标准化大鼠CLP脓毒症模型的建立及甲磺酸苦柯胺B对其的保护作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.目的
     脓毒症(Sepsis)是由感染因素引起的全身性炎症反应综合征(systemic inflammatoryresponse syndrome, SIRS),是临床病人发生感染后的常见并发症,并已成为导致临床危重症患者死亡的首要因素,目前尚无有效的药物用于临床治疗。
     为研发有效的治疗脓毒症药物,本实验室以介导细菌脓毒症的主要病原体相关分子——细菌脂多糖/内毒素(lipopolysaccharide, LPS)和细菌CpG DNA为靶标,应用基于生物传感器的筛选和定向分离技术,从地骨皮药材中定向分离得到一个能同时拮抗LPS和CpG DNA的生物碱类化合物苦柯胺B。
     由于天然提取物产率低,无法满足临床用药需求,为此我们对该化合物进行了全化学合成,制备获得了该化合物的药用盐——甲磺酸苦柯胺B(Kukoamine B,KB)。前期研究证实,该化合物能够显著提高脓毒症模型小鼠的存活率,降低其血中LPS和炎症介质TNF-α的水平。
     由于从小鼠模型中获取的标本(尤其是血液样品)不足以支持治疗脓毒症药物深入的药效学和作用机制的研究,因此,为满足KB作为原创新药申报国家1.1类化药的药效学研究的需要,本研究通过探索、改进建模方法,建立了成熟稳定的盲肠结扎穿孔(cecal ligation and puncture, CLP)大鼠脓毒症模型,并应用该模型研究了KB治疗脓毒症的药理作用及机制,为其临床前研究奠定基础。
     2.方法
     2.1标准化CLP脓毒症大鼠模型的建立及首次使用抗菌药物时间的确定
     2.1.1稳定的CLP脓毒症模型术式的筛选与建立:比较自制三棱针与传统穿刺针、传统穿刺针+引流条、传统穿刺针+引流管等不同穿刺方法建模后大鼠死亡率的稳定性差别。
     2.1.2不同死亡率CLP脓毒症模型大鼠的建立:采用3、4、5号三棱针(边径分别为3、4和5mm)穿刺建模,观察大鼠死亡率;确定死亡率为70%-90%CLP大鼠脓毒症模型用于药物保护实验;确定死亡率为30%-50%的CLP大鼠脓毒症模型用于药物治疗实验。
     2.1.3CLP脓毒症大鼠模型首次抗菌药物使用时间点的筛选:在死亡率为70%-90%的CLP大鼠脓毒症模型中,分别于术后0、1、2、3、4、5、6、7、8h首次静脉注射抗菌药物(100mg/kg舒氨西林+甲硝唑5mg/kg),观察大鼠死亡率,确定利于药物疗效观察的抗菌药物首次给药时间。
     2.2KB对CLP脓毒症大鼠模型的保护作用:建立死亡率为70%-90%的CLP大鼠模型,在抗菌、补液治疗的基础上,给予低、中、高剂量(0.3、1和3μg/kg)的KB,选用乌司他丁(10000U/kg)作为对照药物,观察KB对CLP脓毒症大鼠模型的保护作用。
     2.3KB对CLP脓毒症模型大鼠的治疗作用:建立死亡率为30%-50%的CLP脓毒症大鼠模型,在抗菌、补液治疗的基础上,分别给予中、高剂量(1和3μg/kg)的KB以及乌司他丁(10000U/kg)。在CLP术后4、8、12、24h采集血液标本,检测各时相点血中的细菌量、LPS和炎症介质(TNF-α和IL-6)、血常规、凝血和血生化指标的变化情况。在术后24h采集肺组织和小肠组织,光镜下观察组织病理改变,以评价KB对CLP脓毒症模型大鼠的治疗作用。
     2.4KB改善CLP脓毒症大鼠模型急性肺损伤的作用及其机制研究
     2.4.1体外实验:分离大鼠外周血嗜中性粒细胞,检测分析KB与乌司他丁干预LPS刺激嗜中性粒细胞后,对炎症介质信号分子和转录因子活化以及炎症介质TNF-α、IL-6和弹性蛋白酶的表达的影响,探讨KB改善CLP脓毒症模型大鼠急性肺损伤的机制。
     2.4.2体内实验:建立死亡率为30%-50%的CLP脓毒症大鼠模型,在抗菌、补液治疗的基础上,分别给予高剂量(3μg/kg)的KB以及乌司他丁(10000U/kg)。术后12、24h取肺组织,检测肺干湿重,检测肺组织中信号分子(IκB-α和p38)和转录因子(NF-κB)活化情况、炎症介质TNF-α、IL-6和弹性蛋白酶的表达变化。
     3.结果
     3.1自制三棱针较传统穿刺针可更好地建立稳定的CLP脓毒症大鼠模型
     3.1.1自制三棱针较传统穿刺针建立的CLP脓毒症大鼠模型动物组间死亡率差异小:自制三棱针穿刺建立的CLP脓毒症大鼠模型动物组间死亡率差异不超过10%,而采用传统穿刺针、穿刺针+引流条、穿刺针+引流管和锥形三棱针的方法建立的CLP脓毒症大鼠模型动物的组间死亡率差异可高达50%、60%、50%和40%。说明采用自制三棱针较传统穿刺针可更好地建立稳定的CLP脓毒症大鼠模型。
     3.1.2自制三棱针的边径与模型动物的死亡率成正相关:3#针组为20%-30%,4#针组为30%-50%,5#针组为70%-90%。
     建立死亡率为70%-90%的大鼠CLP脓毒症模型主要条件为:盲肠结扎1.6cm,用5号三棱针穿刺1孔;建立死亡率为30%-50%的大鼠CLP脓毒症模型主要条件为:盲肠结扎1.6cm,用4号三棱针穿刺1孔。
     3.1.3在CLP脓毒症模型大鼠中确定首次使用抗菌药物的时间为术后7h:在死亡率为70%-90%的CLP脓毒症模型大鼠中,抗菌药物首次使用时间为术后5h以内,可显著提高大鼠存活率(P<0.05或0.01),当抗菌药物首次使用时间为术后6h-8h,单独抗菌已不能提高大鼠的存活率(P>0.05),可模拟临床抗菌药物无效的情况,有利于目标药物药理作用的观察,因此本研究中将抗菌药物首次使用时间确定为术后7h。
     3.2KB可显著提高CLP脓毒症模型大鼠的生存率
     生理盐水(NS)组大鼠7天生存率为13.33%,抗菌药物组为36.67%,二者无统计学差异(P>0.05)。
     对照药物乌司他丁组大鼠生存率为63.33%,与抗菌药物组比较具有显著的统计学差异(P<0.05)。
     低、中、高剂量的KB(0.3、1和3μg/kg)组可显著提高大鼠生存率,由36.67%提高至63.33%、70.00%和86.67%,具有显著和非常显著的统计学差异(P <0.05或0.01vs抗菌药物组)。KB低剂量组的大鼠生存率与乌司他丁组无统计学差异(P>0.05),而中高剂量组保护作用优于乌司他丁(P <0.05)。
     3.3KB对CLP脓毒症大鼠模型具有显著的治疗作用
     相对于假手术组,NS组大鼠血中可检出细菌,血LPS和炎症介质TNF-α和IL-6水平显著升高,并出现了动脉血pH下降、凝血功能异常(APTT↑、PT↑、PLT↓)、肝、肾功能异常(ALT、AST、TBIL、Cr和BUN↑)和心肌损伤(CK-MB↑),病理学观察发现肺组织出现出血、水肿等改变,小肠组织出现上皮细胞坏死、脱落、嗜中性粒细胞的浸润为主要特征的急性炎症性损伤。
     抗菌药物可有效降低大鼠血细菌计数外,但不能改善其他观察指标。但在抗菌、补液治疗的基础上给予KB,可显著降低CLP模型大鼠血中LPS水平、抑制炎症介质TNF-α和IL-6的释放,还可有效减轻大鼠的凝血功能障碍、抑制动脉血pH值降低,并减轻肾脏和心肌功能异常,减轻肺和小肠组织炎症性损伤等症状,效果优于对照药物乌司他丁。
     3.4KB可减轻CLP脓毒症大鼠模型的急性肺损伤,其机制与抑制炎症介质密切相关。
     体外实验结果显示,KB可抑制LPS诱导的嗜中性粒细胞胞TNF-α、IL-6、弹性蛋白酶和TLR4等炎症介质和受体的表达,抑制LPS诱导的胞内重要信号转导分子p38、IκB-α活化和转录因子NF-κB活化。体内实验结果显示,KB能显著降低CLP模型大鼠肺干湿重比值,抑制肺组织信号分子p38和IκB-α的活化以及TNF-α、IL-6和弹性蛋白酶的升高。对照药物乌司他丁对大鼠肺损伤也具有一定的减轻作用,但KB的作用强于乌司他丁。
     4.结论:
     4.1成功建立了稳定的CLP脓毒症大鼠模型自制三棱针较传统穿刺针可更好地建立稳定的CLP脓毒症大鼠模型,解决了传统CLP脓毒症模型大鼠中由于穿刺引流入腹腔中的菌量不易控制而造成的CLP脓毒症模型重复性差的难题。本方法操作简单、可控,模型大鼠的死亡率稳定、重现性好,可用于后续的药物研究。
     4.2KB可显著提高CLP脓毒症大鼠模型的生存率,且效果优于乌司他丁。
     4.3KB可显著降低CLP脓毒症模型大鼠血中LPS浓度,减少炎症介质TNF-α和IL-6的产生,缓解酸中毒,改善凝血状况,对心和肾脏等脏器功能具有显著的保护作用,且效果优于乌司他丁。
     4.4KB可减轻CLP脓毒症大鼠模型的急性肺损伤,其机制与抑制炎症介质密切相关。
1. Objectives
     Sepsis is defined as systemic inflammatory response syndrome (SIRS) caused byinfection. It is a common complication in patients with infection, and has become theleading cause of death in critically ill patients. But there are no effective drugs for clinicaluse at present.
     To develop medications for the treatment of sepsis, we screen and isolate drugstargeting lipopolysaccharide (LPS) and CpG DNA which are the main pathogen-associatedmolecular patterns (PAMPs) using biosensor, and an alkaloid compound Kukoamine B (KB)that can simultaneously neutralize LPS and CpG DNA was isolated from Lycii Cortex. KBwas subsequently synthesized because of the low product yield from natural resources, andthe salt Kukoamine B Mesilate (KB) was obtained. Previous study has shown that KB couldsignificantly improve the survival rate in mice with sepsis and reduce the serum LPS andTNF-α levels.
