超磁致伸缩材料、器件损耗理论与实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于材料本身的各种物理效应,智能材料可实现电、磁、热等能量与机械能之间的相互转换,是集驱动与传感于一体的新型功能材料,并成为从大功率换能器件到微纳尺度元件设计与制造的基础。常见的智能材料包括超磁致伸缩材料、压电材料、形状记忆合金、电致伸缩及磁流/电流变液等材料,它们在精密驱动、超精密加工、超声切削、振动主动控制及无损检测等领域有着广泛的应用。智能材料在能量转换的过程中普遍存在输入信号与输出信号之间的迟滞行为,对于超磁致伸缩材料,其体现为磁滞,实际上是一种能量的损耗。本文针对超磁致伸缩材料的磁滞行为,以材料物理本质属性为基础,采用磁、机械、磁机耦合三种损耗及其相应损耗因子来表征材料的磁滞行为,研究了三种损耗因子的计算与测量方法,为超磁致伸缩材料在高频、大功率等场合下的应用提供分析与建模的基础。
     本文所做的主要研究工作及创新点体现在以下四个方面:
     1、超磁致伸缩材料磁滞非线性建模的方法包括基于物理磁滞模型,如Jiles-Atherton磁滞模型、自由能模型,以及基于数学方法的Preisach磁滞模型等,但这些模型在动态应用条件下的时间响应性、计算复杂度以及在表现材料物理本质属性方面皆有一定局限性。磁滞从物理的本质上讲实际上是一种能量的损耗,本文基于Gibbs、Helmholtz自由能推导的线性压磁本构方程组,采用磁、机械、磁机耦合三种损耗及其损耗因子来表征材料的磁滞行为,在内耗理论的基础上分析了磁滞损耗的物理本质,保证了磁滞表征方法在动态应用中的简洁直接、快速响应及准确的特点。
     2、磁、机械、磁机耦合三种损耗因子表征的理论基础是超磁致伸缩振子的阻抗表达及其与共振和反共振点的机械品质因素之间的关系。考虑到磁致伸缩材料的各向异性,同时建立了k33、k31、kt、kp、k15五种振子振动模式的阻抗表达,并推导出各模式下的磁、机械、磁机耦合损耗因子与机械品质因素Q之间的关系表达。
     3、在实验方法上,建立了磁滞损耗因子的高能量表征实验平台,以k33轴向伸长模式为基础,获得了该模式下的损耗因子及其在各种偏置磁场条件下的变化趋势及若干关键参数的变化特征。采用区别于驱动线圈的感应线圈的阻抗特性,以降低线圈本身参数属性对振子阻抗特性及损耗因子的影响。同时,将考虑损耗因子的等效电路分析方法应用到超磁致伸缩换能器的建模中。并分析了恒定电流驱动(磁场恒定)、恒定电压驱动(磁感应强度恒定)以及恒定振幅输出(输入功率恒定)三种驱动方式对损耗因子实验测量过程的影响。
     4、涡流损耗是超磁致伸缩材料动态应用的另一种主要损耗,其大小与材料的物理属性(电阻率、磁导率)、几何形状(圆柱、叠片等)及器件工作的频率密切相关。决定涡流损耗的关键因素是涡流截止频率,抑制涡流损耗的方法包括提高材料的电阻率或采用薄片及其叠堆形式的材料结构。为降低涡流损耗对超磁致伸缩材料磁滞损耗分析过程的影响,本论文分析了整体棒状结构与叠堆结构的超磁致伸缩棒的涡流损耗模型,通过试验分析了两种结构材料的涡流损耗对器件阻抗频谱及振动输出的影响,验证了实验结果与模型的一致性。
     以上研究成果与创新内容解决了超磁致伸缩材料在动态应用时的磁滞损耗的表征与涡流损耗的抑制等关键问题,丰富了磁滞损耗建模方法,并保证了新的磁滞建模方法的简洁直接、快速响应及反映材料的固有物理属性的特点。磁滞损耗理论与实验结果相结合,论文在研究内容上是自洽的。
     本学位论文得到国家自然科学基金项目‘‘Galfenol智能型悬臂梁非线性耦合动力学模型研究”(51175395)、“基于惯性冲击的磁致伸缩式微小无缆驱动器研究”(51165035)、教育部博士点基金项目“基于磁各向异性的Galfenol本征非线性模型及其应用研究”(20090143110005)及广西制造系统与先进制造技术重点实验室开放基金项目“考虑磁滞与涡流瞬态损耗的超磁致伸缩致动器建模及其动态应用研究”(11-031-12S05)的资助。
Smart materials can transform electric, magnetic and thermal energies into mechanical energy, which is based on varied physical effects within the materials. They are also known as new functional materials combining the ability of actuation and sensing together, which makes them the designing and manufacturing basis from high power transducers to micro/nano scale devices. The usual smart materials include giant magnetostrictive materials, piezoelectrics, shape memory alloy, electroactive materials and magneto-rheological/electrorheological fluid, which are widely applied in precise actuation, ultra-precise machining, ultrasonic cutting, active vibration control, non-destructive testing and so on. Hystersis exists with smart materials between the input and the output signals in the process of transforming energies, which is named as magnetic hystereis specially for giant magnetostrictive materials (GMM in short). Hystereis is actual a kind of energy loss. In order to study and characterize the hysteresis behavior of GMM, the method of using three types of losses, magnetic, mechanical and piezomagnetic losses and their losses factors is adopted in this thesis based on the physical intrinsic properties of materials. Research includes the expression and measuring method of these losses, which will be the base in analyzing and modeling dynamic and high power giant magnetostrictive materials devices.
