铁基非晶/纳米晶合金的制备、成形及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基非晶及纳米晶合金具有优异的软磁、力学性能,低廉的价格,在功能材料和结构工程材料领域具有广泛的应用前景。然而,非晶形成能力较低,两次晶化温度区间过窄,非晶相居里温度偏低以及非晶合金缺少室温塑性,严重限制铁基非晶合金的广泛应用。另外,非晶/纳米晶合金的导磁、矫顽力机理和材料脆性断裂机制也不明晰。因此,开发新型具有优异软磁、力学性能的大块铁基非晶合金及纳米晶复合材料成为材料学界研究的热点,具有重要的应用和学术意义。
     本文采用“Miedema”理论、“元素替代”、“共晶法则”和“模量判据”进行成分设计,通过单辊快淬甩带工艺和机械合金化工艺制备出具有优异软磁性能的非晶合金薄带和全金属组元的铁基非晶合金粉末,采用放电等离子烧结(SPS)成形高密度大块铁基非晶合金及纳米晶复合材料。研究不同球磨、烧结工艺以及退火工艺对材料的微观组织,软磁、力学性能的影响;并对非晶合金粉末的晶化动力学、致密化过程和导磁、脆断机制进行研究。
     通过半经验性热力学“Miedema”理论计算了Fe与常见过渡族金属元素和类金属元素形成中间化合物的形成焓,利用“元素替代”、“共晶法则”和“模量判据”优选合金成分,成功开发出具有优异软磁性能的Fe_(81)Cu_2Nb_3Si_(14),Fe_(69)Co_8Nb_(7-x)V_xB_(15)Cu_1(x=0,2,5,7at.%)非晶合金薄带和全金属组元Fe-Nb-X (X=Al, Zr, Ti, T_a)非晶合金粉末及Fe_(94-x)Zr_2Nb_4B_x(x=10,15,20at.%)过饱和固溶体纳米晶合金粉末。
     Fe_(81)Cu_2Nb_3Si_(14)非晶合金薄带具有优异的软磁性能,其饱和磁化强度高达142.15emu/g,矫顽力低至0.32Oe,居里温度为310.11℃。通过机械球磨方法将非晶薄带破碎成微米级粉末,然后运用SPS成形技术得到大块铁基非晶或纳米晶复合材料。粉末在烧结过程出现两级晶化模式,即amorphous→amorphous+α-Fe(Si)→α-Fe(Si)+Cu+Nb5Si3。烧结温度对烧结体的致密度,组织结构,微观硬度和软磁性能有显著影响。随着烧结温度的升高,烧结体的致密度、微观硬度和饱和磁化强度呈单调递增,而矫顽力随烧结温度升高表现出先减小后增大的趋势。
     在Fe_(81)Cu_2Nb_3Si_(14)非晶合金的基础上,根据Slater-Pauling曲线,采用“元素替代”方法开发出Fe_(69)Co_8Nb_(7-x)V_xB_(15)Cu_1(x=0,2,5,7at.%)非晶合金,研究表明:随着V含量的增加,合金系的非晶形成能力、热稳定和矫顽力逐渐降低,而饱和磁感应强度、居里温度逐渐增加。当x=2时非晶合金具有最宽两次晶化温度区间,x=7时非晶合金具有最佳软磁性能。对该体系的非晶合金进行退火热处理,当T_aT_(x2)时,由于晶粒长大和第二相的析出,材料的软磁性能急剧恶化。Fe_(69)Co_8Nb_5V_2B_(15)Cu_1合金在580℃退火1h,合金表现出优异的软磁性能,其B_s=1.15T,H_c=0.9928A/m,μ_i=48460。
     采用机械合金化方法制备出Fe_(94-x)Zr_2Nb_4B_x(x=10,15,20at.%) α-Fe过饱和固溶体纳米晶粉末。研究表明:类金属元素B的添加,没有提高合金系的非晶形成能力,饱和磁化强度由161.70emu/g (x=10)下降至152.74emu/g (x=20)。随着球磨时间的延长,Fe_(84)Zr_2Nb_4B_(10)合金的饱和磁化强度逐渐增加,矫顽力先增大后减小。通过纳米尺度效应和Herzer模型合理解析。将球磨130h后Fe_(84)Zr_2Nb_4B_(10)粉末在650K退火1h,矫顽力由39.58Oe降至11.74Oe,饱和磁化强度由161.70emu/g升至163.75emu/g。SPS烧结后无明显相变和晶粒长大现象,烧结体的致密度达到理论密度的92%,烧结体的饱和磁化强度和初始磁导率得到明显的提高,其饱和磁化强度达到182.53emu/g。
     采用机械合金化成功制备出全金属组元Fe-Nb-X (X=Al, Zr, Ti, T_a)非晶合金粉末,非晶合金粉末元素分布均匀,无明显的成分偏析,其非晶化机制可归结为粉末元素连续扩散固溶,晶格失稳而形成非晶。非晶合金为单阶段晶化特点,表现出明显的晶化动力学效应和较强抗晶化能力。晶化初期的晶化激活能较大,随着晶化温度的提高,激活能迅速降低,尔后又增大。SPS过程中,非晶合金粉末在过冷液相区具有黏流性和SPS特殊烧结机制是其致密化的主要原因。随着烧结温度的增加,样品的致密度和微观硬度逐渐增加。在室温单向压缩载荷作用下,烧结样品由于孔隙缺陷的存在触发样品脆性断裂。
Iron-based amorphous/nanocrystalline alloys possess unique soft magnetic, mechanicalproperties and relatively low material cost, which is considered to be have potentialengineering applications as functional and structural materials. However, this alloy has somedisadvantages including low glass forming ability, low temperature difference between thefirst and second crystallization temperature, low Curie temperature of amorphous phase andvery poor ductility at room temperature. These disadvantages severely limit their wideengineering application. Moreover, the mechanism of the permeability, coercivity and brittlefracture is not well understood. For industrial applications and academic research, it is ofgreat interest to develop new iron-based bulk amorphous/nanocrystalline alloy with good softmagnetic property in addition to excellent mechanical property. This issue has been actuallythe subject of intense research in recent years.
