of enterovirus types causing neurological disease in Austria [J]. J Med Virel 2009; 81:317-324.
    [13]Huang YP, Lin TL, Kuo CY, et al. The circulation of subgenogroups B5 and C5 of enteroviru s 71 in Taiwan from 2006 to 2007 [J]. Virus Res 2008; 137:206-212.
    [14]Lj L, He Y, Yang H, et al. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People, s Republic of China [J]. J Clin Microbiol 2005; 43:3835-3839.
    [15]Shih SR, Ho MS, Lin KH, et al. Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases ofhan d。foot and moutll disease during an epidemic in Talwan,1998 [J]. Virus Res 2000; 68:127-136.
    [16]李仁清,陈丽娟,王玉梅,等.北京地区2006-2008年肠道病毒71型VP1区基因特征分析[J].中华流行病学杂志2009;30:45-49.
    [17]Abubakar S, Chee HY, Shafee N, et al. Molecular detection of enteroviruses from an outbreak of hand, foot and mouth disease in Malaysia in 1997 [J]. Scand J Infect Dis 1999; 31:331-335.
    [18]Chang LY:Enterovirus 71 in Taiwan [J]. Pediatr Neonatol 2008,49:103-112.
    [19]Ding NZ, Wang XM, Sun SW, et al. Appearance of mosaic enterovirus 71 in the 2008 outbreak of China [J]. Virus Res 2009; 145:157-161.
    [20]Hosoya M, Kawasaki Y, Sato M, et al. Genetic diversity of enterovirus 71 associated with hand, foot and mouth disease epidemics in Japan from 1983 to 2003 [J]. Pediatr Infect Dis J 2006; 25:691-694.
    [21]Bible JM, Pantelidis P, Chan PK, et al. Genetic evolution of enterovirus 71: epidemiological and pathological implications [J]. Rev Med Virol 2007; 17:371-379. DOI: 10.1002/rmv.538.
    [22]Ooi MH, Wong SC, Podin Y, et al. Human enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study [J]. Clin Infect Dis 2007; 44:646-56. DOI:10.1086/511073.
    [23]Hosoya M, Kawasaki Y, Sato M, et al. Genetic diversity of enterovirus 71 associated with hand, foot and mouth disease epidemics in Japan from 1983 to 2003 [J]. Pediatr Infect Dis J 2006; 25:691-694. DOI:10.1097/01. inf.0000227959.89339. c3.
    [24]Mizuta K, Abiko C, Murata T, et al. Frequent importation of enterovirus 71 from surrounding countries into the local community of Yamagata, Japan, between 1998 and 2003 [J].J Clin Microbiol 2005; 43:6171-6175. DOI:10.1128/JCM.43.12.6171-6175.2005.
    [25]Tu PV, Thao NT, Perera D, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, SouThern Vietnam,2005 [J]. Emerg Infect Dis 2007; 13:1733-1741.
    [26]Arita M,Nagata N,Iwata N,et al.An attenuated strain of enterovirus 71 belonging to genotype A showed a broad spectrum of antigenecity with attenuated neurovirulence in cynomolgus monkeys [J].J Virol 2007; 81(17):9386-9395.
    [27]Wu CN,Lin YC,Fann C,et al.Protection aganst lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccine and inactivated virus [J].Vaccine 2001; 20:895-904.
    [28]Chung YC, Ho MS, Wu JC,et al.Immunzaton with vrus-like particles of entervirus 71 elicits potent immune response and protects mice against lethal challenge [J]. Vaccine 2008; 26:1855-1862.
    [29]Ong KC,Devi S,Cardosa MJ,et al.Formaldehyde-inactivated whole-virus vaccine protects a murine model of entervirus 71 encephalpmyelitis against disease [J]. J Virol 2010; 84:661-665.
    [30]van Drunen Littel-van den Hurk S, Mapletoft JW, Arsic N, Kovacs-Nolan J. Immunopathology of RSV infection:prospects for developing vaccines without this complication [J]. Rev Med Virol 2007; 17(1):5-34.
    [31]Chen HF, Chang MH, Chiang BL, et al.Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71 [J]. Vaccine 2006; 24(15):2944-2951.