     The main content and creative aspects are depicted in the following four parts:
     1. The hysteresis modeling methods for giant magnetostrictive materials include physical hysteresis models, Jiles-Athertonmodel and Free-energy model, and mathematical hysteresis model, Preisach model and so on. These models are limited in dynamic applications, time response, and computing complexity and in indicating the physical origin. Hysteresis is a kind of energy losses in actual physical meaning. The thesis adopt three types of losses, magnetic, mechanical and piezomagnetic losses to characterize hysteresis behavior, based on the Gibbs and Helmholtz free energy and linear constitutive equations. This method analyzes the internal friction theory and the physical origin of hysteresis loss, and aims to keep the modeling method simple, quick in response and accurate.
     2. The impedance expressions and mechanical quality factors at resonance and anti-resonnace of giant magnetostrictive resonators are the bases for the characterization of magnetic, mechanical and piezomagnetic losses factors. Considering the anisotropic of the material, impedance expressions in k33、k33、kt、kp、 k15modes, and the relationships between losses factors and their mechanical quality factors are established.
     3. In experimental method, the high power characterization platform was designed, and experiments were conducted for k33mode. The changing characteristics of losses factors and some key parameters with defferent bias magnetic field were abtained. Here, sensing coil was adopted for measuring impedance, since impedance is sensitive to the coil parameters. To extend the modeling for giant magnetostrictive devices, the equivalent circuits combing losses factors are consider in the thesis. What's more, the affects of driving techniques of constant current, constant voltage and constant power for losses analysis were introduced.
     4. Eddy current loss is one of main losses for dynamic applications of giant magnetostrictive materials, and is determined by physical properties (resistance, permeability), geometry (cylinder, plate) of materials and also the working frequency. The key parameter that affects the eddy current loss is the eddy current cut-off frequency. The methods in restricting eddy current losses include increasing the resistance of materials and using thin laminated structures. In this thesis, the model of eddy current losses for monolithic and laminated structures were established, and the experimental results of impedance spectra and vibration amplititute for these two kind of structures were shown, which were in consistant with the models.
     The results and creative points obtained in this thesis solved the problems of characterizing hysteresis loss and eddy current loss, and enrich the modeling mehods of hysteresis loss, and keep the method simple, quick in time response and indicate the originally physical meaning. The theory of hysteresis loss was combined with the experimental results, showing the self-consistant of the entire thesis.
     The research work in this thesis was supported by the National Natural Science Foundation of China (Grant No.51175395, and No.51165035), Ph.D. Programs Foundation of Ministry of Education of China (Grant No.20090143110005) and program from Guangxi Key Laboratory of Manufacturing System&Advanced Manufacturing Technology (Contract No.11-031-12S05).