     Because it is insufficient for the further study of pharmacology and mechanism usingmouse model of sepsis, and to meet the requirement of new drug application (chemicaldrugs in class1.1), a mature and stable CLP-induced rat model of sepsis was established byimproving the procedure of cecal ligation and puncture (CLP) operation. We provided thescientific basis for the pre-clinical study of KB via using this model in pharmacology andmechanism study of KB.
     2. Methods
     2.1Establishment of the standardized CLP-induced rat model of sepsis anddetermination of the time of the first dose of antibacterials
     2.1.1Evaluation and establishment of stable CLP surgery performed in rats: tocompare the stability of mortality rate of rats punctured by three-edged needle, traditionalpuncture needle, traditional puncture needle with drainage strip and traditional puncture needle with drainage tube, respectively,
     2.1.2Establishment of CLP-induced rat model of sepsis with different mortality:3,4and5#(the width of edge is3,4and5mm) three-edged needle were used for the puncture.The model with mortality rate ranging from70%to90%was used for the protectionexperiments and30%to50%was used for the therapeutic experiments.
     2.1.3Comparison of the time of the first dose of antibacterials: the antibacterials (100mg/kg ampicillin sodium-sulbactam sodium and5mg/kg metronidazole) were firstintravenously injected at0,1,2,3,4,5,6,7and8h after CLP operation in the rats withmortality rate ranging from70%to90%. The mortality rate was observed to estimate thetime of the first dose of antibacterials.
     2.2Protective effect of KB in CLP-induced rat model of sepsis: to demonstrate theprotective effect of KB in CLP-induced rat model of sepsis, on the basis of antibacterialsand resuicitation treatment, KB (0.3,1and3μg/kg) was injected in the rats with mortalityrate ranging from70%to90%. Ulinastatin (10,000U/kg) was used as positive control.
     2.3Therapeutical effect of KB in CLP-induced rat model of sepsis: to demonstrate thetherapeutical effect of KB in CLP-induced rat model of sepsis, on the basis of antibacterialsand resuicitation treatment, KB (1and3μg/kg) and ulinastatin (10000U/kg) were injectedin the rats with mortality rate ranging from30%to50%, respectively. Blood samples werecollected at4,8,12and24h after CLP operation for the detection of bacterial count, LPS,pro-inflammatory mediators (TNF-α and IL-6), blood tests, blood coagulation andbiochemical indicators. Lung and intestine tissues were collected at24h after CLPoperation for the pathological examination.
     2.4Amelioration of acute lung injury by KB in CLP-induced rat model of sepsis andthe mechanisms
     2.4.1In vitro experiment: neutrophilic granulocytes were isolated from peripheralblood of rats, and the inhibition on LPS-induced expression of inflammatory signalingmolecules, activation of transcription factor and expression of elastase by KB andulinastatin was analysed to explore the mechanism of ameliorating acute lung injury by KBin CLP-induced rat model of sepsis.
     2.4.2In vivo experiment: on the basis of antibacterials and resuicitation treatment, KB(3μg/kg) and ulinastatin (10,000U/kg) were injected in the rats with mortality rate ranging from30%to50%, respectively. Lung tissue was collected at12and24h after CLPoperation for the detection of lung wet/dry weight ration, activation of signaling molecules(IκB-α and p38) and transcription factors (NF-κB) and expression of inflammatorymediators (TNF-α and IL-6) and elastase.
     3. Results
     3.1Three-edged needle was qualified for the establishment of a more stableCLP-induced rat model of sepsis.
     3.1.1There was no significant difference between the groups using three-edged needle,the variation of which was less than10%, while the variation of mortality between groupswas50%(using traditional puncture needle),60%(using traditional puncture needle withdrainage strip),50%(using traditional puncture needle with drainage tube) and40%(usingconical shape three edged needle). Thus, three-edged needle is better than other needles forthe establishment of stable CLP-induced rat model of sepsis.
     3.1.2There was a direct correlation between the mortality rate of rats and the width ofthe edge of three-edged needle: the mortality rate of groups using3#,4#and5#three-edgedneedle was20%-30%,30%-50%and70%-90%, respectively.