     The chemical composition of amorphous alloy was designed by “Miedema Model”,“element substitution”,“binary eutectic rules” and “elastic module criterion”. The amorphousmelt-spun ribbons with superior soft magnetic property and glassy powders with pure metalelements were prepared by melt-spinning and mechanical alloying method, respectively. Thehigh density of bulk iron-based amorphous and its nanocrystalline composite was formed byspark plasma sintering technique. Effects of milling time, sintering temperature and annealingtemperature on the evolution of microstructure and related properties were systematicallyinvestigated. Meanwhile, crystallization kinetics, densification behaviors, and the mechanismof the permeability, coercivity and brittle fracture of the amorphous alloys were alsoinvestigated.
     Formation enthalpy for iron with common transition metal and metalloid elements to formbinary intermetallic compounds was calculated on the basis of semi-empirical thermodynamic“Miedema theory”. The compositions were selected through “element substitution”,“binaryeutectic rules” and “elastic module criterion”. We successfully developed a series ofFe_(81)Cu_2Nb_3Si_(14), Fe_(69)Co_8Nb_(7-x)V_xB_(15)Cu_1(x=0,2,5,7at.%) amorphous ribbons, Fe-Nb-X(X=Al, Zr, Ti, T_a) glassy powders and Fe_(94-x)Zr_2Nb_4B_x(x=10,15,20) supersaturated solidsolution nanostructured powders.
     The Fe_(81)Cu_2Nb_3Si_(14)amorphous ribbons with excellent soft magnetic properties, such assaturation magnetization up to142.15emu/g, coercivity as low as0.32Oe, curie temperature310.11℃. Fe_(81)Cu_2Nb_3Si_(14)amorphous powders were prepared by ball milling of melt-spun ribbons, then bulk Fe_(81)Cu_2Nb_3Si_(14)compacts were consolidated by spark plasma sintering.The crystallization of Fe_(81)Cu_2Nb_3Si_(14)amorphous powders proceeds through two reactionsduring SPS. Namely, amorphous→amorphous+α-Fe(Si)→α-Fe(Si)+Cu+Nb5Si3.Sintering temperature has significant effects on the densification, microhardness and magneticproperties of the compacts. With an increase in the sintering temperature, the relative density,microhardness and saturation magnetization of the sintered samples improved obviously, butthe coercive force decreased at the beginning and then increased with the increase of sinteringtemperature.
     On the basis of Fe_(81)Cu_2Nb_3Si_(14)composition, a new multi-element Fe_(69)Co_8Nb_(7-x)V_xB_(15)Cu_1(x=0,2,5,7at.%) amorphous alloys were developed through a method of “elementsubstitution”. It is found that increasing V content can reduce glass forming ability, thermalstability and coercivity, but increase saturation magnetic flux density and Curie temperature ofamorphous phase. The desirable soft magnetic property in these amorphous alloys is x=7, andV content of x=2amorphous alloy has the widest heat treatment temperature range. Thesystem of amorphous alloys was taken on heat treatment in vacuum quartz tube. When T_aT_(x2). This may be caused by grain growth andparamagnetic phase formation which hinder the magnetic coupling between the ferromagnetica-Fe grains. Fe_(69)Co_8Nb_5V_2B_(15)Cu_1amorphous after annealed at580℃for1h has the bestsoft magnetic properties, such as B_s=1.15T, H_c=0.9928A/m, μ_i=48460.
     Fe_(94-x)Zr_2Nb_4B_x(x=10,15,20at.%) supersaturated solid solution nanostructured powderswere produced by mechanical alloying. Results show that the addition of metalloid element B,did not improve the glass forming ability of the alloy system. By adding B to substitute Fe,the saturation magnetization (Ms) decreased from the161.70emu/g (x=10) to152.74emu/g(x=20), The saturation magnetization increased with increasing milling time and becameconstant at130h, but the coercivity (H_c) increased firstly and then decreased. The variation ofmagnetic parameters can be explained by Nano-scale effect and Herzer model. Fe_(84)Zr_2Nb_4B_(10)alloy after milled for130h and then annealed at650K for1h, which the coercivity decreasedfrom39.58Oe to11.74Oe and the saturation magnetization increased from161.70emu/g to163.75emu/g. The consolidated bulk sample exhibited a high relative density which reaches92%of the theoretical density and there was no phase change during SPS process, the saturation magnetization and susceptibility of the SPSed bulk sample improved in comparisonwith the annealed powders. Its saturation magnetization is182.53emu/g.
     Formation of Fe-Nb-X (X=Al, Zr, Ti, T_a) amorphous alloys from pure metal elements bymechanical alloying. Amorphous powders have a homogeneous distribution of elements andno obvious contaminants coming from MA. The mechanism of amorphization can beattributed to reaction within solid state. The crystallization of Fe-Nb-X (X=Al, Zr, Ti, T_a)amorphous powders proceeds through single reactions, having an obvious dynamic effect andstrong resistance to crystallization. With an increase in temperature, the effective activationenergy for crystallization increased firstly and then decreased. This achievement of the fullydensified bulk compacts is ascribable to the viscous flow of amorphous powders and thespecial sintering mechanism of SPS. With the increase of sintering temperature, the densityand microhardness of the SPSed compacts increased obviously. The sintered samplesexhibited typical brittle fracture characteristics under single-axis compressive test at roomtemperature due to the presence of porosity in sintered compacts.
