熔体快淬与铜模铸造富硼稀土纳米复合永磁材料的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶双相复合永磁材料是由饱和磁化强度高的软磁性相和各向异性场强的硬磁性相在纳米尺度通过交换耦合相互作用而形成的倍受关注的新型永磁材料。这类材料具有稀土含量低,价格便宜,化学稳定性好等特点,具有潜在的开发应用前景。
     本文采用熔体快淬以及铜模水冷吸铸法制备出了纳米复合REFeB/Fe3B永磁材料,同时系统地研究了其组织结构与磁性能关系以及反磁化机制。
     采用熔体快淬方法制备15m/s快淬速度的REFeCoBM薄带,对于NdFeCoBM体系,直接快淬成份Nd_9Fe_(71.5)B_(15.5)Zr_4薄带矫顽力为891kA/m,剩余磁极化强度为0.77T,饱和磁极化强度为1.37T,Jr/Js=0.56,最大磁能积为82.9kJ/m~3,添加元素提高了薄带退火后的综合磁性能。而Co和难熔金属的复合添加使薄带在15m/s的转速下得到了完全非晶,验证了Co和难熔金属的复合添加可以提高体系非晶形成能力。对于Pr_(9.5)(FeCo)_(71.5)B_(15)M_4体系,薄带出现了二元相Fe_2B和软磁性相Fe_3B,15m/s的快淬速度没能得到非晶或者直接快淬硬磁性相薄带。
     采用熔体快淬方法制备50m/s快淬速度的REFeCoBM薄带。对于Nd(FeCo)BM(Nb,Zr)体系,Nb和Zr的添加能提高合金的非晶形成能力,而且能改善快淬薄带晶化后的矫顽力和综合磁性能。同时Nb添加比Zr添加更能细化退火薄带的晶粒,改善微结构和磁性能。虽然Co的添加对矫顽力有所降低,但却能提高退火薄带的剩余磁极化强度温度稳定性、合金的剩余磁极化强度,及最大磁能积。9%的Nd体系中Nd_2Fe_(14)B硬磁性相比9.5%的Nd的体系中少,因此,9%的Nd体系的矫顽力较9.5%的Nd体系小。根据实验数据与理论分析了矫顽力机制。并且进一步分析了合金中相互作用关系的Henkel曲线,证实了合金中确实存在交换耦合作用。分析了Pr_(9.5)(FeCo)_(71.5)B_(15)M(Nb, Zr)_4成份的结构与磁性能, Pr取代Nd降低了薄带晶化峰的峰值温度,说明Pr加入使合金热力学稳定性变差,晶化转变及晶粒长大易于进行,从而使合金的显微结构比较粗大。对于DyFeBM(Nb, Zr)体系,Dy_2F_(14)B的高磁晶各向异性场给合金带来了高矫顽力,但是,由于它本身的饱和磁化强度就很低,而且它的交换长度较短,对软磁性相的分布和尺寸有更高的要求,很难达到充分的交换耦合,导致剩磁与最大磁能积都很低。
     用铜模水冷吸铸的方法制备成分(Y, Dy, Nd)_4FeB_(22)(Ta, Nb)_2直径2mm的棒材合金,成分Dy_4Fe_(72)B_(22)Nb_2得到了完全非晶的2mm棒材样品。分析了形成大块非晶可能的原因。同时采用单辊甩带法制备了相同成分的50m/s快淬薄带,通过热分析,利用基辛格方程计算了Dy_4Fe_(72)B_(22)Nb_2体系的晶化激活能。两个晶化放热峰的晶化激活能分别为572和484kJ/mol。两个放热峰分别对应Fe_3B和Dy_2Fe_(14)B。对棒材和热处理后的薄带样品进行了磁性能测试可知,由于其体系中稀土成份很低,导致了硬磁相Dy_2Fe_(14)B的相成份也很低,因而矫顽力较小,永磁性能不高。
     采用铜模水冷吸铸制备了(Nd, Pr)(Fe, Co)B(Nb, Zr)直径为2mm以及1mm的棒材。在Nd(Fe, Co)B(Nb, Zr)系列中,主要的相结构为硬磁性相Nd2Fe14B和软磁性相(Fe_3B,Fe)。成份Nd_9Fe_(71.5)B_(15.5)Nb_4直接快淬吸铸棒材剩磁为0.56T,矫顽力为568kA/m,最大磁能积为35.9kJ/m~3。在650oC,10分钟退火后,矫顽力高达1151kA/m,剩余磁极化强度也略有增加。其原因可能在于二元相FeNb的存在,FeNb相弥散于Nd_2Fe_(14)B相中,提高了畴壁之间的钉扎,同时又保留了软硬磁性相之间的强交换耦合作用。在Pr(Fe,Co)B(Nb, Zr)系列中,主要的相结构为硬磁性相Pr_2Fe_(14)B和软磁性相(Fe_3B, Fe)。直接吸铸棒材的矫顽力在40-159kA/m之间。成份Pr_(9.5)Fe_(51.5)Co_(20)B_(15)Nb_4在650oC保温退火5分钟,退火后的矫顽力高达1210kA/m,剩余磁极化强度为0.61T,最大磁能积为65.1kJ/m~3。二元相Fe_2Nb在磁体畴壁之间的钉扎作用,有效地抑制了磁矩反转。
     对于(Nd, Pr)(Fe, Co)B(Nb, Zr)1mm直接吸铸棒材,成份Nd_9Fe_(71.5)B_(15.5)Nb_4表现出较好的硬磁性能,矫顽力为307kA/m,剩余磁极化强度为0.57T,最大磁能积为34.8kJ/m~3。而Pr系列中,Pr_(9.5)Fe_(71.5)B_(15)Nb_4矫顽力为1113kA/m,剩余磁极化强度为0.61T,最大磁能积为56.2kJ/m~3。Pr_(9.5)Fe_(71.5)B_(15)Zr_4矫顽力为1118kA/m,剩余磁极化强度为0.69T,最大磁能积为80.7kJ/m~3。
Nanocomposite permanent magnetic material is a kind of attracting new permanentmagnet. It consists of both nano-scale hard magnetic phase with high anisotropic field andsoft magnetic phase with large saturation magnetization, leading to excellent magneticperformance through exchange coupling between their neighboring atomic magnetic moments.In addition to the high maximum energy product that may be achieved, nanocompositemagnets are of commercial interest because they require less of an expensive rare earthelement, low cost and high corrosion resistance.