     The condition of CLP rat model with mortality rate ranging from70%-90%was asfollows: the cecum was ligated at1.6cm away from the tip and punctured by5#three-edged needle for once between the ligation and the tip. The condition of CLP ratmodel with mortality rate ranging from30%-50%was as follows: the cecum was ligated at1.6cm away from the tip and punctured by4#three-edged needle for once between theligation and the tip.
     3.1.3The time of first dose of antibacterials was7h after CLP operation: The survivalrate of rats could be significantly improved if the antibacterials were first administeredwithin5h after CLP operation (P<0.05or0.01). But the administration of antibacterials at6-8h after CLP operation was ineffective (P>0.05), thus demonstrating some mimics inclinical practice for the evaluation of pharmacological activity. Therefor, the time of firstdose of antibacterials was7h after CLP operation in the present study.
     3.2KB significantly improved the survival rate of CLP rats.
     There was no significant difference between the survival rate of rats receivedphysiological saline (13.33%) and antibacterials (36.67%, P>0.05).
     There was significant difference between the survival rate of rats received Ulinastatin(63.33%) and only antibacterials (P<0.05).
     On the basis of antibacterials and resuicitation treatment, KB (0.3,1and3μg/kg)significantly increase the survival rate from36.67%to63.33%,70.00%and86.673%,respectively (P<0.05or0.01vs antibacterials). There was significant difference betweenKB (1and3μg/kg) and Ulinastatin (P<0.05), but no significant difference between KB (0.3μg/kg) and ulinastatin (P>0.05).
     3.3KB showed significant therapeutical effect in CLP-induced rat model of sepsis.
     Compare to the sham operated group, the abnormal of bacterial count, serum LPS,inflammatory mediators (TNF-α and IL-6), blood pH, coagulation (APTT, PT and PLT),liver function, renal function (ALT, AST, TBIL, Cr and BUN) and myocardial damage(CK-MB) were observed in the rats received physiological saline. Pathological examinationshowed hemorrhage and edema in lung tissue, epithelial cell shedding and necrosis as wellas neutrophil infiltration in intestine tissue.
     Antibacterials were effective in decreasing the bacterial load, but ineffective for others.On the basis of antibacterials and resuicitation treatment, KB can significantly reduce theserum levels of LPS, TNF-α and IL-6, alleviate coagulation disorders and decrease in bloodpH, ameliorate the renal and liver dysfunction and improve the lung and intestine tissueinjury, and it showed better efficacy than ulinastatin.
     3.4KB ameliorated acute lung injury in CLP-induced rat model of sepsis, and it isassociated with the inhibition of inflammatory mediators.
     In vitro, KB inhibited the expression and production of TNF-α, IL-6, elastase andTLR4from neutrophils induced by LPS, and it also suppressed the activation ofintracellular signal transduction molecules p38and IκB-α and transcription factor NF-κB.In vivo, KB significantly reduced the lung wet/dry weight ratio, inhibited the activation ofsignaling molecules such as p38and IκB-α and the expression of TNF-α, IL-6and elastasein lung tissue.
     KB exhibited better efficacy than ulinastatin, although ulinastatin was also found toameliorate the lung injury in rats.
     4. Conclusions
     4.1Stable CLP-induced rat model of sepsis was successfully established. Three-edgedneedle is better for the establishment of stable CLP-induced rat model of sepsis. It solvedthe problem that it was hard to control the bacterial load in abdominal cavity usingtraditional puncture needle. The procedure was easy to control; it kept the mortality ratestable and had a good reproducibility.
     4.2KB significantly improved the survival rate of CLP rat and showed better efficacythan ulinastatin.
     4.3KB significantly reduced the serum levels of LPS, TNF-α and IL-6, alleviatedacidosis, ameliorated coagulation disorders and protected heart and renal tissue againstsepsis, and exhibited better efficacy than ulinastatin.
     4.4KB ameliorated acute lung injury in CLP-induced rat model of sepsis, and themechanism was tightly associated with the inhibition of inflammatory mediators.
引文
1Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al.2001SCCM/ESICM/ACCP/ATS/SISInternational Sepsis Definitions Conference. Crit Care Med.2003;31:1250-1256.
    2Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med.2013;369:840-851.
    3Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in theUnited States. Crit Care Med.2013;41:1167-1174.
    4Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ.2007;335:879-883.
    5Venkataraman R, Kellum JA. Sepsis: update in the management. Adv Chronic Kidney Dis.2013;20(1):6-13.
    6Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adultswith septic shock. N Engl J Med.2012;366:2055-2064.
    7Holder AL, Huang DT. A dream deferred: the rise and fall of recombinant activated protein C. Crit Care.2013;17(2):309.
    8Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: internationalguidelines for management of severe sepsis and septic shock:2012. Crit Care Med.2013;41:580-637.
    9Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu RevPathol.2011;6:19-48.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell.2006;124:783-801.
    11Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol.2002;20:197-216.
    12Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert RevVaccines.2012;11:237-256.
    13Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet.2005;365:63-78.
    1Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators insepsis. J Leukoc Biol.2013;93:329-342.
    2Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit Care Med.2007;35:2408-2416.
    Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol.2008;8:776-787.
    4Sprung CL, Eidelman LA, Pizov R, Fisher CJ, Jr., Ziegler EJ, Sadoff JC, et al. Influence of alterations in foregoinglife-sustaining treatment practices on a clinical sepsis trial. The HA-1A Sepsis Study Group. Crit Care Med.1997;25:383-387.
    5Angus DC, Birmingham MC, Balk RA, Scannon PJ, Collins D, Kruse JA, et al. E5murine monoclonal antiendotoxinantibody in gram-negative sepsis: a randomized controlled trial. E5Study Investigators. JAMA.2000;283:1723-1730.
    6Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, Guo W, et al. The screening and isolation of an effectiveanti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol.2005;5:1007-1017.
    7Liu X, Zheng X, Long Y, Cao H, Wang N, Lu Y, et al. Dual targets guided screening and isolation of Kukoamine B as anovel natural anti-sepsis agent from traditional Chinese herb Cortex lycii. Int Immunopharmacol.2011;11:110-120.
    8Liu X, Zheng X, Wang N, Cao H, Lu Y, Long Y, et al. Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is apotential candidate for sepsis treatment. Br J Pharmacol.2011;162:1274-90.
    1Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest.2009;119:2868-2878.
    2Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model forpolymicrobial sepsis? Trends Microbiol.2011;19:198-208.
    3Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation andpuncture. Nat Protoc.2009;4:31-36.
    4Dyson A, Singer M. Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? CritCare Med.2009;37:S30-37.
    5Newcomb D, Bolgos G, Green L, Remick DG. Antibiotic treatment influences outcome in murine sepsis: mediators ofincreased morbidity. Shock.1998;10:110-117.
    6Vianna RC, Gomes RN, Bozza FA, Amancio RT, Bozza PT, David CM, et al. Antibiotic treatment in a murine model ofsepsis: impact on cytokines and endotoxin release. Shock.2004;21:115-120.
    7Textoris J, Wiramus S, Martin C, Leone M. Antibiotic therapy in patients with septic shock. Eur J Anaesthesiol.2011;28:318-324.
    1Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation andpuncture. Nat Protoc.2009;4:31-36.