引文
[1] Duwez P, Willens R H, Klement W. Continuous series of metastable solid solutions insliver-copper alloys [J]. Journal of Applied Physics,1960,31(6):1136-1137.
    [2] Chen H S, Miller C E. A rapid quenching technique for the preparation of thin uniformfilms of amorphous solids [J]. Review of Scientific Instruments,1970,41:1237-1238.
    [3] Liebermann H H, Graham C D. Production of alloy ribbons and effects of apparatus onribbon dimensions [J]. IEEE Transactions on Magnetics,1976,12:921-923.
    [4] Inoue A, Shinohara Y, Cook J S. Thermal and magnetic properties of bulk Fe-based glassyalloys prepared by copper mold casting [J]. Materials Transactions, JIM,1995,36(12):1427-1433.
    [5] Inoue A, Takeuchi A, Zhang T. Ferromagnetic bulk amorphous alloys [J]. Metallurgicaland Materials Transactions A,1998,29(7):1779-1793.
    [6] Inoue A. Stabilization of metallic supereooled liquid and bulk amorphous alloys [J]. ActaMaterialia,2000,48:279-306.
    [7] Inoue A, Zhang T, Takeuchi A. Bulk amorphous alloys with high meehanical strength andgood soft magnetic properties in Fe-TM-B (TM=IV-Vlll group transition metal) system [J].Applied Physics Letters,1997,71:464-466.
    [8] Shen J, Chen Q J, Sun J F, Fan H B, Wang G. Exceptionally high glass-forming ability ofan FeCoCrMoCBY alloy [J]. Applied Physics Letters,2005,86:151907.1-3.
    [9] Inoue A, Takeuchi A, Shen B L. Formation and functional properties of Fe-based bulkglassy alloys [J]. Materials Transactions, JIM,2001,42(6):970-978.
    [10] Souza C A C, Politi F S, Kimina C S. Influence of structural relaxation and partialdevitrifacation on the eorrosion resistance of Fe78Si9B13amorphous alloy [J]. ScriptaMaterialia,1998,39:329-334.
    [11] Makino A, Chang C T, Kubota T, Inoue A. Soft magnetic Fe-Si-B-P-C bulk metallicglasses without any glass-forming metal elements [J]. Journal of Alloys and Compounds,2009,483:616-619.
    [12] Shen T D, Sehwarz R B. Bulk ferromagnetic glasses in the Fe-Ni-P-B system [J]. ActaMaterialia,2001,49:837-847.
    [13] Li H X, Yi S, Sohn H S. Fe-based bulk metallic glasses Fe73.8xC7.0Si3.5BxP9.6Cr2.1Mo2.0Al2.0(x=3-9) prepared using hot metal and industrial raw materials [J].Journal of Materials Research,2007,22:164-168.
    [14] Li H X, Kim K B, Yi S. Enhanced glass-forming ability of Fe-based bulk metallicglasses prepared using hot metal and commercial raw materials through the optimizationof Mo content [J]. Scripta Materialia,2007,56:1035-1038.
    [15] Gan Z H, Yi H, Pu J, et al. Preparation of bulk amorphous Fe-Ni-P-B-Ga alloys fromindustrial raw materials [J]. Scripta Materialia,2003,48:1543-1547.
    [16] Li H X, Wang S L, Yi S, et al. Glass formation and magnetic properties of theFe-C-Si-B-P-(Cr-Al-Co) bulk metallic glasses fabricated using industrial raw materials[J]. Journal of Magnetism and Magnetic Materials,2009,321:2833-2837.
    [17] Jiao Z B, Li H X, Wu Y, Gao J E, Wang S L, Yi S H, Lu Z P. Effects of Mo additions onthe glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Moalloys [J]. Science China,2010,53(3):430-434.
    [18] Zhang T, Liu F, Pang S, Li R. Ductile Fe-based metallic glass with good soft magneticproperties [J]. Materials Transactions, JIM,2007,48(5):1157-1160.
    [19] Eckert J, Das J, Pauly S, Duhamel C. Mechanical properties of bulk metallic glasses andcomposites [J]. Journal of Materials Research,2007,22(2):285-301.
    [20] Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H. Enhancement of plasticdeformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Fe concentrationratio [J]. Applied Physics Letters,2010,96:031905.1-3.
    [21] Yao K F, Zhang C Q. Fe-based bulk metallic glass with high plasticity [J]. AppliedPhysics Letters,2007,90:061901.1-3.
    [22] Chen W, Chan K C, Guo S F, Yu P. Plasticity improvement of an Fe-based bulk metallicglass by geometric confinement [J]. Materials Letters,2011,65:1172-1175.
    [23] Ponnambalam V, Poon S J, Shiflet G J, Keppens V M, Taylo R, Peteuleseu G. Synthesisof iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys [J].Applied Physics Letters,2003,83:1131-1133.
    [24] Poon S J, Shiflet G J, Ponnarnbalam V. Synthesis and properties of high-maganeseiron-based bulk amorphous metals as non-ferromagnetc amorphous steel alloys [C].Materials Research Society Proceedings,2003,754: CC1.2-13.
    [25] Lu Z P, Liu C T, Thompson J R, Porter W D. Structural amorphous steels [J]. PhysicalReview Letters,2004,92:245503.1-4
    [26]骆重阳,潘明祥,寇生中,等. Fe56Mn5Cr7Mo12Er2C12B6非晶钢的形成[J].科学通报,2005,50(3):201-203.