     In this dissertation, nanocomposite REFeB/Fe3B type hard magnetic alloys have beenprepared by melt-spinning technique with subsequent crystallization annealing and coppermold water cooling method. The microstructure and magnetic properties of the alloys havebeen investigated. The magnetization and demagnetization behavior of nanocomposite alloyshave also been studied.
     REFeCoBM ribbons were fabricated by single copper rolling at speed of15m/s. In theNdFeCoBM alloys, for Nd_9Fe_(71.5)B_(15.5)Zr_4component, amazing magnetic properties ofjHc=891kA/m, J_r=0.77T, J_s=1.37T, J_r/J_s=0.56, and (BH)_(max)=82.9kJ/m~3were achieved for as-spunalloy ribbons. The doping of Co and refractory elements such as Nb, Zr enhances the GFA(Glass Forming Ability) to get fully amorphous ribbons, and also improves the magneticproperties after heat-treatment. For Pr_(9.5)(FeCo)_(71.5)B_(15)M_4alloys, fully amorphous or hardmagnetic properties failed in as--spun ribbons. The binary Fe2B phase and soft magneticphase Fe_3B were exhibited in ribbons.
     REFeCoBM ribbons were fabricated by single copper rolling at speed of50m/s. InNd(FeCo)BM(Nb, Zr) alloys, the addition of Nb and Zr can enhance the GFA, refine thestructure after annealing and improve magnetic properties. The addition of Co can enhancethe Jrand the temperature stability of Jr, still improve the maximum magnetic energy productat the expense of slightly coercivity decreasing. The contents of9.5at%Nd have highercoercivity than the9at%, due to the increasing of hard magnetic phase Nd2Fe14B. Thecoercivity mechanism was analyzied based on experiments and theory. Furthermore, thehenkel plots were analyzed to testify the exchange coupling in alloys. The structure andmagnetic properties of Pr_(9.5)(FeCo)_(71.)5B_(15)M(Nb, Zr)_4were also studied. With the substitutionof Nb by Pr the alloy has a lower crystallization temperature, which means that Pr makes thealloy instabler in crystallization kinetics. So the crystallization transition and the grain growthtake place easier, which results in coarse and inhomogeneous microstructure and a lower remanence. For DyFeBM(Nb, Zr) alloys, the high anisotropic field of Dy_2Fe_(14)B brings in highcoercivity, due to its low saturation magnetization and short exchange length, improves therequirement of the distribution of soft magnetic phase and grain size, which are hard to getfully exchange coupling, then leads to lower remanence and less maximum energy product.
     (Y, Dy, Nd)_4FeB_(22)(Ta, Nb)_2alloys of2mm diameter rod were prepared by a coppersuction casting method in water cooled crucible. Dy_4Fe_(72)B_(22)Nb_2was fully amorphous by theXRD test in the core of the rod. The reason of the bulk metal glass (BMG) forming wasanalyzed by Senkov principle and Inoue empirical rules. Meanwhile, the50m/s as-spunribbons of same components were fabricated, and the crystallization activation energy ofDy_4Fe_(72)B_(22)Nb_2was calculated by thermal analysis and Kissinger equation. The crystallizationactivation energy of two exothermal peaks were572and484kJ/mol, corresponding to Fe3Band Dy_2Fe_(14)B, separately. The magnetic propertied of as-cast rod and annealed ribbons weremeasured; the coercivity was low, due to low rare earth and Dy2Fe14B phase.
     (Nd, Pr)(Fe, Co)B(Nb, Zr) alloys of2mm and1mm diameter rod were prepared by acopper suction casting method in water cooled crucible. The Nd(Fe, Co)B(Nb, Zr) alloysmainly consist of hard magnetic phase Nd_2Fe_(14)B and soft magnetic phase (Fe_3B, Fe). Themagnetic properties of ofjHc=568kA/m, J_r=0.56T, and (BH)max=35.9kJ/m~3are achieved forNd_9Fe_(71.5)B(15.5)Nb_4as-cast2mm rod. After annealed at650oC for10minutes, the coercivityreaches up to1151kA/m, and the remanence also has slight increase. It attributes to theexistence of binary phase FeNb. The FeNb particles distributing in the grains hold the reversedomains wall and meanwhile preserve the strong exchange coupling between soft and hardmagnetic phases. The Pr(Fe, Co) B(Nb, Zr) alloys mainly consist of hard magnetic phasePr2Fe14B and soft magnetic phase (Fe_3B, Fe). The value of coercivity is between40-159kA/mfor as-cast rod samples. After annealed at650oC for5minutes, the magnetic properties ofPr_(9.5)Fe_(51.5)Co_(20)B_(15)Nb_4isjHcof1210kA/m, Jrof0.61T,(BH)maxof65.1kJ/m~3. The Fe_2Nbparticles pin the domain walls and hinder the reverse domains from growing and moving.
     For (Nd, Pr)(Fe, Co)B(Nb, Zr) as-cast rods of1mm diameter, the component ofNd_9Fe_(71.5)B_(15.5)Nb_4shows the best hard magnetic properties, i.e.jHc=307kA/m, Jr=0.57T,(BH)max=34.8kJ/m~3. In Pr series, The magnetic properties of Pr_(9.5)Fe(71.5)B_(15)Nb_4isjHcof1113kA/m, Jrof0.61T and (BH)maxof56.2kJ/m~3, and Pr_(9.5)Fe_(71.5)B_(15)Zr_4isjHcof1118kA/m, Jrof0.69T and (BH)maxof80.7kJ/m~3.
引文
[1]. E. A. Nesbitt, J. H. Wernick, E. Corenzwit. Magnetic moments of alloys and compoundsof iron and cobalt with rare earth metal additions. Journal of Applied Physics,1959,30:365-367.