    1Vianna RC, Gomes RN, Bozza FA, Amancio RT, Bozza PT, David CM, et al. Antibiotic treatment in a murine model ofsepsis: impact on cytokines and endotoxin release. Shock.2004;21:115-120.
    2Textoris J, Wiramus S, Martin C, Leone M. Antibiotic therapy in patients with septic shock. Eur J Anaesthesiol.2011;28:318-324.
    1Slade E, Tamber PS, Vincent JL. The Surviving Sepsis Campaign: raising awareness to reduce mortality. Crit Care.2003;7:1-2.
    2Russell JA. Management of sepsis. N Engl J Med.2006;355:1699-713.
    3Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA, Jr., Auxiliadora-Martins M, et al. Interleukin-33attenuatessepsis by enhancing neutrophil influx to the site of infection. Nat Med.2010;16:708-712.
    1Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from1979through2000.N Engl J Med.2003;348:1546-1554.
    2Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in theUnited States: analysis of incidence, outcome, and associated costs of care. Crit Care Med.2001;29:1303-1310.
    3侯有华.脓毒症的诊断与治疗新进展.安徽医学.2011:1205-1207.
    4Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units:results of the SOAP study. Crit Care Med.2006;34:344-353.
    5Angus DC, Wax RS. Epidemiology of sepsis: an update. Crit Care Med.2001;29:S109-116.
    6Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, et al. Surviving Sepsis Campaign guidelines formanagement of severe sepsis and septic shock. Crit Care Med.2004;32:858-873.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: internationalguidelines for management of severe sepsis and septic shock:2008. Crit Care Med.2008;36:296-327.
    8Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: internationalguidelines for management of severe sepsis and septic shock:2012. Crit Care Med.2013;41:580-637.
    9Williams SC. After Xigris, researchers look to new targets to combat sepsis. Nat Med.2012;18(7):1001
    1Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov.2005;4(10):854-65
    1Liu X, Zheng X, Long Y, Cao H, Wang N, Lu Y, et al. Dual targets guided screening and isolation of Kukoamine B as anovel natural anti-sepsis agent from traditional Chinese herb Cortex lycii. Int Immunopharmacol.2011;11:110-120.
    2Liu X, Zheng X, Wang N, Cao H, Lu Y, Long Y, et al. Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is apotential candidate for sepsis treatment. Br J Pharmacol.2011;162:1274-90.
    3Liu X, Zheng X, Wang N, Cao H, Lu Y, Long Y, et al. Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is apotential candidate for sepsis treatment. Br J Pharmacol.2011;162:1274-90.
    1Koliner C B, McLean AP. Non-bacteremic clinical sepsis: an entity. Crit Care Med.1980;8:1.
    1李梁,郑立君.乌司他丁治疗急性重症胰腺炎的meta分析.同济大学学报(医学版).2013:62-68.
    2Koliner C B, McLean AP. Non-bacteremic clinical sepsis: an entity. Crit Care Med.1980;8:1.
    1Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. The Epidemiology of Acute RespiratoryDistress Syndrome in Patients Presenting to the Emergency Department With Severe Sepsis. Shock.2013Oct1[epubahead of print].
    2Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol.2012;91:590-601
    1Miyoshi S, Hamada H, Ito R, Katayama H, Irifune K, Suwaki T, et al. Usefulness of a selective neutrophil elastaseinhibitor, sivelestat, in acute lung injury patients with sepsis. Drug Des Devel Ther.2013;7:305-316.
    2Matuschak GM, Lechner AJ. Acute lung injury and the acute respiratory distress syndrome: pathophysiology andtreatment. Mo Med.2010;107:252-258.
    3Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E, Kinoshita M, et al. Neutrophil elastase, MIP-2, andTLR-4expression during human and experimental sepsis. Shock.2005;23:39-44.
    1Levy MM, Fink MP, Marshall JC, et al.2001SCCM/ESICM/ACCP/ATS/SIS International Sepsis DefinitionsConference. Intensive Care Med.2003;29:530–538.
    2McPherson D, Griffiths C, Williams M, Baker A, Klodawski E, Jacobson B, Donaldson L. Sepsis-associated mortalityin England: an analysis of multiple cause of death data from2001to2010. BMJ Open.2013;3(8). pii: e002586.
    3Slade, E., P.S. Tamber,J.L. Vincent. The Surviving Sepsis Campaign: raising awareness to reduce mortality. Crit Care,2003;7(1):1-2.
    4Kung HC, Hoyert DL, Xu J, Murphy SL. Deaths: final data for2005. Natl Vital Stat Rep.2008;56(10):1-120.
    5Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol.2008,8(10):776-787.
    6Koliner C, Boulanger, McLean AP, et al. Non-bacteremic clinical sepsis: an entity?. Crit Care Med.1980,8(4):230.
    7Carrico, C.J., J.L. Meakins, J.C. Marshall, et al. Multiple-organ-failure syndrome. Arch Surg,1986,121(2):196-208.
    1Bone, R.C., R.A. Balk, F.B. Cerra, et al. Definitions for sepsis and organ failure and guidelines for the use ofinnovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of ChestPhysicians/Society of Critical Care Medicine. Chest,1992,101(6):1644-55.
    2Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al.2001SCCM/ESICM/ACCP/ATS/SISInternational Sepsis Definitions Conference. Crit Care Med.2003;31:1250-1256.
    1Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al.2001SCCM/ESICM/ACCP/ATS/SISInternational Sepsis Definitions Conference. Crit Care Med.2003;31:1250-1256.
    2Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet.2005,365(9453):63-78.
    3Sparwasser, T., T. Miethke, G. Lipford, et al. Bacterial DNA causes septic shock. Nature,1997,386(6623):336-337.
    1姚咏明,刘辉,盛志勇.提高对神经-内分泌-免疫网络与创伤脓毒症的认识.中华创伤杂志,2006(08):561-564.
    2姚咏明,刘辉,盛志勇.提高对神经-内分泌-免疫网络与创伤脓毒症的认识.中华创伤杂志,2006(08):561-564.
    3Dellinger R P,Levy M M,Carlet J M,et al. Surviving Sepsis Campaign:international guidelines for management ofsevere sepsis and septic shock:2012.Crit Care Med,2013;41(2):580-637.
    4Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in critically ill patients with the systemicinflammatory response syndrome and sepsis. Crit Care Med.2012,40(6):1761-1767.
    5姚咏明,林洪远.脓毒症发病机制与诊治进展.继续医学教育,2006(24):35-40.
    6Williams SC. After Xigris, researchers look to new targets to combat sepsis. Nat Med.2012;18(7):1001.
    1Reinhart K, Menges T, Gardlund B, et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factorantibody fragment afelimomab in hyperinflammatory response during severe sepsis: The RAMSES Study. Crit Care Med.2001,29(4):765-769.
    2Todd W Rice,Arthur P Wheeler,et al. Safety and efficacy of affinity-purified, anti-tumor necrosis factor-alpha, ovinefab for injection (CytoFab) in severe sepsis. Crit Care Med.2006Sep;34(9):2271-81.
    3Morris PE, Zeno B, Bernard AC, et al. A placebo-controlled double-blind, dose-escalation study to assess the safety,tolerability and pharmacokinetic/pharmacodynamics of single and multiple intravenous infusions of AZD9773in patientswith severe sepsis and septic shock. Crit Care.2012,16(1):R31.
    4Abraham E, Laterre PF, Garbino J, et al. Lenercept (p55tumor necrosis factor receptor fusion protein) in severe sepsisand early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with1,342patients.Crit Care Med.2001,29(3):503-510.