    [27]陈非非,周少雄. Fe74A14Sn2(PSiBC)20块体非晶合金的制备与晶化研究[J].材料热处理学报,2004,25(3):5-9.
    [28] Wang W M, Gebert A, Roth S, Kuehn U, Schultz L. Glass formability and fragility ofFe61Co9-xZr8Mo5WxB17(x=0and2) bulk metallic glassy alloys [J]. Intermetallics,2008,16(2):267-272.
    [29] Bitoh T, Makino A, Inoue A, Greer A L. Large bulk soft magnetic glassy alloy preparedby B2O3flux melting and water quenching [J]. Applied Physics Letters,2006,88(18):182510.1-3.
    [30] Shen B L, Chang C T, Zhang Z F, Inoue A. Enhancement of glass-forming ability ofFeCoNiBSiNb bulk glassy alloys with superhigh strength and good soft-magneticproperties [J]. Journal of Applied Physics,2007,102(2):023515.1-7.
    [31]程旭,王清,陈伟荣,董闯.基于团簇的Fe-B-Y-Nb四元块体非晶合金[J].中国科学(G辑),2008,38(4):465-470.
    [32] Yao J H, Wang J Q, Li Y. Ductile FeNbB bulk metallic glass with ultrahigh strength [J].Applied Physics Letters,2008,92(3):251906.1-3.
    [33] Hirata A, Kawahara N, Hirotsu Y, Makino A. Local structure changes on annealing in anFe-Si-B-P bulk metallic glass [J]. Intermetallics,2009,17(4):186-189.
    [34] Biswas K, Venkataraman S, Zhang W Y, Ram S, Eckert J. Glass-forming ability andfragility parameter of amorphous Fe67Co9.5Nd3Dy0.5B20[J]. Journal of Applied Physics,2006,100(2):02350.1-5.
    [35] Herzer G. Nanocrystalline soft magnetic alloys [M]. Handbook of magnetic materials,1997,10:417-461.
    [36] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J. Fracture of brittlemetallic glasses: brittleness or plasticity [J]. Physical Review Letters,2005,94:125510.1-4.
    [37] Yoshizawa Y, Yamauchi K. Effects of magnetic-field annealing on magnetic-propertiesin ultrafine crystalline Fe-Cu-Nb-Si-B alloys [J]. IEEE Transactions on Magnetics,1989,25(5):3324-3326.
    [38] Suzuki K, Makino A, Inoue A, et al. Soft magnetic-properties of nanocrystalline bccFe-Zr-B and Fe-M-B-Cu (M=Transition-metal) alloys with high saturation magnetization[J]. Journal of Applied Physics,1991,70(10):6232-6237.
    [39] Willard M A, Laughlin D E, McHenry M E, et al. Structure and magnetic properties of(Fe0.5Co0.5)88Zr7B4Cu1nanocrystalline alloys [J]. Journal of Applied Physics,1998,84(12):6773-6777.
    [40]钟伟荣,邵元智,林光明,等.双相软磁合金晶间非晶相Curie温度的增强效应[J].金属学报,2004,40(8):795-798.
    [41]曹玲飞. Fe84(NbV)7B9纳米晶软磁材料的制备及其相关基础问题的研究[D].中南大学博士学位论文,2006.
    [42] Guo S F, Liu L, Li N, Li Y. Fe-based bulk metallic glass matrix composite with largeplasticity [J]. Scripta Materialia,2010,6(62):329-332.
    [43]曹兴国,黄金亮.铁基块体金属玻璃软磁合金近期研发进展概况[J].钢铁研究学报,2008,2(20):1-8.
    [44] Johnson W L. Bulk glass-forming metallic alloys: science and technology [J]. MRSBulletin,1999,24(10):42-56.
    [45]唐翠勇,肖志瑜,陈进,李元元.粉末冶金制备大块非晶合金研究进展[J].材料导报,2010,24(1):93-97.
    [46] Weeber A W, Bakker H. Amorphisation by ball milling: a review [J]. Physica B,1988,153(1-3):93-122.
    [47] Atzmon M. Insitu thermal observation of explosive compound-formation reaction duringmechanical alloying [J]. Physical Review Letters,1990,64:487-490.
    [48] Schaffer G B, Forrester J S. The influence of collision energy and strain accumulation onthe kinetics of mechanical alloying [J]. Journal of Materials Science,1997,32(12):3157-3162.
    [49] Johnson W L, Schwarz R B. Formation of an amorphous alloy by solid-state reaction ofthe pure polycrystalline metals [J]. Physical Review Letters,1983,51:415-418.
    [50] Suryanarayana C. Mechanical alloying and milling [M]. Marcel Dekker, New York,2004.
    [51] Murty B S, Ranganathan S. Novel materials synthesis by mechanical alloying [J].International Materials Reviews,1998,43(3):101-141.
    [52] Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets [J]. IEEETransactions on Magnetics,1989,25(5):3327-3331.
    [53] Buschow K H J, de Boer F R. Physics of Magnetism and Magnetic Materials [M].Kluwer Academic Publishers,2004,1-179.
    [54] Kovalenko N P, Krasny Yu P, Krey U. Physics of amorphous metals [M]. WILEY-VCHVerlag GmbH, Weinheim,2001.
    [55] Hu Y. Plasticity improvement of Zr55Al10Ni5Cu30bulk metallic glass by remelting masteralloy ingots [J]. Journal of Materials Research,2009,24(12):1124-1127.