    [2]. K. J. Stnart, G. I. Hoffer, J. Olson, et al. A Family of new cobalt-base permanent magnetmaterials. Journal of Applied Physics,1967,38:1001-1002.
    [3]. K. H. J. Buschow, W. Liuten, P. A. Naastepad, et al. Magnet maerial with a (BH)maxof18.5million gaussrested. Philips Tech Rev,1968,29:336-337.
    [4]. D. Das. Twenty million energy product samarium-cobalt magnet. Magnetics, IEEETransactions on Magn,1969,5(3):214-216.
    [5]. A. Perry, A. Menth. Permanent magnets based on Sm(Co, Cu, Fe)z. Magnetics, IEEETransactions on,1975,11(5):1423-1425.
    [6]. R. Perkins, S. Gaiffi, A. Menth. Permanent magnet properties of Sm2(Co,Fe)17. Magnetics,IEEE Transactions on,1975,11(5):1431-1433.
    [7]. T. Ojima, S. Tomizawa, T. Yoneyama, et al. Magnetic properties of a new type ofrare-earth cobalt magnets Sm2(Co, Cu, Fe, M)17. Magnetics, IEEE Transactions on,1977,13(5):1317-1319.
    [8]. M. Sagawa, S. Fujimura, N. Togawa, et al. New material for permanent magnets on a baseof Nd and Fe. Journal of Applied Physics,1984,55:2083-2082.2087.
    [9]. J. J. Croat, J. F. Herbst, R.W.Lee, et al. A new class of high-performance permanentmagnets. Journal of Applied Physics,1984,55:2078-2082.
    [10]. N. C. Koon, B. N. Das. Crystallization of FeB alloys with rare earths to produce hardmagnetic materials. Journal of Applied Physics,1984,55:2063-2066.
    [11].松崎译.日本烧结钕铁硼最大磁能积创新高.[J]稀土信息,2005,9:12.
    [12]. J. M. D. Coey, Hong Sun. Improved magnetic properties by treatment of iron-based rareearth intermetallic compounds in anmonia. Journal of Magnetism and Magnetic Materials,1990,87(3): L251-L254.
    [13]. J. M. D. Coey, Hong Sun, D. P. F. Hurley. Intrinsic magnetic properties of new rare-earthiron intermetallic series. Journal of Magnetism and Magnetic Materials,1991,101(1-3):310-316.
    [14]. Y.Otani, D.P.F.Hurley, Hong Sun, et al. Magnetic Properties of a new family of ternaryrare-earth iron nitrides R2Fe17N3-. Journal of Applied Physics,1991,69:5584.
    [15]. Ying-Chang Yang, Xiao-Dong Zhang, Sen-Lin Ge, et al. Magnetic and crystallographicproperties of novel Fe-rich rare-earth nitrides of the type RTiFe11N1-. Journal of AppliedPhysics,1991,70:6001.
    [16]. Ying-Chang Yang, Xiao-Dong Zhang, Lin-Shu Kong, et al. Neutron diffraction study ofthe nitride YTiFe11Nx. Solid State Communications,1991,78(4):313-316.
    [17]. S. J. Collocott, R. K. Day, J. B. Dunlop. in Proceedings of the Seventh InternationalSymposium on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys.edited by Research Centre for Advanced Mineral and Materials Processing, University ofWestern Australia (University of Western Australia, Perth,1992:437.
    [18]. F. M. Yang, B. Nasunjilegal, W.Gong, et al. Magnetic-properties of Sm3(Fe,Ti)29N5compounds. IEEE Transactions on Magnetics,1994,30:4957-4959.
    [19]. F. M. Yang, B. Nasunjilegal, J. L. Wang, et al. Formation and magnetic propeties ofSm3(Fe,Ti)29Nycompounds. Journal of Physics: Condens Matter,1995,7:1679-1688.
    [20]. Ralph Skomski, J. M. D. Coey. Giant energy product in nanostructured two-phasemagnets. Physical Review B,1993,48(21):15812.
    [21]. R. Coehoorn, D. B. De Mooij, C. De Waard. Meltspun permanent magnet materialscontaining Fe3B as the main phase. Journal of Magnetism and Magnetic Materials,1989,80(1):101-104.
    [22]. E. F. Kneller, R. Hawig. The exchange-spring magnet: a new material principle forpermanent magnets. Magnetics, IEEE Transactions on,1991,27(4):3588-3560.
    [23]. G. B.Clemente, J. E. Keem, J.P.Bradley. The microstructural and compositionalinfluence upon HIREM behavior in Nd2Fe14B. Journal of Applied Physics,1988,64:5299-5301.
    [24]. A. Manaf, R. A. Buckley, H. A. Davies, M. Leonowicz. Enhanced magnetic properties inrapidly solidified Nd-Fe-B based alloys. Journal of Magnetism and Magnetic Materials,1991,101(1-3):360-362.
    [25]. M. Dahlgren, R. Grossinger, E. De Morais, et al. Enhancement of the Curie temperaturefor exchange coupled Nd-Fe-B and Pr-Fe-B magnets. IEEE Transactions on Magnetics,1997,33:3895-3897.
    [26].吴文飞,姚可夫.非晶合金纳米晶化的研究进展.稀有金属材料与工程,2005,34(4):5.
    [27]. N. Mitrovic, S. Roth, J. Eckert. Kinetics of the glass-transition and crystallizationprocess of Fe72-xNbxAl5Ga2P11C6B4(x=0,2) metallic glasses. Applied Physics Letters,2001,78(15):2145-2147.
    [28].郑兆勃.非晶固态材料引论.北京:科学出版社;1987.
    [29].黄胜涛.非晶态材料的结构和结构分析.北京:科学出版社;1987.
    [30].王志新,卢金斌,席艳君.大块金属玻璃晶化过程的研究进展.材料导报,2006,20(9):3.
    [31]. J. Schroers, R. Busch, A. Masuhr, et al. Nucleation in undercooled Zr41Ti14Cu12Ni10Be23melts. Journal of Non-Crystalline Solids,1999,250–252, Part2(0):699-703.