    5Opal SM, Fisher CJ Jr, Dhainaut JF, et al. Confirmatory interleukin-1receptor antagonist trial in severe sepsis: a phaseIII, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1Receptor Antagonist SepsisInvestigator Group. Crit Care Med.1997,25(7):1115-1124.
    6Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin1receptor antagonist in the treatment ofpatients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1raSepsis Syndrome Study Group. JAMA.1994,271(23):1836-1843.
    1Abraham E, Naum C, Bandi V, et al. Efficacy and safety of LY315920Na/S-5920, a selective inhibitor of14-kDa groupIIA secretory phospholipase A2, in patients with suspected sepsis and organ failure. Crit Care Med.2003,31(3):718-728.
    2Abraham E, Naum C, Bandi V, et al. Efficacy and safety of LY315920Na/S-5920, a selective inhibitor of14-kDa groupIIA secretory phospholipase A2, in patients with suspected sepsis and organ failure. Crit Care Med.2003,31(3):718-728.
    3Dhainaut JF, Tenaillon A, Hemmer M, et al. Confirmatory platelet-activating factor receptor antagonist trial in patientswith severe gram-negative bacterial sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial.BN52021Sepsis Investigator Group. Crit Care Med.1998,26(12):1963-1971.
    4Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids for severe sepsis and septic shock: a systematic review andmeta-analysis. BMJ.2004,329(7464):480.
    5Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: asystematic review. JAMA.2009,301(22):2362-2375.
    1Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in critically ill patients with the systemicinflammatory response syndrome and sepsis. Crit Care Med.2012,40(6):1761-1767.
    2方强,陈朴.乌司他丁对重症脓毒症患者的疗效及其作用机制的研究.中国抗感染化疗杂志.2005;5:13-16.
    1Xigris (drotrecogin alfa (activated)) to be withdrawn due to lack of efficacy. Press release. London, UK: EuropeanMedicines Agency.25October2011. Archived from the original on26October2011.http://www.webcitation.org/62icYBgm1.
    2Schlapbach, L.J., A. Schibler,J.C. Jensenius. C1-esterase inhibitor treatment in sepsis-can we target the right patients?.Crit Care Med,2012,40(9):2735-6; author reply2736-7.
    3Venet, F., A.P. Foray, A. Villars-Mechin, et al. IL-7Restores Lymphocyte Functions in Septic Patients. J Immunol,2012,189(10):5073-81.
    4Werdan K, Pilz G, Bujdoso O, et al. Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study.Crit Care Med.2007,35(12):2693-2701.
    5Brocklehurst P, Farrell B, et al. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med.2011,29;365(13):1201-1211.
    1Stearns-Kurosawa, D.J., M.F. Osuchowski, C. Valentine, et al. The pathogenesis of sepsis. Annu Rev Pathol,2011;6:19-48.
    2Bryant, C.E., A. Ouellette, K. Lohmann, et al. The cellular Toll-like receptor4antagonist E5531can act as an agonistin horse whole blood. Vet Immunol Immunopathol,2007,116(3-4):182-9.
    3Someya, K., Y. Tsutomi, T. Soga, et al. A lipid A analog inhibits LPS-induced cytokine expression and improvessurvival in endotoxemic mice. Immunopharmacol Immunotoxicol,1996,18(4):477-95.
    4Tidswell, M., W. Tillis, S.P. Larosa, et al. Phase2trial of eritoran tetrasodium (E5564), a toll-like receptor4antagonist,in patients with severe sepsis. Crit Care Med,2010,38(1):72-83.
    5Barochia, A., S. Solomon, X. Cui, et al. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical andclinical studies. Expert Opin Drug Metab Toxicol,2011,7(4):479-94.
    6Rice TW, Wheeler AP, Bernard GR, et al. A randomized, double-blind, placebo-controlled trial of TAK-242for thetreatment of severe sepsis. Crit Care Med.2010,38(8):1685-1694.
    1胡晶,商洪才,李晶等.血必净注射液治疗脓毒症的系统评价.解放军医学杂志,2010,35(1):9-12.
    2刘清泉,程发峰等.血必净注射液治疗脓毒症的系统综述.中国中医药现代远程教育,2010,8(17):212-215
    3黎清标,曾庆春等.血必净对老年脓毒症患者的疗效和机制研究.医学研究杂志,2009,38(6):50-53
    4方建.血必净注射液药物不良反应分析.海峡药学,2012(05):277-278.
    5孔飞飞,沈洁等.血必净注射液致药物不良反应14例文献分析.中国新药杂志,2012,21(1):100-103
    6邱奇,房洁,葛智慧等.中药厌氧灵对腹腔感染所致内毒素血症治疗作用的研究.2000,6(1):3-5.
    7高斌,李仁柱,朱亮,等.升降散对初期脓毒症患者中医症候的干预研究.辽宁中医药大学学报,2009,11(12):100-102.
    8苏艳丽,王红,张淑文,等.中药芪参活血颗粒在重度脓毒症治疗中的作用.首都医科大学学报,2009,30(1):27-31.
    9常明向,章晶,陈科力.单味中药及活性成分体外抗内毒素实验研究.中国药师.2007;10(1):18-20.
    10魏育林,李亚俊,刘轩等.参麦注射液对内毒素所致小鼠全身炎症反应综合征和多器官功能失常综合征保护作用的实验研究.中国中西医结合杂志.2001;21(1):47-50.
    11梁爱华,王金华,薛宝云,等.清开灵注射液对内毒素诱导的大鼠炎性因子产生的抑制作用.中国中药杂志.2007;32(12):1240-1241.
    12王鸣,舒志军,张胜华,等.栀子金花汤对腹腔感染脓毒症大鼠炎症介质的影响.中国中西医结合急救杂志.2007;14(3):169-172.
    13Yi, A.K., J.G. Yoon, S.C. Hong, et al. Lipopolysaccharide and CpG DNA synergize for tumor necrosis factor-alphaproduction through activation of NF-kappaB. Int Immunol,2001,13(11):1391-404.
    1周红,郑江.杀菌性/通透性增加蛋白的基础及临床研究进展.四川生理科学杂志,2001(03):97-98.
    2蒋红丽,毛兵.杀菌性/通透性增加蛋白的研究进展.山东医药,2009(20):111-112.
    3Ziegler EJ,Fisher CJ Jr,et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonalantibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. NEngl J Med.1991Feb14;324(7):429-36.
    4The French National Registry of HA-1A (Centoxin) in septic shock. A cohort study of600patients. The NationalCommittee for the Evaluation of Centoxin. Arch Intern Med.1994Nov14;154(21):2484-91.
    5McCloskey RV,Straube RC,et al. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized,double-blind, placebo-controlled trial. CHESS Trial Study Group. Ann Intern Med.1994Jul1;121(1):1-5.
    6Marks, L. The birth pangs of monoclonal antibody therapeutics: the failure and legacy of Centoxin MAbs,2012,4(3):403-12.
    7Brett P Giroir,Patrick J Scannon,et al.. Bactericidal/permeability-increasing protein--lessons learned from the phaseIII, randomized, clinical trial of rBPI21for adjunctive treatment of children with severe meningococcemia. Crit CareMed.2001Jul;29(7Suppl):S130-5.