    [56] Nagel C, Ratzke K, Schmidtke E, Wolff J, Geyer U, Faupel F. Free-volume changes inthe bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5and the undercooled liquid [J]. PhysicalReview B,1998,17(57):10224-10227.
    [57] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Designing metallic glass matrix composites with high toughness and tensile ductility [J].Nature Materials,2008,451:1085-1089.
    [58] Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallicglasses [J]. Philosophical Magazine Letters,2005,85(2):77-87.
    [59] Sun G Y, Chen G, Liu C T, Chen G L. Innovative processing and property improvementof metallic glass based composites [J]. Scripta Materialia,2006,55:375-378.
    [60] Fu H M, Zhang H F, Wang H, Zhang Q S, Hu Z Q. Synthesis and mechanical propertiesof Cu-based bulk metallic glass composites containing in-situ TiC particles [J]. ScriptaMaterialia,2005,52:669-673.
    [61] Li Y Y, Chen Y, Liang J H, C Yang. Effects of minor B4C or C on amorphousTi66Nb13Cu8Ni6.8Al6.2alloy powders synthesized by mechanical alloying [J]. Journal ofInorganic and Organometallic Polymers,2011,4(21):802-808.
    [62] Kühn U, Mattern N, Gebert A, Kusy M, Bostr m M, Siegel U, Schultz L. NanostructuredZr-and Ti-based composite materials with high strength and enhanced plasticity [J].Journal of Applied Physics,2005,98:054307.1-4.
    [63] Park J M, Kim D H, Kim K B, Fleury E, Lee M H, Kim W T, Eckert J. Enhancement ofplasticity in Ti-rich Ti-Zr-Be-Cu-Ni-Ta bulk glassy alloy via introducing the structural inhomogeneity [J]. Journal of Materials Research,2008,11(23):2984-2989.
    [64] Ren Y L, Zhu R L, Sun J, You J H, Qiu K Q. Phase separation and plastic deformation inan Mg-based bulk metallic glass [J]. Journal of Alloys and Compounds,2010,1-2(493):L42-L46.
    [65] Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H. Mechanical heterogeneity andmechanism of plasticity in metallic glasses [J]. Applied Physics Letters,2009,94:031904.1-3.
    [66] Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residualstress [J]. Nature Materials,2006,5(11):857-860.
    [67] Wada T, Inoue A, Greer A L. Enhancement of room-temperature plasticity in a bulkmetallic glass by finely dispersed porosity [J]. Applied Physics Letters,2002,86:251907.1-3.
    [68] Yamasaki T, S Maeda, Yokoyama Y, Okai D, Fukami T, Kimura H M, Inoue A. Viscositymeasurements of Zr55Cu30Al10Ni5supercooled liquid alloys by using penetrationviscometer under high-speed heating conditions [J]. Intermetallics,2006,14:1102-1106.
    [69] Abrosimova G E, Aronin A S, Afonikova N S, Kobelev N P. Influence of deformation onthe structural transformation of the Pd40Ni20P20amorphous phase [J]. Physics of theSolid state,2010,9(52):1892-1898.
    [70] Kim T S, Lee J K, Kim H J, Bae J C. Consolidation of Cu54Ni6Zr22Ti18bulk amorphousalloy powders [J]. Materials Science and Engineering A,2005,402:228-233.
    [71] Choi P P, Kim J S, Nguyen O T H, Kwon Y S. Ti50Cu25Ni20Sn5bulk metallic glassfabricated by powder consolidation [J]. Materials Letters,2007,61:4591-4594.
    [72] Shen B L, Inoue A, Kimura H, Omori M, Okubo A. Bulk glassy soft-magnetic coresproduced by spark-plasma sintering Fe65Co10Ga5P12C4B4glassy powder [J]. MaterialsScience and Engineering A,2004,375-377:666-670.
    [73] Lee J K, Kim H J, Kim T S, et a1. Deformation behavior of Ni-based bulk metallic glasssynthesized by spark plasma sintering [J]. Journal of Materials Processing Technology,2007,801:187-188.
    [74] Li X Q, Yang C, Chen W P, Qu S G, Li Y Y. Microstructure and mechanical properties ofSPSed (spark plasma sintered) Ti66Nb13Cu8Ni6.8Al6.2bulk alloys with and without WCaddition [J]. Materials Transactions, JIM,2009,50:1720-1724.
    [75] Xie G Q, Louzguine-Luzgin D V, Kimura H, Inoue A. Nearly full densityNi52.5Nb10Zr15Ti15Pt7.5bulk metallic glass obtained by spark plasma sintering of gasatomized powders [J]. Applied Physics Letters,2007,90:241902.1-3.
    [76] Xie G Q, Louzguine-Luzgin D V, Kimura H, Inoue A, Wakai F. Large-size ultrahighstrength Ni-based bulk metallic glassy matrix composites with enhanced ductilityfabricated by spark plasma sintering [J]. Applied Physics Letters,2008,92:121907.1-3.
    [77] Xie G Q, Louzguine-Luzgin D V, Li S, Kimura H, Inoue A. Dual phase metallic glassycomposites with large-size and ultra-high strength fabricated by spark plasma sintering[J]. Intermetallics,2009,17:512-516.
    [78] Xie G Q, Louzguine-Luzgin D V, Inoue A. Formation and properties of two-phase bulkmetallic glasses by spark plasma sintering [J]. Journal of alloys and compounds,2011,suppl509: S214-S218.
    [79] Miracle D B. A structural model for metallic glasses [J]. Nature Materials,2004,3(10):697-702.
    [80] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E. Atomic packing andshort-to-medium-Range order in metallic Glasses [J]. Nature Materials,2006,439(75):419-425.