    [32]AbuBakar S, Shafee N, Chee HY. Adenovirus in EV71-associated hand, foot, and mouth disease [J]. Lancet 2000; 355:146. DOI:10.1016/S0140-6736(05)72060-2.
    [33]Chen HL, Huang JY, Chu TW, et al. Expression of VP1 protein in the milk of transgenic mice:a potential oral vaccine protects against enterovirus 71 infection [J]. Vaccine 2008; 26(23):2882-2889.
    [34]Chung YC, Ho MS, Wu JC, et al. Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge [J]. Vaccine 2008;26(15):1855-1862.
    [35]Wu TC, Wang YF, Lee YP, et al. Immunity to avirulent enterovirus 71 and coxsackie A16 virus protects against enterovirus 71 infection in mice [J]. J Virol 2007; 81(19):10310-10315.
    [36]Foo DG, Ang RX, Alonso S, et al. Identification of immunodominant VP1 linear epitope of enterovirus71 (EV71) using synthetic peptides for detecting human anti-EV71 IgG antibodies in Western blots [J]. Clin Microbiol Infect 2008; 14(3):286-288.
    [37]Chiu CH, Chu C, He CC, et al. Protection of neonatal mice from lethal enterovirus 71 infection by maternal immunization with attenuated Salmonella enterica serovar typhimurium expressing VP1 of enterovirus 71 [J]. Microbes Infect 2006; 8(7):1671-1678.
    [38]Jia CS, Liu JN, Li WB, et al. The cross-reactivity of the enterovirus 71 to human brain tissue and identification of the cross-reactivity related fragments [J]. Virol J 2010; 7(47).
    [39]Jiang M, Wei D, Ou WL, et al.Autopsy findings in children with hand, foot, and mouth disease [J]. N Engl J Med 2012; 367:91-92.
    [40]Zhang YC, Jiang SW, et al. Clinicopathologic features and molecular analysis of enterovirus 71 infection:Report of an autopsy case from the epidemic of hand, foot and mouth disease in China [J]. Pathol Int 2012; 62:565-570.
    [41]Shieh WJ, Jung SM, Hsueh C, et al. Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, taiwan [J]. Emerg Infect Dis 2001; 7:146-148.
    [42]Chen CY, Chang YC, Huang CC, et al. Acute flaccid paralysis in infants and young children with enterovirus 71 infection:MR imaging findings and clinical correlates [J]. AJNR Am J Neuroradiol 2001; 22:200-205.
    [43]刘江宁,张连峰.人肠道病毒71型动物模型研究进展[J].中国实验动物学报2010;18(3):276-277.
    [44]Chumakov M,Voroshilova M,Shindarov L,et al. Enteruvirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria [J].Arch Virul 1979; 60:329-340.
    [45]Arita M,Ami Y,Wakita T,et al.Cooperative effect of the attenuation determinants derived from polioviru s sabin 1 strain is essential for attenuation of enleruvJru s 71 in the NOD/SCID mouse infection model [J].J Virol 2008; 82:1787-1797
    [46]Chua BH,Phuektes P,Sanders SA,et al.The molecular basis of mouse adaptation by human enterovirus 71 [J].J Gen Virol 2008; 89:1622-1632.
    [47]Chan YF,AbuBakar S.Human enteruvirus 71 subgenotype B3 lacks eoxsackievirus A16. like neurovirulenee in mice infection [J].Virol J 2005; 2:74.
    [48]Chen YC,Yu CK,Wang YF,et al.A murine oral enterovirus 71 infection model with central nervous system involvement [J].J Gen Virol 2004; 85:69-77.
    [49]Wang YF, Chou CT, Lei HY, et a 1.Adapted enterovirus 71 strain causes neurological disease in mice after oral infection [J].J Virol 2004; 78:7916-7924.
    [50]Ong KC, BadmanaThan M, Devi S, et al.Pathologic characterization of a murine model of human entervirus 71 encephalomylitis [J]J Neuropathol Exp Neurol 2008; 67:532-542.
    [51]朵建英,王卫,佟薇,等.肠道病毒71型(EV71)对ICR小鼠的感染[J].中国比较医学杂志2009;5:41-46.
    [52]Chua BH, Phuektes P, Sanders SA, et al.The molecular basis of mouse adaptation by human enterovirus 71 [J]. J Gen Virol 2008; 89:1622-1632.