    8Brett P Giroir,Patrick J Scannon,et al.. Bactericidal/permeability-increasing protein--lessons learned from the phaseIII, randomized, clinical trial of rBPI21for adjunctive treatment of children with severe meningococcemia. Crit CareMed.2001Jul;29(7Suppl):S130-5.
    1Brett P Giroir,Patrick J Scannon,et al.. Bactericidal/permeability-increasing protein--lessons learned from the phaseIII, randomized, clinical trial of rBPI21for adjunctive treatment of children with severe meningococcemia. Crit CareMed.2001Jul;29(7Suppl):S130-5.
    2Levin M,Quint PA,et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatmentfor children with severe meningococcal sepsis: a randomised trial. rBPI21Meningococcal Sepsis Study Group. Lancet.2000Sep16;356(9234):961-7.
    3Levin M,Quint PA,et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatmentfor children with severe meningococcal sepsis: a randomised trial. rBPI21Meningococcal Sepsis Study Group. Lancet.2000Sep16;356(9234):961-7.
    4Kanesaka S, Sasaki J,et al. Effect of direct hemoperfusion using polymyxin B immobilized fiber on inflammatorymediators in patients with severe sepsis and septic shock. Int J Artif Organs.2008,31(10):891-7.
    Sugimoto K, Sato K, Maekawa H, et al. Analysis of the efficacy of direct hemoperfusion with polymyxinB-immobilized fiber (PMX-DHP) according to the prognostic factors in patients with colorectal perforation. Surg Today.2013,43(9):1031-1038.
    6C Yamashita, Y Takasaki. Extended duration of direct hemoperfusion with polymyxin B-immobilized fiber columnimproves hemodynamics in patients with septic shock. Crit Care.2011,15(Suppl1):121.
    [1] Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al.2001SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. CritCare Med.2003;31:1250-1256.
    [2] Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med.2013;369:840-851.
    [3] Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence andmortality of severe sepsis in the United States. Crit Care Med.2013;41:1167-1174.
    [4] Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ.2007;335:879-883.
    [5] Venkataraman R, Kellum JA. Sepsis: update in the management. Adv Chronic KidneyDis.2013;20(1):6-13.
    [6] Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al.Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med.2012;366:2055-2064.
    [7] Holder AL, Huang DT. A dream deferred: the rise and fall of recombinant activatedprotein C. Crit Care.2013;17(2):309.
    [8] Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Survivingsepsis campaign: international guidelines for management of severe sepsis and septicshock:2012. Crit Care Med.2013;41:580-637.
    [9] Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. Thepathogenesis of sepsis. Annu Rev Pathol.2011;6:19-48.
    [10] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell.2006;124:783-801.
    [11] Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol.2002;20:197-216.
    [12] Olive C. Pattern recognition receptors: sentinels in innate immunity and targets ofnew vaccine adjuvants. Expert Rev Vaccines.2012;11:237-256.
    [13] Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet.2005;365:63-78.
    [14] Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory andimmunomodulatory mediators in sepsis. J Leukoc Biol.2013;93:329-342.
    [15] Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit CareMed.2007;35:2408-2416.
    [16] Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat RevImmunol.2008;8:776-787.
    [17] Sprung CL, Eidelman LA, Pizov R, Fisher CJ, Jr., Ziegler EJ, Sadoff JC, et al.Influence of alterations in foregoing life-sustaining treatment practices on a clinicalsepsis trial. The HA-1A Sepsis Study Group. Crit Care Med.1997;25:383-387.
    [18] Angus DC, Birmingham MC, Balk RA, Scannon PJ, Collins D, Kruse JA, et al. E5murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomizedcontrolled trial. E5Study Investigators. JAMA.2000;283:1723-1730.
    [19] Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, Guo W, et al. The screening andisolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra usingaffinity biosensor technology. Int Immunopharmacol.2005;5:1007-1017.
    [20] Liu X, Zheng X, Long Y, Cao H, Wang N, Lu Y, et al. Dual targets guided screeningand isolation of Kukoamine B as a novel natural anti-sepsis agent from traditionalChinese herb Cortex lycii. Int Immunopharmacol.2011;11:110-120.
    [21] Liu X, Zheng X, Wang N, Cao H, Lu Y, Long Y, et al. Kukoamine B, a novel dualinhibitor of LPS and CpG DNA, is a potential candidate for sepsis treatment. Br JPharmacol.2011;162:1274-90.
    [22] Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis andsepsis-induced kidney injury. J Clin Invest.2009;119:2868-2878.
    [23] Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the goldstandard model for polymicrobial sepsis? Trends Microbiol.2011;19:198-208.
    [24] Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimentalsepsis by cecal ligation and puncture. Nat Protoc.2009;4:31-36.
    [25] Dyson A, Singer M. Animal models of sepsis: why does preclinical efficacy fail totranslate to the clinical setting? Crit Care Med.2009;37:S30-37.
    [26] Newcomb D, Bolgos G, Green L, Remick DG. Antibiotic treatment influencesoutcome in murine sepsis: mediators of increased morbidity. Shock.1998;10:110-117.
    [27] Vianna RC, Gomes RN, Bozza FA, Amancio RT, Bozza PT, David CM, et al.Antibiotic treatment in a murine model of sepsis: impact on cytokines and endotoxinrelease. Shock.2004;21:115-120.
    [28] Textoris J, Wiramus S, Martin C, Leone M. Antibiotic therapy in patients with septicshock. Eur J Anaesthesiol.2011;28:318-324.
    [29] Slade E, Tamber PS, Vincent JL. The Surviving Sepsis Campaign: raising awarenessto reduce mortality. Crit Care.2003;7:1-2.
    [30] Russell JA. Management of sepsis. N Engl J Med.2006;355:1699-713.
    [31] Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA, Jr., Auxiliadora-Martins M,et al. Interleukin-33attenuates sepsis by enhancing neutrophil influx to the site ofinfection. Nat Med.2010;16:708-712.
    [32] Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in theUnited States from1979through2000. N Engl J Med.2003;348:1546-1554.
    [33] Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR.Epidemiology of severe sepsis in the United States: analysis of incidence, outcome,and associated costs of care. Crit Care Med.2001;29:1303-1310.
    [34]侯有华.脓毒症的诊断与治疗新进展.安徽医学.2011:1205-1207.
    [35] Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis inEuropean intensive care units: results of the SOAP study. Crit Care Med.2006;34:344-353.
    [36] Angus DC, Wax RS. Epidemiology of sepsis: an update. Crit Care Med.2001;29:S109-116.
    [37] Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, et al. SurvivingSepsis Campaign guidelines for management of severe sepsis and septic shock. CritCare Med.2004;32:858-873.
    [38] Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. SurvivingSepsis Campaign: international guidelines for management of severe sepsis and septicshock:2008. Crit Care Med.2008;36:296-327.
    [39] Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Survivingsepsis campaign: international guidelines for management of severe sepsis and septicshock:2012. Crit Care Med.2013;41:580-637.
    [40] Williams SC. After Xigris, researchers look to new targets to combat sepsis. Nat Med.2012;18(7):1001
    [41] Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. NatRev Drug Discov.2005;4(10):854-65.
    [42] Koliner C B, McLean AP. Non-bacteremic clinical sepsis: an entity. Crit Care Med.1980;8:1.
    [43]李梁,郑立君.乌司他丁治疗急性重症胰腺炎的meta分析.同济大学学报(医学版).2013:62-68.
    [44]陈少霖,陈兴旺,赖建波,姚志军.乌司他丁治疗脓毒性休克的临床疗效观察.当代医学.2012:148-150.