    [81] Wu Y Q, Bitoh T, Hono K, et al. Microstructure and properties of nanocrystallineFe-Zr-Nb-B soft magnetic alloys with low magnetostriction [J]. Acta Materialia,2001,49(19):4069-4077.
    [82] Lin C Y, Tien H Y, Chin T S. Soft magnetic ternary iron-born-based bulk metallic glasses[J]. Applied Physics Letters,2005,86:162501.1-3.
    [83] Miedema A R, de Boer F R, Boom R. Predicting heat effects in alloys [J]. Physica B,1981,103(1):67-81.
    [84] Zhang R F, Sheng S H, Liu B X. Predicting the formation enthalpies of binaryintermetallic compounds [J]. Chemical Physics Letters,2007,442:511-514.
    [85] Zhang R F, Liu B X. Proposed model for calculating the standard formation enthalpy ofbinary transition-metal systems [J]. Applied Physics Letters,2002,7(81):1219-1221.
    [86] Peng G, Zhu X, Liu G B, Zhang J, Zhang M L. New MgLi based Mg-Li-Cu-(Y, Gd)BMGs: Preparation, glass forming ability and mechanical properties [J]. Journal ofNon-Crystalline Solids,2011,357:2182-2186.
    [87] Yoshizawa Y, Ohta M. Magnetic properties of nanocrystalline Fe-Cu-Si-B alloys [C].Journal of Physics: Conference Series,2009,144:012071.1-6.
    [88]戴道生,钱昆明.铁磁学[M].北京:科学出版社,2000,321.
    [89] Gu X J, Poon S, Gary J, Widom M. Mechanical properties, glass transition temperatureand bond enthalpy trends of high metalloid Fe-based bulk metallic glasses [J]. AppliedPhysics Letters,2008,92:161910.1-3.
    [90] Makino A, Bitoh T, Kojima A, Inoue A, Masumoto T. Low core losses ofnanocrystalline Fe-Zr-Nb-B soft magnetic alloys with high magnetic flux density [J].Materials Science and Engineering A,2001,304-306:1083-1086.
    [91] Zhang B, Zhao D Q, Pan M X, Wang W H, Greer A L. Amorphous metallic plastic [J].Physical Review Letters,2005,94:205502.1-4.
    [92] Yang Y J, Xing D W, Li C P, Wei S D, Sun J K, Shen Q K. A new way of designingbulk metallic glasses in Cu-Ti-Zr-Ni system [J]. Materials Science and Engineering A,2007,448:15-19.
    [93] Hao G J, Lin J P, Zhang Y, Chen G L, Lu Z P. Ti-Zr-Be ternary bulk metallic glassescorrelated with binary eutectic clusters [J]. Materials Science and Engineering A,2010,527:6248-6250.
    [94] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materialsfor applications as soft magnets [J]. Progress in Materials Science,1999,44:291-433.
    [95] Stoica M, Kolesar V, Bednar ic J, Roth S, Franz H, Eckert J. Thermal stability andmagnetic properties of partially Co-substituted (Fe71.2B24Y4.8)96Nb4bulk metallic glasses[J]. Journal of Applied Physics,2011,109:054901.1-6
    [96] Koshiba H, Inoue A, Makino A. Nanocrystallization and magnetic properties ofFe56Co7Ni7Zr2M8B20(M=Nb or Ta) glassy alloys [J]. Nanostructured Materials,1997,8(8):997-1005.
    [97] KwapulińSki P, Chrobak A, Haneczok G, Stok osa Z, Rasek J, Lel tko J. Optimizationof soft magnetic properties in nanoperm type alloys [J]. Materials Science andEngineering C,2003,23:71-75.
    [98] Hokamoto K, Fujita M, Tanaka S, Kodama T, Ujimoto Y. High-temperature shockconsolidation of diamond powders using converging underwater shock wave [J]. ScriptaMaterialia,1998,39:1383-1388.
    [99] Kim H J, Lee J K, Shin S Y, Jeong H G, Kim D H, Bae J C. Cu-based bulk amorphousalloys prepared by consolidation of amorphous powders in the supercooled liquid region[J]. Intermetallics,2004,12:1109-1113.
    [100] Ayman E, Junko U, Katsuyoshi K. Application of rapid solidification powdermetallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloythrough hot extrusion [J]. Acta Materialia,2011,59:273-282.
    [101] Senkov O N, Miracle D B, Scott J M, Senkova S V. Equal channel angular extrusioncompaction of semi-amorphous Al85Ni10Y2.5La2.5alloy powder [J]. Journal of Alloysand Compounds,2004,365:126-133.
    [102] Lee S M, Kato H M, Kubota T S, Makino A, Inoue A. Fabrication and soft-magneticproperties of Fe-B-Nb-Y glassy powder compacts by spark plasma sintering technique[J]. Intermetallics,2009,17:218-221.
    [103] Wang H C, Liu Y, Pan X H, Feng C D, Ai F, Zhang Y. Structure and magneticproperties of bulk Fe56Co7Ni7Zr10B20magnetic alloy fabricated by spark plasmasintering [J]. Journal of Alloys and Compounds,2009,477:291-294.
    [104] Mula S, Mondal K, Ghosh S, Pabi S K. Structure and mechanical properties of Al-Ni-Tiamorphous powder consolidated by pressure-less, pressure-assisted and spark plasmasintering [J]. Materials Science and Engineering A,2010,527:3757-3763.
    [105] Herzer G. Nanocrystalline soft magnetic materials [J]. Physica Scripta,1993, T49:307-314.