    [32]. A. Masuhr, R. Busch, W. L. Johnson. Thermodynamics and kinetics of theZr41.2Ti13.8Cu10.0Ni12.5Be22.5bulk metallic glass forming liquid: glass formation from a strongliquid. Journal of Non-Crystalline Solids,1999,250–252, Part2(0):566-571.
    [33]. Yan Xin Zhuang, Wei Hua Wang, Yong Zhang, et al. Crystallization kinetics and glasstransition of Zr41Ti14Cu12.5Ni10-xFexBe22.5bulk metallic glasses. Applied Physics Letters,1999,75(16):2392-2394.
    [34].卢柯,王景唐.非晶态合金晶化过程中晶体长大速率的数学表达式.金属学报,1991,(27):249-253.
    [35].郭贻诚,王震西.非晶态物理学.北京:科学出版社;1984.
    [36]. F. E.卢博斯基.非晶态金属合金:冶金工业出版社;1989.
    [37]. H. E. Kissinger. Reaction kinetics in differential thermal analysis. Journal of AnalyticalChemistry,1957,29:1702.
    [38]. Raghvendra Srivastava, Nbsp, Mohan, et al. Cooling Rate Evaluation for BulkAmorphous Alloys from Eutectic Microstructures in Casting Processes. MaterialsTransactions,2002,43(7):1670-1675.
    [39]. Nobuyuki Nishiyama, Akihisa Inoue. Flux Treated Pd-Cu-Ni-P Amorphous AlloyHaving Low Critical Cooling Rate. Materials Transactions Jim,1997,38(5):464-472.
    [40]. Hans Warlimont. The impact of amorphous metals on the field of soft magneticmaterials. Materials Science and Engineering,1988,99(1–2):1-10.
    [41]. J. F. Liu, H. A. Davies. Magnetic properties of cobalt substituted Nd2Fe14B/-Fenanocomposite magnets processed by overquenching and annealing. Journal of Magnetismand Magnetic Materials,1996,157-158:29-30.
    [42]. Zhang Shengen, Li Dongpei, Ying Qiming, et al. High magnetic performanceNdFe10.5Mo1.5Nxprepared by mechanical alloying. Journal of Materials Science,2001,36(1):107-111.
    [43]. M. Jurczyk, J. Jakubowicz, B. Gebel, et al. Nd2(Fe,Co,M)14B-type magnet powdersproduced by the HDDR process. Journal of Alloys and Compounds,1999,292(1-2):296-300.
    [44]. N. Hamada, C. Mishima, H. Mitarai, et al. Development of Nd-Fe-B anisotropic bondedmagnet with27MGOe. Magnetics, IEEE Transactions on,2003,39(5):2953-2955.
    [45]. M. Yu, Y. Liu, S. H. Liou, et al. Nanostructured NdFeB films processed by rapid thermalannealing. Journal of Applied Physics,1998,83:6611-6614.
    [46]. T. Takeshita, R. Nakayama. Proceedings of the10th International Workshop onRare-Earth Magnets and Their Applications(Society of Nontraditional Technology,Tokyo,1989),1989, vol1: p551.
    [47]. T. Takeshita, R. Nakayama. in proceedings of the11th International Workshop onRare-Earth Magnets and Their Applications, Pittsburgh, PA, October,1990, vol.1: p49.
    [48]. Shan-Dong Li, Wen-Sheng Sun, Ming-Xiu Quan. Crystallization and magneticproperties of melt-spun two-phase nanocrystalline Nd-Fe-B alloy. Materials Letters,1997,30(5-6):351-355.
    [49].包小倩,周寿增,王佐诚.制备工艺对Pr2Fe14B/-Fe纳米复合永磁材料组织与磁性的影响.中国稀土学报,2003,21(1):27.
    [50].杨森,李山东,刘先松.淬速和热处理对纳米双相Nd2Fe14B/-Fe磁体的性能和微结构的影响.中国稀土学报,2002,20:71.
    [51]. Zuocheng Wang, Shouzeng Zhou, Yi Qiao, et al. Phase transformation and magneticproperties of melt-spun Pr7Fe88B5ribbons during annealing. Journal of Alloys andCompounds,2000,299:258-263.
    [52].韩广兵,高汝伟,陈伟.晶化热处理条件对Nd2(Fe,Co)14B/-Fe纳米复合材料磁性能的影响.功能材料,2003,34(5):511.
    [53].刘颖,陈悦,涂铭笙.热处理对非晶态合金Nd9(FeCoZrAl)85B6磁性能的影响.中国稀土学报,2000,18(2):112.
    [54]. Y. Q. Wu, D. H. Ping, B. S. Murty. Influence of heating rate on the microstructure andmagnetic properties of Fe3B/Nd2Fe14B nanocomposite magnets. Scripta Materials,2001,45:355-362.
    [55]. J. S. Fang, T. S. Chin, S. K. Chen. Nanocrystalline Nd6Fe88-xMxB6(M=Ti or V) magnetsby rapid thermal annealing. IEEE Transactions on Magnetics,1996,32:4401-4403.
    [56]. Minoryu Uehara, Satoshi Hirosawa, Hirokazu Kanekiyo. Effect of Cr-doping oncrystallization sequence and magnetic properties of Fe3B/Nd2Fe14B nanocomposite permanentmagnets. Nanostructured Materials,1998,10(2):151-160.
    [57]. L. H. Lewis, K. Gallagher, B. Hoerman. Crystallization sequences and magneticproperties of melt-spun Nd2Fe14B-based nanocomposites containing Co and Cr. Journal ofAlloys and Compounds,1998,270:265-274.
    [58]. B. Z. Cui, Y. C. Sui, X. K. Sun. Phase evolution, structure and magnetic properties ofNd8.4Fe86Mo1.1B4.5nanocomposites magnet. Journal of applied Physics,2002,91(10):7881-7883.
    [59]. A. M. Gabay, A. G. Popov, V. S. Gaviko, et al. The structure and magnetic properties ofrapidly quenched and annealed multi-phase nanocrystalline Nd9Fe91-xBxribbons. Journal ofAlloys and Compounds,1996,245(1-2):119-124.