    [53]Ong KC, Devi S, Cardosa MJ, et al.Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71 encephalomyelitis against disease [J]. J Virol 2009; 84:661-665.
    [54]Chen CS, Yao YC, Lin SC, et al. Retrograde axonal transport:a major transmission route of enterovirus 71 in mice [J]. J Virol 2007; 81:8996-9003.
    [55]Ong KC, BadmanaThan M, Devi S, et al. Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis [J]. J Neuropathol Exp Neurol 2008; 67:532-542.
    [56]马春梅;刘江宁C4亚型人肠道病毒71型的小鼠肌肉适应株对小鼠具有致死毒力.中国比较医学杂志2012;05.
    [57]Li ZH, Li CM, Ling P, et al.Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication [J]. J Infect Dis 2008; 197:854-857.
    [58]Liu J, Yang Y, Xu Y, et al. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication [J]. Virol J 2011; 8:483.
    [59]DeRuisseau LR, Fuller DD, Qiu K, et al. Neural deficits contribute to respiratory insufficiency in Pompe disease [J]. Proc Natl Acad Sci U S A 2009; 106:9419-9424.
    [60]Chang LY, Hsia SH, Huang YC, et al. Left ventricular dysfunction and treatment of fulminant enterovirus 71 infection [J]. Clin Infect Dis 2002; 35:1444; author reply 1444-1445.
    [61]Jia CS, Liu JN, Li WB, et al. The cross-reactivity of the enterovirus 71 to human brain tissue and identification of the cross-reactivity related fragments [J]. Virol J 2010; 7:47
    [62]Yang Y, Wang H, Gong E, et al. Neuropathology in 2 cases of fatal enterovirus type 71 infection from a recent epidemic in the People's Republic of China:a histopathologic, immunohistochemical, and reverse transcription polymerase chain reaction study [J]. Hum Pathol 2009;40:1288-1295.
    [63]Wong KT, Munisamy B, Ong KC, et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways [J]. J Neuropathol Exp Neurol 200; 67:162-169.
    [64]Hsueh C, Jung SM, Shih SR, et al. Acute encephalomyelitis during an outbreak of enterovirus type 71 infection in taiwan:report of an autopsy case with pathologic, immunofluorescence, and molecular studies [J]. Mod Pathol 2000; 13:1200-1205.
    [65]Weng KF, Chen LL, Huang PN, et al. Neural pathogenesis of enterovirus 71 infection [J]. Microbes Infect 2010; 12:505-510.
    [66]Fu YC, Chi CS, Jan SL, et al. Pulmonary edema of enterovirus 71 encephalomyelitis is associated with left ventricular failure:implications for treatment [J]. Pediatr Pulmonol 2003; 35:263-268.
    [67]Nagata N, Shimizu H, Ami Y, et al. Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71 [J]. J Med Virol 2002; 67:207-216.
    [68]Arita M, Nagata N, Iwata N, et al. An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys [J]. J Virol 2007; 81:9386-9395.
    [69]Chong CY, Chan KP, Shah VA, et al. Hand, foot and mouth disease in Singapore:a comparison of fatal and non-fatal cases [J]. Acta Paediatr 2003; 92:1163-1169.
    [70]Zhang Y, Cui W, Liu L, et al. Pathogenesis study of enterovirus 71 infection in rhesus monkeys [J]. Lab Invest 2011; 91:1337-1350.
    [71]Liu L ZH, Zhang Y, Wang J, et al. Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection [J]. Virology 2011; 412:91-100.
    [72]Huang SW, Lee YP, Hung YT, et al. Exogenous interleukin-6, interleukin-13, and interferon-gamma provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice [J]. Respir Res 2011;12:147.
    [1]Racaniello, V. R. Picornaviridae:The viruses and their replication, Ch.24. In D. M. Knipe & P. M. Howley (Eds.) [J]. Fields virology 2007; 1:795-838.
    [2]Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system [J]. J Infect Dis 1974; 129:304-309.
    [3]Ho M:Enterovirus 71:The virus, its infections and outbreaks [J]. J Microbiol Immunol Infect 2000; 33:205-216.