    [106] Liu Z W, Huang H Y, Gao X X, Yu H Y, Zhong X C, Zhu J, Zeng D C. Microstructureand property evolution of isotropic and anisotropic NdFeB magnets fabricated fromnanocrystalline ribbons by spark plasma sintering and hot deformation [J]. Journal ofPhysics D: Applied Physics,2011,44:025003.1-10.
    [107] Xiao Z Y, Ke M Y, Fang L, Shao M, Li Y Y. Die wall lubricated warm compacting andsintering behaviors of pre-mixed Fe-Ni-Cu-Mo-C powders [J]. Journal of MaterialsProcessing Technology,2009,209:4527-4530.
    [108] Kodera Y, Yamasaki T, Toyofuku N, Ohyanagi M, Munir Z A. Role of disorder-ordertransformation in consolidation of ceramics [J]. Journal of Materials Science,2006,41:727-732.
    [109] Lee C Y, Stachurski Z H, Richard Welberry T. The geometry, topology and structure ofamorphous solids [J]. Acta Materialia,2010,58:615-625.
    [110] Zeng Q, Baker I, McCreary V, Yan Z C. Soft ferromagnetism in nanostructuredmechanical alloying FeCo-based powders [J]. Journal of Magnetism and MagneticMaterials,2007,318:28-38.
    [111] Pilar M, Escoda L, Su ol J J, Greneche J M. Magnetic study and thermal analysis of ametastable Fe-Zr-based alloy: Influence of process control agents [J]. Journal ofMagnetism and Magnetic Materials,2008,320: e823-e827.
    [112] Rama Rao N V, Gopalan R, Manivel Raja M, Chandrasekaran V, Chakravarty D,Sundaresan R, Ranganathan R, Hono K. Structural and magnetic studies on sparkplasma sintered SmCo5/Fe bulk nanocomposite magnets [J]. Journal of Magnetism andMagnetic Materials,2007,312:252-257.
    [113] Kronmüller H. Micromagnetism and microstructure of amorphous alloys [J]. Journal ofApplied Physics,1981,52(3):1859-1864.
    [114] Herzer G. On the Theoretical understanding of nanocrystalline soft magnetic materials[J]. Journal of Materials Engineering and Performance,1993,2:193-198.
    [115] Kolano-Burian A, Ferenc J, Kulik T. Structure and magnetic properties of hightemperature nanocrystalline Fe-Co-Cu-Nb-Si-B alloys [J]. Materials Science andEngineering A,2004,375-377:1078-1082.
    [116] Wang Z, He K Y, Jin J, et al. Temperature dependence of permeability forFe-Cu-M-Si-B alloys [J]. Materials Science and Engineering A,2001,304-306:1046-1049.
    [117] Liang X B, Ferenc J, Kulik T, Slawska-Waniewska A, Xu B S. Effect of the substitutionof Fe by Co on the magnetic properties and microstructure of nanocrystalline(Fe1-xCox)86Hf7B6Cu1alloys [J]. Journal of Magnetism and Magnetic Materials,2004,284:86-91.
    [118] Kulik T, Wlazlowska A, Ferenc J, et al. Magnetically soft nanomaterials forhigh-temperature applications [J]. IEEE Transactions on Magnetics,2002,38(5):3075-3077.
    [119] Sun H J, Man Q K, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A. Effect of Nbaddition on the glass-forming ability, mechanical and soft-magnetic [J]. Journal ofAlloys and Compounds,2010,504: S31-S33.
    [120] Panda A K, Mohanta O, Kumar A, et al. A potential Fe36Co36Si4B20Nb4nanocrystallinealloy for high temperature soft magnetic applications [J]. Philosophical Magazine,2007,87(11):1671-1682.
    [121] Inoue A, Murakami A, Zhang T, Takeuchi A. Thermal stablity and magnetic propertiesof bulk amorphous Fe-Al-Ga-P-C-B-Si alloys [J]. Materials Transactions, JIM,1997,38(4):359-362.
    [122] Herlach D M. Non-equilibrium solidification of undercooled metallic melts [J].Materials Science and Engineering R,1994,12:177-272.
    [123] Turnbull D. Under what conditions can a glass be formed?[J] Contemporary Physics,1969,10(5):473-488.
    [124] Liang X B, Ferenc J, Kulik T, et al. Effect of the substitution of Fe by Co on themagnetic properties and microstructure of nanocrystalline (Fe1-xCox)86Hf7B6Cu1alloys[J]. Journal of Magnetism and Magnetic Materials,2004,284:86-91.
    [125] Yavari A R, Drbohlav O. Thermodymics and kinetics of nanostructure formation insoft-magnetic nanocrystalline alloys [J]. Materials Transactions, JIM,1995,36:896-902.
    [126] Xia L, Tang M B, Pan M X, Zhao D Q, Wang W H, Dong Y D. Primary crystallizationand hard magnetic properties of Nd60Al10Fe20Co10metallic glasses [J]. Journal ofphysics D: Applied physics,2003,23(36):2954-2957.
    [127] Sunol J J, Güell J M, Bonastre J, Alleg S. Structural study of nanocrystallineFe-Co-Ni-B alloys prepared by mechanical alloying [J]. Journal of Alloys andCompounds,2009,483:604-607.
    [128] Long Y, Zhang W, Wang X M, Inoue A. Effects of transition metal substitution on theglass-formation ability and magnetic properties of Fe62Co9.5Nd3Dy0.5B25glassy alloy [J].Journal of Applied Physics,2002,91:5227-5229.
    [129] Makino A, Bitoh T, Kojima A, Inoue A, et al. Magnetic properties ofzero-magnetostrictive nanocrystalline Fe-Zr-Nb-B soft magnetic alloys with highmagnetic induction [J]. Journal of Magnetism and Magnetic Materials,2000,215:288-292.