    [60]. Choong Jin Yang, Eon Byung Park. The effect of magnetic field treatment on theenhanced exchange coupling of a Nd2Fe14B/Fe3B magnet. Journal of Magnetism andMagnetic Materials,1997,166(1-2):243-248.
    [61]. T. M. Zhao, Y. Y. Hao, X. R. Xu, et al. Promotion of crystallization and magneticproperty improvement enhancement of the energy product in Nd5.5Fe66B18.5Cr5Co5bymagnetic field heat treatment. Journal of Applied Physics,1999,85(1):518.
    [62]. Zuocheng Wang, Shouzeng Zhou, Maocai Zhang, et al. High-performance-Fe/Pr2Fe14B-type nanocomposite magnets produce by hot compaction under high pressure.Journal of Applied Physics,2000,88:591.
    [63]. D. Lee, J. S. Hilton, S. Liu, et al. Hot-pressed and hot-deformed nanocomposite(Nd,Pr,Dy)2Fe14B/-Fe-based magnets. Magnetics, IEEE Transactions on,2003,39(5):2947-2949.
    [64]. D. Lee, J. S. Hilton, C. H. Chen, et al. Bulk isotropic and anisotropic nanocompositerare-Earth magnets. Magnetics, IEEE Transactions on,2004,40(4):2904-2906.
    [65]. Z. Chen, Y. Zhang, M. Daniil, et al. Review of rare earth nanocomposite magnets.Proceedings of the16th International Workshop on Rare-Earth Magnets and TheirApplications,2000,189.
    [66]. H. Fukunaga, K. Tokunaga, Song Jae Man. Improvement in coercivity by high-speedcrystallization for PrFeB-Based nanocomposite magnets. Magnetics, IEEE Transactions on,2002,38(5):2970-2972.
    [67]. W. Y. Zhang, S. Y.Zhang, A. R. Yan, et al. Effect of the substitution of Pr for Nd onmicrostructure and magnetic properties in Nd2Fe14B/-Fe ribbons. Journal of Magnetism andMagnetic Materials,2001,225:387.
    [68]. J. I. Betancourt, H. A. Davies. Magnetic properties of nanocrystalline didymium(Nd-Pr)-Fe-B alloys. Journal of Applied Physics,1999,85(8):5911.
    [69]. W. Chen, R. W. Gao, L. M. Liu, et al. Effective anisotropy, exchange-coupling lengthand coercivity in Nd8-xRxFe87.5B4.5(R=Dy,Sm,x=0-0.6) nanocomposite. Materials Science andEngineering B Solid state materials for advanced technology,2004,110(1):107-110.
    [70]. W. C. Chang, S. H. Wu, B. M. Ma, et al. The effects of La-substitution on themicrostructure and magnetic properties of nanocomposite NdFeB melt spun ribbons. Journalof Magnetism and Magnetic Materials,1997,167(1-2):65-70.
    [71]. S. Hirosawa, K. Tokuhara, H. Yamamoto, et al. Magnetization and magnetic anisotropyof R2Co14B and Nd2(Fe1-xCox)14B measured on single crystals. Journal of Applied Physics,1987,61(8):3571.
    [72]. Choong Jin Yang, Eoun Byung Park, Yong Soon Hwang, et al. The effect of Co on theenhanced magnetic properties of Fe3B/Nd2Fe14B magnets. Journal of Magnetism andMagnetic Materials,2000,212(1-2):168-174.
    [73]. W. C. Chang, S. H. Wu, B. M. Ma, et al. Magnetic properties enhancement of-Fe/Nd2Fe14B-type nanocomposites by Co substitution. Journal of Applied Physics,1998,83:2147.
    [74]. G. Z. Xie, Z. J. Tian, Z. Yu, et al. The magnetic properties of melt-spunNd9Fe85-xMnxB6(x=0-1) ribbons. Journal of Magnetism and Magnetic Materials,2002,251(1):109-114.
    [75]. Guozhi Xie, Shilong Yin, Fengming Zhang, et al. Effects of Mn doping on structural andmagnetic properties in NdFeB nanocomposites. Materials Letters,2004,58(5):636-640.
    [76]. Guozhi Xie, Jinxia Xu, Pinghua Lin, et al. Magnetic properties of Mn substitutedNd-Fe-B composite. Journal of Magnetism and Magnetic Materials,2004,278(1-2):179-184.
    [77]. Anders Micski, Bj rn Uhrenius. A contribution to the knowledge of phase equilibria andthe magnetic properties of the Nd-Fe-B-X systems (X=Al, Co,V). Journal of Applied Physics,1994,75:6265.
    [78].潘树明,马如璋,平爵云,等. Nd-Fe(Co,Al,Ga)-B合金的磁性及Al,Co,Ga原子的晶位占据研究.中国科学,1991,A(5).
    [79]. I. Ahmad, H. A. Davies, R. A. Buckley. Ultra high coercivity Nd-Fe-B permanentmagnet alloy with small addition of Ga. Materials Letters,1994,20(3-4):139-142.
    [80]. I. Ahmad, M. A. Al-Khafaji, H. A. Davies, et al. Microstructure study of high coercivityGa containing Nd-Fe-B permanent magnets. Journal of Magnetism and Magnetic Materials,1995,145(1-2): L19-L22.
    [81]. R. Gr ssinger, S. Hei, G. Hilscher, et al. The effect of substitutions on the hardmagnetic properties of Nd-Fe-B based materials. Journal of Magnetism and MagneticMaterials,1989,80(1):61-66.
    [82]. B. X. Gu. Influence of Si substitution on phase components and magnetic properties ofcrystallized Nd4Fe77.5B18.5alloys. Journal of Magnetism and Magnetic Materials,2004,279(2-3):313-316.
    [83]. A. H. Li, C. H. Chiu, H. W. Chang, et al. Composition dependence of the structure andmagnetic properties of Pr2(Fe,Co)14(C,B)-type nanocomposites. Journal of Applied Physics,2005,98:044315.