    [45] Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. TheEpidemiology of Acute Respiratory Distress Syndrome in Patients Presenting to theEmergency Department With Severe Sepsis. Shock.2013Oct1[epub ahead of print].
    [46] Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused bydirect insults. Eur J Cell Biol.2012;91:590-601.
    [47] Miyoshi S, Hamada H, Ito R, Katayama H, Irifune K, Suwaki T, et al. Usefulness of aselective neutrophil elastase inhibitor, sivelestat, in acute lung injury patients withsepsis. Drug Des Devel Ther.2013;7:305-316.
    [48] Matuschak GM, Lechner AJ. Acute lung injury and the acute respiratory distresssyndrome: pathophysiology and treatment. Mo Med.2010;107:252-258.
    [49] Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E, Kinoshita M, et al.Neutrophil elastase, MIP-2, and TLR-4expression during human and experimentalsepsis. Shock.2005;23:39-44.
    [1] Levy MM, Fink MP, Marshall JC, et al.2001SCCM/ESICM/ACCP/ATS/SISInternational Sepsis Definitions Conference. Intensive Care Med.2003;29:530–538.
    [2] McPherson D, Griffiths C, Williams M, Baker A, Klodawski E, Jacobson B,Donaldson L. Sepsis-associated mortality in England: an analysis of multiple cause ofdeath data from2001to2010. BMJ Open.2013;3(8). pii: e002586.
    [3] Slade, E., P.S. Tamber,J.L. Vincent. The Surviving Sepsis Campaign: raisingawareness to reduce mortality. Crit Care,2003;7(1):1-2.
    [4] Kung HC, Hoyert DL, Xu J, Murphy SL. Deaths: final data for2005. Natl Vital StatRep.2008;56(10):1-120.
    [5] Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat RevImmunol.2008,8(10):776-787.
    [6] Koliner C, Boulanger, McLean AP, et al. Non-bacteremic clinical sepsis: an entity?.Crit Care Med.1980,8(4):230.
    [7] Carrico, C.J., J.L. Meakins, J.C. Marshall, et al. Multiple-organ-failure syndrome.Arch Surg,1986,121(2):196-208.
    [8] Bone, R.C., R.A. Balk, F.B. Cerra, et al. Definitions for sepsis and organ failure andguidelines for the use of innovative therapies in sepsis. The ACCP/SCCM ConsensusConference Committee. American College of Chest Physicians/Society of CriticalCare Medicine. Chest,1992,101(6):1644-55.
    [9] Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al.2001SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. CritCare Med.2003;31:1250-1256.
    [10] Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al.2001SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. CritCare Med.2003;31:1250-1256.
    [11] Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet.2005,365(9453):63-78.
    [12] Sparwasser, T., T. Miethke, G. Lipford, et al. Bacterial DNA causes septic shock.Nature,1997,386(6623):336-337.
    [13]方强,陈朴.乌司他丁对重症脓毒症患者的疗效及其作用机制的研究.中国抗感染化疗杂志.2005;5:13-16.
    [14]姚咏明,刘辉,盛志勇.提高对神经-内分泌-免疫网络与创伤脓毒症的认识.中华创伤杂志,2006(08):561-564.
    [15] Dellinger R P, Levy M M, Carlet J M, et al. Surviving SepsisCampaign:international guidelines for management of severe sepsis and septic shock:2012.Crit Care Med,2013;41(2):580-637.
    [16] Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in criticallyill patients with the systemic inflammatory response syndrome and sepsis. Crit CareMed.2012,40(6):1761-1767.
    [17]姚咏明,林洪远.脓毒症发病机制与诊治进展.继续医学教育,2006(24):35-40.
    [18] Williams SC. After Xigris, researchers look to new targets to combat sepsis. Nat Med.2012;18(7):1001.
    [19] Reinhart K, Menges T, Gardlund B, et al. Randomized, placebo-controlled trial of theanti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatoryresponse during severe sepsis: The RAMSES Study. Crit Care Med.2001,29(4):765-769.
    [20] Todd W Rice,Arthur P Wheeler,et al. Safety and efficacy of affinity-purified,anti-tumor necrosis factor-alpha, ovine fab for injection (CytoFab) in severe sepsis.Crit Care Med.2006Sep;34(9):2271-81.
    [21] Morris PE, Zeno B, Bernard AC, et al. A placebo-controlled double-blind,dose-escalation study to assess the safety, tolerability andpharmacokinetic/pharmacodynamics of single and multiple intravenous infusions ofAZD9773in patients with severe sepsis and septic shock. Crit Care.2012,16(1):R31.
    [22] Abraham E, Laterre PF, Garbino J, et al. Lenercept (p55tumor necrosis factorreceptor fusion protein) in severe sepsis and early septic shock: a randomized,double-blind, placebo-controlled, multicenter phase III trial with1,342patients. CritCare Med.2001,29(3):503-510.
    [23] Opal SM, Fisher CJ Jr, Dhainaut JF, et al. Confirmatory interleukin-1receptorantagonist trial in severe sepsis: a phase III, randomized, double-blind,placebo-controlled, multicenter trial. The Interleukin-1Receptor Antagonist SepsisInvestigator Group. Crit Care Med.1997,25(7):1115-1124.
    [24] Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin1receptorantagonist in the treatment of patients with sepsis syndrome. Results from arandomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra SepsisSyndrome Study Group. JAMA.1994,271(23):1836-1843.
    [25] Abraham E, Naum C, Bandi V, et al. Efficacy and safety of LY315920Na/S-5920, aselective inhibitor of14-kDa group IIA secretory phospholipase A2, in patients withsuspected sepsis and organ failure. Crit Care Med.2003,31(3):718-728.
    [26] Abraham E, Naum C, Bandi V, et al. Efficacy and safety of LY315920Na/S-5920, aselective inhibitor of14-kDa group IIA secretory phospholipase A2, in patients withsuspected sepsis and organ failure. Crit Care Med.2003,31(3):718-728.
    [27] Dhainaut JF, Tenaillon A, Hemmer M, et al. Confirmatory platelet-activating factorreceptor antagonist trial in patients with severe gram-negative bacterial sepsis: aphase III, randomized, double-blind, placebo-controlled, multicenter trial. BN52021Sepsis Investigator Group. Crit Care Med.1998,26(12):1963-1971.
    [28] Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids for severe sepsis and septicshock: a systematic review and meta-analysis. BMJ.2004,329(7464):480.
    [29] Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids in the treatment of severesepsis and septic shock in adults: a systematic review. JAMA.2009,301(22):2362-2375.
    [30] Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: internationalguidelines for management of severe sepsis and septic shock:2012. Crit Care Med.2013,41(2):580-637.
    [31] Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in criticallyill patients with the systemic inflammatory response syndrome and sepsis. Crit CareMed.2012,40(6):1761-1767.
    [32]方强,陈朴.乌司他丁对重症脓毒症患者的疗效及其作用机制的研究.中国抗感染化疗杂志.2005;5:13-16.
    [33] Xigris (drotrecogin alfa (activated)) to be withdrawn due to lack of efficacy. Pressrelease. London, UK: European Medicines Agency.25October2011. Archived fromthe original on26October2011. http://www.webcitation.org/62icYBgm1.