    [130] Suryanarayana C. Mechanical alloying and milling [J]. Progress in Materials Science,2001,46:1-184.
    [131] Lonnberg B. Characterization of milled Si3N4powder using X-ray peak broading andsurface area analysis [J]. Journal of Materials Science,1994,29:3224-3230.
    [132] Lu W, Yang L, Yan B, et al. Mechanical driven nanocrystallization of amorphousFe73.5Cu1Nb3Si13.5B9alloy induced by high-energy ball milling [J]. Physical StatusSolids A,2005,202(9):1733-1738.
    [133] Saravanan T T, Kumaran S, Srinivasa Rao T. Structural evolution and magneticproperties of mechanically alloyed metastable Fe-Ni-Zr-B system [J]. Material Letters,2009,63:780-782.
    [134] Bensebaa Z, Bouzabata B, Otmani A, et al. Characterization of nanocrystalline FeSiCrpowders prepared by ball milling [J]. Journal of Magnetism and Magnetic Materials,2010,322(15):2099-2103.
    [135] Knipling K E, Daniil M, Willard M A. Fe-based nanocrystalline soft magnetic alloysfor high-temperature applications [J]. Applied Physics Letters,2009,95:22251.1-3.
    [136] Delshad Chermahini M, Shokrollahi H. Milling and subsequent thermal annealingeffects on the microstructural and magnetic properties of nanostructured Fe90Co10andFe65Co35powders [J]. Journal of Alloys and Compounds,2009,480:161-166.
    [137] Inoue A, Shen B L, Chang C T. Super-high strength of over4000MPa for Fe-basedglass alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4system [J]. Acta Materialia,2004,52:4093-4099.
    [138] Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J].Nature Materials,2005,5(1):15-18.
    [139] Schroers J, Johnson W. Ductile bulk metallic glass [J]. Physical Review Letters,2004,93(25):255506.1-6.
    [140] Wang Y, Wang J F, Li C C. Effect of La addition on glass-forming ability and stabilityof mechanically alloyed Zr-Ni amorphous alloys [J]. Materials Science and EngineeringA,2011,528:1623-1627.
    [141] Sun Y. Structure and thermal behavior of multicomponent Fe68xNixZr15Nb5B12(x=5,10,15,20) alloys [J]. Journal of Alloys and Compounds,2011,509:499-502.
    [142] Li F, Wu B Y, Ji Y L, Wang G Q, Zhao J W, Zhang S Y. Fe61.6Ni15.4Cu1Nb2P14B6amorphous prepared by mechanical alloying [J]. Journal of Materials Science Letters,1999,18:1021-1023.
    [143] Ouyang Y F, Wang L Y, Chen H M, Cheng X Y, Zhong X P, Feng Y P. The formationand crystallization of amorphous Al65Fe20Zr15[J]. Journal of Non-Crystalline Solids,2008,354:5555-5558.
    [144] Kissinger H E. Reaction kinetics in differential thermal analysis [J]. AnalyticalChemistry,1957,29:1702-1706.
    [145] Gan Z H, Yi H Y, Pu J, Wang J F, Xiao J Z. Preparation of bulk amorphous Fe-Ni-P-B-Ga alloys from industrial raw materials [J]. Scripta Materialia.2003,48:1543-1547.
    [146] Qiao J C, Pelletier. Crystallization kinetics in Cu46Zr45Al7Y2bulk metallic glass bydifferential scanning calorimetry (DSC)[J]. Journal of Non-Crystalline Solids,2011,357:2590-2594.
    [147] Donald I W, Davies H A. Prediction of glass-forming ability for metallic system [J].Journal of Non-Crystalline Solids,1978,30(1):77-85.
    [148] Bassim N, Kiminami C S, Kaufman M J, Oliveira M F, Perdigao M N R V, BottaOliveira M F. Crystallization behavior of amorphous Al84Y9Ni5Co2alloy [J]. MaterialsScience and Engineering A,2001,304-306:332-337.
    [149] Movahedi B, Enayati M H, Wong C C. On the crystallization behavior of amorphousFe-Cr-Mo-B-P-Si-C powder prepared by mechanical alloying [J]. Materials Letters,2010,64:1055-1058.
    [150] Liu L, Wu Z F, Chen L. A kinetic study of the non-isothermal crystallization of aZr-based bulk metallic glass [J]. Chinese Physical Letter,2002,19:1483-1486.
    [151] Mayo M J. Processing of nanocrystalline ceramics from ultrafine particles [J].International Materials Reviews,1996,41:85-115.
    [152] Inoue A, Ohtera K, Kita K, Masumoto T. New amorphous Mg-Ge-Ni alloys with highstrength and good ductility [J]. Japanese Journal of Applied Physics,1988,27:2280-2291.
    [153] Lee S, Kato H, Makino A, Inoue A. Displacement Behavior Study of the shear stresseffect on the early viscous flow nature of Fe-B-Nb-Y metallic glassy powder in sparkplasma sintering [J]. Materials Transactions. JIM.2009,50:490-493.
    [154] Nieh T G, Wadsworth J, Liu C T, Ohkubo T, Hirotsu Y. Plasticity and structuralinstability in a bulk metallic glass deformed in the supercooled liquid region [J]. ActaMaterialia,2001,49:2887-2896.
    [155] Wang W H, Pan M X, Zhao D Q, Hu Y, Bai H Y. Enhancement of the soft magneticproperties of FeCoZrMoWB bulk metallic glass by microalloying [J]. Journal ofPhysics: Condensed Matter,2004,16:3719-3723.