    [84]. Zhao-Hua Cheng, Bao-Gen Shen, Fang-Wei Wang, et al. Effect of carbon substitution onthe magnetic properties and crystalline phases of melt-spun Nd4Fe77.5B18.5alloys. PhysicalReview B,1995,51(18):12433.
    [85]. C. H. Chiu, H. W. Chang, C. W. Chang, et al. Effect of C on Phase Evolution,Microstructure, and Magnetic Properties of Pr2Fe14B-Type Nanocomposites. Journal of Ironand Steel Research, International,2006,13(Supplement1):136-145.
    [86]. M. Endoh, M. Tokunaga, H. Harada. Magnetic properties and thermal stabilities of Gasubstituted Nd-Fe-Co-B magnets. Magnetics, IEEE Transactions on,1987,23(5):2290-2292.
    [87]. Sen Yang, Xiaoping Song, Shandong Li, et al. Effect of Cu and Ti additions on themicrostructures and magnetic properties of Nd8Fe86B6nanocomposite magnets. Journal ofMagnetism and Magnetic Materials,2003,263(1-2):134-140.
    [88]. I. Betancourt, H. A. Davies. Enhanced magnetic properties in Zr-containing rareearth-rich Didymium (Nd/Pr)-based nanocrystalline hard magnetic alloys. Journal of Alloysand Compounds,2004,369(1-2):152-154.
    [89]. T. Schrefl, J. Fidler, H. Kronmüller. Remanence and coercivity in isotropicnanocrystalline permanent magnets. Physical Review B Condens Matter,1994,49(9):6100-6110.
    [90]. T. Schrefl, R. Fischer, J. Fidler, et al. Two-and three-dimensional calculation ofremanence enhancement of rare-earth based composite magnets (invited). Journal of AppliedPhysics,1994,76(10):7053-7058.
    [91]. T. Schrefl, H. Kronmüller, J. Fidler. Exchange hardening in nano-structured two-phasepermanent magnets. Journal of Magnetism and Magnetic Materials,1993,127(3):L273-L277.
    [92]. R. Fischer, T. Schrefl, H. Kronmüller, et al. Phase distribution and computed magneticproperties of high-remanent composite magnets. Journal of Magnetism and MagneticMaterials,1995,150(3):329-344.
    [93]. T. Schrefl, J. Fidler, H. Kronmüller. Remanence and coercivity in isotropicnanocrystalline permanent magnets. Physical Review B,1994,49(9):6100-6110.
    [94]. R. Fischer, T. Schrefl, H. Kronmüller, et al. Grain-size dependence of remanence andcoercive field of isotropic nanocrystalline composite permanent magnets. Journal ofMagnetism and Magnetic Materials,1996,153(1–2):35-49.
    [95]. Ralph Skomski, J. M. D. Coey. Giant energy product in nanostructured two-phasemagnets. Physical Review B,1993,48(21):15812-15816.
    [96]. R. Skomski. Aligned two-phase magnets: Permanent magnetism of the future?(invited).Journal of Applied Physics,1994,76(10):7059-7064.
    [97]. R. Skomski, J. M. D. Coey. Nucleation Field And Energy Product Of AlignedTwo-phase Magnets-Progress Towards The "1MJ//m3" Magnet. Magnetics Conference,1993INTERMAG '93, Digest of International;199313-16Apr1993;1993. p. ED-01-ED-01.
    [98]. X. K. Sun, Jian Zhang, Yelong Chu, et al. Dependence of magnetic properties on grainsize of alpha-Fe in nanocomposite (Nd, Dy)(Fe, Co, Nb, B)5.5/-Fe magnets. Applied PhysicsLetters,1999,74(12):1740-1742.
    [99]. E. C. Stoner, E. P. Wohlfarth. A Mechanism of Magnetic Hysteresis in HeterogeneousAlloys. Philosophical Transactions of the Royal Society of London Series A,1948, A240:599-642.
    [100]. J. M. D. Coey, editor. In Rare-Earth Iron Permanent Magnets. England: Oxford SciencePublic;1996.
    [101]. B D. Cullity. Introduction to magnetic material. Addison-Wesley corp,Reading,MA,1972:556-587.
    [102]. T Schref, J Fidler, H K Kronmfller. Remanence and coercivity in isotropicnanocrystalline permanent magnets. Physical Review B,1994, B49:6100-6110.
    [103]. J. Bauer, M. Seeger, H. Kronmüller. nanocrystalline FeNdB per-manent magnets withenhanced remanence. Journal of Applied Physics,1996,80(3):1667.
    [104]. H. Kronmiiller, R. Fischer, M. Seeger, et al. Micromagnetism and microstructure ofhard magnetic materials. Journal of Physics D: Applied Physics,1996,29:2274.
    [105]. O. V. Billoni, S. E. Urreta, L. M. Fabietti, et al. Dependence of the coercivity on thegrain size in a FeNdB+Fe nanocrystalline composite with enhanced remanence. Journal ofMagnetism and Magnetic Materials,1998,187(3):371-380.
    [106]. J. Bauer, M. Seeger, A. Zern, et al. Nanocrystalline FeNdB permanent magnets withenhanced remanence. Journal of Applied Physics,1996,80(3):1667-1673.
    [107].周寿增,董清飞,主编.超强永磁体一稀土铁系永磁材料.北京:冶金工业出版社;1999.
    [108]. M. Emura, J.M. Gonza'lez, F.P. Missell. On the role of dipolar coupling in themagnetization reversal process in hard-soft nanocomposite magnets. IEEE Transactions onMagnetics,1997,33:3892-3894.
    [109].梁敬魁.粉末衍射法测定晶体结构(上、下册).2003,北京:科学出版社.
    [110].范雄.金属X射线学.1998,北京:机械工业出版社.
    [111].周世昌.磁性测量.1994,北京(电子工业出版社).
    [112]. A.Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys. ActaMaterialia,2000,48(1):279-306.
    [113]. Akinori Kojima, Akihiro Makino, Akihisa Inoue. Effect of Co addition on the magneticproperties of nanocrystalline Fe-rich Fe-Nb-(Nd,Pr)-B alloys produced by crystallization ofan amorphous phase. Scripta Materialia,2001,44(8-9):1383-1387.