    [4]Blomberg J, Lycke E, Ahlfors K, et al. New enterovirus type associated with epidemic ofaseptic meningitis and-or hand, foot, and mouth disease [J]. Lancet ii:1974; 112 (Letter).
    [5]Ang LW, Koh BK, Chan KP, et al.Epidemiology and control of hand, foot and mouth disease in Singapore,2001-2007[J]. Ann Acad Med Singapore 2009; 38:106-112.
    [6]Shimizu H, Utama A, Yoshii K, et al. Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997-1998[J]. Jpn J Infect Dis 52:12-15.
    [7]Dediego ML, Pewe L, Alvarez E, et al. Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice[J]. Virology 2008; 376:379-389.
    [8]Dorner M, Horwitz JA, Robbins JB, et al. A genetically humanized mouse model for hepatitis C virus infection [J]. Nature 2011; 474:208-211
    [9]Flint M, Tscherne DMCellular receptors and HCV entry [J]. Methods Mol Biol 2009, 510:265-277
    [10]Horie H, Koike S, Kurata T, et al. Transgenic mice carrying the human poliovirus receptor:new animal models for study of poliovirus neurovirulence [J]. J Virol 1994; 68:681-688
    [11]Racaniello VR, Ren R.Transgenic mice and the pathogenesis of poliomyelitis J]. Arch Virol Suppl 1994; 9:79-86
    [12]Ren RB, Costantini F, Gorgacz EJ, et al. Racaniello VR transgenic mice expressing a human poliovirus receptor:a new model for poliomyelitis [J]. Cell 1990; 63:353-362
    [13]Hagiwara, A., I. Tagaya, T. Yoneyama. Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection [J]. Intervirology1978; 9:60-63.
    [14]Lin KH, Hwang KP, Ke GM, et al.Evolution of EV71 genogroup in Taiwan from 1998 to 2005:an emerging of subgenogroup C4 of EV71 [J]. J Med Virol 2006; 78:254-262.
    [15]Li CC, Yang MY, Chen RF, et al.Clinical manifestations and laboratory assessment in an enterovirus 71 outbreak in southern Taiwan [J]. Scand J Infect Dis 2002; 34:104-109.
    [16]Wang JR, Tuan YC, Tsai HP, et al.Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000 [J]. J Clin Microbiol 2002; 40:10-15.
    [17]Yan JJ, Wang JR, Liu CC, et al.An outbreak of enterovirus 71 infection in Taiwan 1998: a comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis [J]. J Clin Virol 2000; 17:13-22.
    [18]Ho M, Chen ER, Hsu KH, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 1999; 341:929-935.
    [19]Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 1981; 214:1244-1246
    [20]Chen LC, Shyu HW, Chen SH, et al. Enterovirus 71 infection induces Fas ligand expression and apoptosis of Jurkat cells [J]. J Med Virol 2006; 78:780-786.
    [21]Miyamura,K, Nishimura,Y, Abo, M, et al. Adaptive mutations in the genomes of enterovirus71 strains following infection of mouse cells express-in humanP-selecting lycoprotein ligand-1[J]. J. Gen.Virol 2011; 92:287-291.
    [22]Lum LC, Wong KT, Lam SK, et al. Fatal enterovirus 71 encephalomyelitis [J]. J Pediatr 1998; 133:795-798.
    [23]Nishimura Y, Shimojima M, Tano Y, et al. Human Pselectin glycoprotein ligand-1 is a functional receptor for enterovirus 71 [J]. Nat Med 2009; 15:794-797.
    [24]马春梅,刘江宁.C4亚型人肠道病毒71型的小鼠肌肉适应株对小鼠具有致死毒力[J].中国比较医学杂志2012(05).
    [25]Jia CS, Liu JN, Li WB, et al. The cross-reactivity of the enterovirus 71 to human brain tissue and identification of the cross-reactivity related fragments [J]. Virol J 2010; 7:47.
    [26]Yamayoshi S, Koike S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection[J]. J Virol 2011; 85:4937-4946.
    [27]Yamayoshi S, Yamashita Y, Li J, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71[J]. Nat Med 2009; 15:798-801.
    [28]Jiangning Liu, Wei Dong, Xiongzhi Quan, et al. Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice[J]. Arch Virol.2012; 157(3):539-43. doi:10.1007/s00705-011-1198-2.