    [34] Schlapbach, L.J., A. Schibler,J.C. Jensenius. C1-esterase inhibitor treatment insepsis-can we target the right patients?. Crit Care Med,2012,40(9):2735-6; authorreply2736-7.
    [35] Venet, F., A.P. Foray, A. Villars-Mechin, et al. IL-7Restores Lymphocyte Functions inSeptic Patients. J Immunol,2012,189(10):5073-81.
    [36] Werdan K, Pilz G, Bujdoso O, et al. Score-based immunoglobulin G therapy ofpatients with sepsis: the SBITS study. Crit Care Med.2007,35(12):2693-2701.
    [37] Brocklehurst P, Farrell B, et al. Treatment of neonatal sepsis with intravenous immuneglobulin. N Engl J Med.2011,29;365(13):1201-1211.
    [38] Stearns-Kurosawa, D.J., M.F. Osuchowski, C. Valentine, et al. The pathogenesis ofsepsis. Annu Rev Pathol,2011;6:19-48.
    [39] Bryant, C.E., A. Ouellette, K. Lohmann, et al. The cellular Toll-like receptor4antagonist E5531can act as an agonist in horse whole blood. Vet ImmunolImmunopathol,2007,116(3-4):182-9.
    [40] Someya, K., Y. Tsutomi, T. Soga, et al. A lipid A analog inhibits LPS-inducedcytokine expression and improves survival in endotoxemic mice. ImmunopharmacolImmunotoxicol,1996,18(4):477-95.
    [41] Tidswell, M., W. Tillis, S.P. Larosa, et al. Phase2trial of eritoran tetrasodium(E5564), a toll-like receptor4antagonist, in patients with severe sepsis. Crit CareMed,2010,38(1):72-83.
    [42] Barochia, A., S. Solomon, X. Cui, et al. Eritoran tetrasodium (E5564) treatment forsepsis: review of preclinical and clinical studies. Expert Opin Drug Metab Toxicol,2011,7(4):479-94.
    [43] Rice TW, Wheeler AP, Bernard GR, et al. A randomized, double-blind,placebo-controlled trial of TAK-242for the treatment of severe sepsis. Crit Care Med.2010,38(8):1685-1694.
    [44]胡晶,商洪才,李晶等.血必净注射液治疗脓毒症的系统评价.解放军医学杂志,2010,35(1):9-12.
    [45]刘清泉,程发峰等.血必净注射液治疗脓毒症的系统综述.中国中医药现代远程教育,2010,8(17):212-215
    [46]黎清标,曾庆春等.血必净对老年脓毒症患者的疗效和机制研究.医学研究杂志,2009,38(6):50-53
    [47]方建.血必净注射液药物不良反应分析.海峡药学,2012(05):277-278.
    [48]孔飞飞,沈洁等.血必净注射液致药物不良反应14例文献分析.中国新药杂志,2012,21(1):100-103
    [49]邱奇,房洁,葛智慧等.中药厌氧灵对腹腔感染所致内毒素血症治疗作用的研究.2000,6(1):3-5.
    [50]高斌,李仁柱,朱亮,等.升降散对初期脓毒症患者中医症候的干预研究.辽宁中医药大学学报,2009,11(12):100-102.
    [51]苏艳丽,王红,张淑文,等.中药芪参活血颗粒在重度脓毒症治疗中的作用.首都医科大学学报,2009,30(1):27-31.
    [52]常明向,章晶,陈科力.单味中药及活性成分体外抗内毒素实验研究.中国药师.2007;10(1):18-20.
    [53]魏育林,李亚俊,刘轩等.参麦注射液对内毒素所致小鼠全身炎症反应综合征和多器官功能失常综合征保护作用的实验研究.中国中西医结合杂志.2001;21(1):47-50.
    [54]梁爱华,王金华,薛宝云,等.清开灵注射液对内毒素诱导的大鼠炎性因子产生的抑制作用.中国中药杂志.2007;32(12):1240-1241.
    [55]王鸣,舒志军,张胜华,等.栀子金花汤对腹腔感染脓毒症大鼠炎症介质的影响.中国中西医结合急救杂志.2007;14(3):169-172.
    [56] Yi, A.K., J.G. Yoon, S.C. Hong, et al. Lipopolysaccharide and CpG DNA synergizefor tumor necrosis factor-alpha production through activation of NF-kappaB. IntImmunol,2001,13(11):1391-404.
    [57]周红,郑江.杀菌性/通透性增加蛋白的基础及临床研究进展.四川生理科学杂志,2001(03):97-98.
    [58]蒋红丽,毛兵.杀菌性/通透性增加蛋白的研究进展.山东医药,2009(20):111-112.
    [59] Ziegler EJ,Fisher CJ Jr,et al. Treatment of gram-negative bacteremia and septicshock with HA-1A human monoclonal antibody against endotoxin. A randomized,double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med.1991Feb14;324(7):429-36.
    [60] The French National Registry of HA-1A (Centoxin) in septic shock. A cohort study of600patients. The National Committee for the Evaluation of Centoxin. Arch InternMed.1994Nov14;154(21):2484-91.
    [61] McCloskey RV,Straube RC,et al. Treatment of septic shock with human monoclonalantibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS TrialStudy Group. Ann Intern Med.1994Jul1;121(1):1-5.
    [62] Marks, L. The birth pangs of monoclonal antibody therapeutics: the failure and legacyof Centoxin MAbs,2012,4(3):403-12.
    [63] Brett P Giroir, Patrick J Scannon, et al.. Bactericidal/permeability-increasingprotein--lessons learned from the phase III, randomized, clinical trial of rBPI21foradjunctive treatment of children with severe meningococcemia. Crit Care Med.2001Jul;29(7Suppl):S130-5.
    [64] Brett P Giroir, Patrick J Scannon, et al.. Bactericidal/permeability-increasingprotein--lessons learned from the phase III, randomized, clinical trial of rBPI21foradjunctive treatment of children with severe meningococcemia. Crit Care Med.2001Jul;29(7Suppl):S130-5.
    [65] Brett P Giroir, Patrick J Scannon, et al.. Bactericidal/permeability-increasingprotein--lessons learned from the phase III, randomized, clinical trial of rBPI21foradjunctive treatment of children with severe meningococcemia. Crit Care Med.2001Jul;29(7Suppl):S130-5.
    [66] Levin M,Quint PA,et al. Recombinant bactericidal/permeability-increasing protein(rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: arandomised trial. rBPI21Meningococcal Sepsis Study Group. Lancet.2000Sep16;356(9234):961-7.
    [67] Levin M,Quint PA,et al. Recombinant bactericidal/permeability-increasing protein(rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: arandomised trial. rBPI21Meningococcal Sepsis Study Group. Lancet.2000Sep16;356(9234):961-7.
    [68] Kanesaka S, Sasaki J,et al. Effect of direct hemoperfusion using polymyxin Bimmobilized fiber on inflammatory mediators in patients with severe sepsis and septicshock. Int J Artif Organs.2008,31(10):891-7.
    [69] Sugimoto K, Sato K, Maekawa H, et al. Analysis of the efficacy of directhemoperfusion with polymyxin B-immobilized fiber (PMX-DHP) according to theprognostic factors in patients with colorectal perforation. Surg Today.2013,43(9):1031-1038.
    [70] C Yamashita, Y Takasaki. Extended duration of direct hemoperfusion with polymyxinB-immobilized fiber column improves hemodynamics in patients with septic shock.Crit Care.2011,15(Suppl1):121.