    [114]. C. Wang, M. Yan, Q. Li. Effects of Nd and B contents on the thermal stability ofnanocomposite (Nd,Zr)2Fe14B/-Fe magnets. Materials Science and Engineering: B,2008,150(1):77-82.
    [115]. Z. Chen, B. R. Smith, D. N. Brown, et al. Effect of Zr substitution for rare earth onmicrostructure and magnetic properties of melt-spun (Nd0.75Pr0.25)12.5-xZrxFe82B5.5(x=0-3)ribbons. Journal of Applied Physics,2002,91(10):8168-8170.
    [116]. T. J. Konno, M. Uehara, S. Hirosawa, et al. Effect of Nb addition on the crystallizationbehavior and magnetic properties of melt-spun Fe-rich Fe-Nd-B ribbons. Journal of Alloysand Compounds,1998,268(1-2):278-284.
    [117]. M. Jurczyk, W. E. Wallace. Magnetic behavior of R1.9Zr0.1Fe14B and R1.9Zr0.1Fe12Co2Bcompounds. Journal of Magnetism and Magnetic Materials,1986,59(3-4).
    [118]. Z. Q. Jin, H. Okumura, Y. Zhang, et al. Microstructure refinement and significantimprovements of magnetic properties in Pr2Fe14B/-Fe nanocomposites. Journal ofMagnetism and Magnetic Materials,2002,248(2):216-222.
    [119]. I. Betancourt, H. A. Davies. Influence of Zr and Nb dopant additions on themicrostructure and magnetic properties of nanocomposite RE2(Fe,Co)14B/(Fe,Co)(RE=Nd-Pr) alloys. Journal of Magnetism and Magnetic Materials,2003,261(3):328-336.
    [120].李顺.纳米复合Nd2Fe14B/-Fe(Fe3B)永磁合金的结构与磁性能:国防科学技术大学;2008.
    [121]. G. Bai, R. W. Gao, Y. Sun, et al. Study of high-coercivity sintered NdFeB magnets.Journal of Magnetism and Magnetic Materials,2007,308(1):20-23.
    [122]. K. Raviprasad, N. Ravishankar, K. Chattopadhyay, et al. Magnetic hardeningmechanism in nanocrystalline Nd2Fe14B with0.1at.%addition of Cr, Cu, or Zr. Journal ofApplied Physics,1998,83(2):916-920.
    [123]. J. D. Livingston. Nucleation fields of permanent magnets. IEEE Transactions onMagnetics,1987, MAG-23(5).
    [124]. H. Kronmüller, K. D. Durst, M. Sagawa. Analysis of the magnetic hardeningmechanism in RE-FeB permanent magnets. Journal of Magnetism and Magnetic Materials,1988,74(3).
    [125]. P. E. Kelly, K. O'grady, P. I. Mayo, et al. Switching mechanisms in cobalt-phosphorusthin films. Magnetics, IEEE Transactions on,1989,25(5):3881-3883.
    [126]. K. O'grady, M. El-Hilo, R. W. Chantrell. The characterisation of interaction effects infine particle systems. Magnetics, IEEE Transactions on,1993,29(6):2608-2613.
    [127].钟文定.技术磁学.北京:科学出版社;2009.
    [128].王一禾,,杨膺善.非晶态合金.北京:冶金工业出版社;1993.
    [129]. A. Bollero, A. Kirchner, O. Gutfleisch, et al. Highly coercive milled and melt-spun(Pr,Nd)FeB-type magnets and their hot workability. Magnetics, IEEE Transactions on,2001,37(4):2483-2485.
    [130].刘颖,查五生,高升吉,等.镨元素对(Nd,Pr)10.5(FeCoZr)83.5B6合金显微结构和磁性能的影响.中国稀土学报,2003,21(6):4.
    [131].徐兴国,徐晖,谭晓华,等.淬速度对纳米晶复合Nd8.5Fe77.7Nb2Co5Ga0.6B6.2粘结永磁体温度系数的影响.稀有金属材料与工程,2011,40(8).
    [132]. Du Xiao-Bo, Zhang Hong-Wei, Rong Chuan-Bing, et al. Magnetization anddemagnetization behaviours of melt-spun Pr12Fe82B6and Pr8Fe87B5ribbons. Chinese Physics,2004,13(4):552.
    [133]. S. Hirosawa, Y. Matsuura, H. Yamamoto, et al. Magnetization and magnetic anisotropyof R2Fe14B measured on single crystals. Journal of Applied Physics,1986,59:873.
    [134]. P. W. Anderson. Through the Glass Lightly. Science,1995,267:1615-1616.
    [135]. A. L. Greer. Confusion by design. Nature,1993,366:303-304.
    [136].郑子樵、李红英主编,稀土功能材料:化学工业出版社;2003.
    [137]. O. N. Senkov, D. B. Miracle. Effect of the atomic size distribution on glass formingability of amorphous metallic alloys. Materials Research Bulletin,2001,36(12):2183-2198.
    [138]. O. N. Senkov, D. B. Miracle. A topological model for metallic glass formation. Journalof Non-Crystalline Solids,2003,317(1–2):34-39.
    [139]. D. B. Miracle, W. S. Sanders, O. N. Senkov. The influence of efficient atomic packingon the constitution of metallic glasses. Philos Mag,2003,83:2409-2428.
    [140]. T. Egami, Y. Waseda. Atomic size effect on the formability of metallic glasses. Journalof Non-Crystalline Solids,1984,64(1–2):113-134.
    [141]. T. Egami. Atomistic mechanism of bulk metallic glass formation. Journal ofNon-Crystalline Solids,2003,317(1–2):30-33.
    [142]. Z. P. Lu, C.T. Liu. Role of minor alloying additions in formation of bulk metallicglasses: A Review. Journal of Materials Science,2004,39(12):3965-3974.
    [143]. X. M. Huang, C. T. Chang, Z. Y. Chang, et al. Formation of bulk metallic glasses in theFe-M-Y-B (M=transition metal) system. Journal of Alloys and Compounds,2008,460(1-2):708-713.
    [144]. H. W. Chang, Y. C. Huang, C. W. Chang, et al. Soft magnetic properties and glassformability of Y-Fe-B-M bulk metals (M=Al, Hf, Nb, Ta, and Ti). Journal of Alloys andCompounds,2009,472(1-2):166-170.
    [145]. X. H. Tan, H. Xu, Q. Bai, et al. Magnetic properties of Fe-Co-Nd-Y-B magnet preparedby suction casting. Journal of Non-Crystalline Solids,2007,353(4):410-412.
    [146].左演生,陈文哲,梁伟.材料现代分析方法.北京:北京工业大学出版社;2000.
    [147].马建勋.合金化和晶化处理对NdFeB快淬磁粉组织和磁性能的影响.浙江:浙江大学;2005.
    [148].严密,彭晓领.磁学基础与磁性材料.浙江:浙江大学出版社;2006.
    [149].石富.稀土永磁材料制备技术.北京:冶金工业出版社;2007.
    [150]. F. X. Qin, H. F. Zhang, B. Z. Ding, et al. Nanocrystallization kinetics of Ni-based bulkamorphous alloy. Intermetallics,2004,12(10–11):1197-1203.
    [151]. D. S. Dos Santos, D. R. Dos Santos. Crystallization kinetics of Fe–B–Si metallicglasses. Journal of Non-Crystalline Solids,2002,304(1–3):56-63.
    [152]. L. Liu, Z. F. Wu, J. Zhang. Crystallization kinetics of Zr55Cu30Al10Ni5bulk amorphousalloy. Journal of Alloys and Compounds,2002,339(1–2):90-95.
    [153]. A. Inoue, Tao Zhang, Wei Zhang, et al. Bulk Nd-Fe-Al amorphous alloys with hardmagnetic properties. Sendai, JAPAN: Japan Institute of Metals;1996.
    [154]. U. K ster, U. Herold. Crystallization of Metallic Glasses. In: H.J.Güntherodt, H.Beck,editors. Glassy Metals I;1981. p.225-259.
    [155]. Wei Zhang, Akihisa Inoue. Bulk nanocomposite permanent magnets produced bycrystallization of (Fe,Co)-(Nd,Dy)-B bulk glassy alloy. Journal of Applied Physics Letter,2002,80(9):1610.
    [156]. Piotr Pawlik, Hywel A. Davies, Waldemar Kaszuwara, et al. PrFeCoB-based magnetsderived from bulk alloy glass. Journal of Magnetism and Magnetic Materials,2005,290-291(Part2):1243-1246.
    [157]. P. Pawlik, H. A. Davies. Glass formability of Fe-Co-Pr-Dy-Zr-B alloys and magneticproperties following devitrification. Scripta Materialia,2003,49(8):755-760.
    [158]. P. Pawlik, K. Pawlik, H. A. Davies, et al. Directly quenched bulk nanocrystalline (Pr,Dy)-(Fe, Co)-B-Zr-Ti hard magnets. Journal of Alloys and Compounds,2006,423(1-2):99-101.
    [159]. J. Zhang, K. Y. Lim, Y. P. Feng, et al. Fe-Nd-B-based hard magnets from bulkamorphous precursor. Scripta Materialia,2007,56(11):943-946.
    [160]. W. C. Chang, J. K. Chang, H. W. Chang, et al. Magnetic properties and phase evolutionof nanocomposite Nd10Febal.MCB10.5(M=Ti, Nb, V, Cr and Mo) melt-spun ribbons. Physica B:Condensed Matter,2003,327(2-4):296-299.
    [161]. H. W. Chang, W. C. Chang, Z. Y. Pang, et al. Investigation of magnetic properties, aftereffect and MFM of PryFe90-yB10(y=8-11.76) nanocomposites. Journal of Magnetism andMagnetic Materials,2004,279(2-3):149-159.
    [162]. H. W. Chang, C. H. Chiu, C. W. Chang, et al. Effect of Pr concentration on themagnetic properties and phase evolution of Ti-substituted PryFe88-yTi2B10(y=9.5-7)nanocomposite ribbons. Journal of Alloys and Compounds,2005,402(1-2):269-273.
    [163]. H. W. Chang, C. H. Chiu, C. W. Chang, et al. Comparison on the phase evolution andmagnetic properties of direct-quenched Pr8.5Fe79.5M2B10(M=Cr, Nb, Ti, V, and Zr) ribbons.Journal of Magnetism and Magnetic Materials,2006,304(1): e216-e218.
    [164]. H. W. Chang, C. H. Chiu, C. W. Chang, et al. Effect of substitution of refractoryelements for Fe on the magnetic properties of melt-spun Pr9.5Fe80.5B10nanocomposites.Journal of Alloys and Compounds,2006,407(1-2):53-57.
    [165]. C. H. Chiu, H. W. Chang, C. W. Chang, et al. Magnetic properties, microstructure, andphase evolution of PrxFebal.TiyB20-x(x=4-9; y=2.5-5) nanocomposites. Journal of Magnetismand Magnetic Materials,2008,320(16):2079-2082.
    [166]. H. W. Chang, M. F. Shih, C. C. Hsieh, et al. Development of bulk Nd9.5Fe75.5-xMxB15(M=Mo, Nb, Ta, Ti, and Zr; x=0-4) magnets by direct casting method. Journal of Alloys andCompounds,2009,484(1-2):143-146.
    [167]. H. W. Chang, M. F. Shih, C. W. Chang, et al. Magnetic properties, phase evolution andmicrostructure of directly quenched bulk Pr-Fe-B-Nb magnets. Scripta Materialia,2008,59(2):227-230.
    [168]. H. W. Chang, M. F. Shih, C. C. Hsieh, et al. Magnetic property enhancement of directlyquenched Nd-Fe-B bulk magnets with Ti substitution. Journal of Alloys and Compounds,2010,489(2):499-503.
    [169]. W. Y. Zhang, M. Stoica, H. W. Chang, et al. The role of nonmagnetic phases inimproving the magnetic properties of devitrified Pr2Fe14B-based nanocomposites. MaterialsScience and Engineering: B,2008,149(1):73-76.