引文
[1]姜德生,Richard O.Claus.智能材料·器件·结构与应用.武汉:武汉工业大学出版社,2000
    [2]陶宝祺.智能材料结构.北京:国防工业出版社,1997
    [3]Jonathan P. Gardner, John C. Mather, Mark Clampin, et al. The James Webb Space Telescope[J]. Space Science Reviews,2006,123(4):485-606
    [4]NASA, James Webb Space Telescope, http://www.jwst.nasa.gov/
    [5]Gyuhae Park, Matthew T. Bement, Daniel A. Hartman. The use of active materials for machining processes:A review[J]. International Journal of Machine Tools & Manufacture, 2007,47:2189-2206
    [6]P. Schellekens, N. Rosielle, H. Vermeulen, et al. Design for precision:current status and trends[J]. Annuals of the CIRP,1997,47(2):557-586
    [7]S.Y. Liang, R.L. Hecker, R.G. Landers. Machining process monitoring and control:the state of the art[J]. ASME Journal of Manufacturing Science and Engineering,2004,126(5):297-310
    [8]S. Srinivasan, M. McFarland. Smart Structures:Analysis and Design[M]. Cambridge University Press, Cambridge,2001
    [9]I. Chopra. Review of state of art of smart structures and integrated systems[J]. AIAA Journal, 2002,40(11):2145-2187
    [10]D. J. Inman. Smart materials in damage detection and prognosis[C]. Proc. of the Fifth Inter. Conf. on Damage Assessment of Structures, Southampton, UK,2003:3-16
    [11]张永宇.V型电热硅微致动器性能及其应用研究[D].上海:上海大学,2006
    [12]Changjun Qin, Peisun Ma, Qin Yao. A prototype micro-wheeled-robot using SMA actuator[J]. Physical,2004,113(1):94-99
    [13]Khan Mughees M, Lagoudas Dimitris C, Rediniotis Othon K. Thermoelectric SMA actuator: Preliminary prototype testing[C]. Proc. of SPIE-The Inter. Society for Optical Engineering, 2003,5054:147-155
    [14]田民波编著.磁性材料[M].北京:清华大学,2001
    [15]钟文定编著.铁磁学(中册,第1版).北京:科学出版社,1987
    [16]陈定方,卢全国,梅杰,等.Galfenol合金应用研究进展[J].中国机械工程,2011,22(11):1370-1378
    [17]江洪林,张茂才,高学绪,等.快淬Fe83Gal7合金薄带的显微组织和磁致伸缩性能[J].金属学报,2006,42(2):177-180
    [18]A.E. Clark. Ferromagnetic materials:a handbook on the properties of magnetically ordered substances[M]. Ed. E. P. Wohlfarth, North Holland Publishing, Co., Amsterdam,1980
    [19]M.J. Dapino, F.T. Calkins, R.C. Smith, et al. A magnetoelastic model for magnetostrictive sensors[C]. Proc. of ACTIVE 99,1999,2:1193-1204
    [20]M. Anjanappa, Y. Wi. Magnetostrictive particulate actuators:configuration, modeling and characterization[J]. Smart Materials and Structures,1997,6:393-402
    [21]E. Hristoforou, R. E. Reilly. A digitizer based on reflections in delay lines[J]. Journal of Applied Physics,1991,70(8):4577-4580
    [22]L. Sandlund, M. Fahlander, T. Cedell, et al. Magnetostriction, elastic moduli and coupling factors of composite Terfenol -D[J]. Journal of Applied Physics,1994,75(10):5656-5658
    [23]Bhattacharya. Studies on the Dynamics and Control of Smart Laminated Composite Beams and Plates[D]. Indian Institute of Science, India,1997
    [24]G. Mcknight, G.P. Carman. Oriented Terfenol-D Composites[J]. Material Transactions,2002, 43(S):1008-1014
    [25]M Kohl, B Krevet, S R Yeduru, et al. A novel foil actuator using the magnetic shape memory effect[J]. Smart Mater. Struct.,2011,20:1-8
    [26]A. N. Vasil'ev, V. D. Buchel'nikov, T. Takagi, et al. Shape memory ferromagnets[J].2003 Phys.-Usp.2003(6):1-37
    [27]J. Pons, E. Cesari, C. Segui, et al. Ferromagnetic shape memory alloys:Alternatives to Ni-Mn-Ga[J]. Materials Science and Engineering A,2008,481-482:57-65
    [28]AdaptaMat Ltd.. http://www.adaptamat.com/
    [29]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003:140-142
    [30]杨宜民.新型驱动器及其应用[M].北京:机械工业出版社,1999:110-111
    [31]L. Kiesewetter. Terfenol in linear motors[C]. Proc.2nd Inter. Conf. Giant Magnetostrictive Alloys,1988
    [32]J.E. Miesner, J.P. Teter. Piezoelectric magnetostrictive resonant inchworm motor. Proc.5th. Annu.Int.Symp. Smart Structures Materials, San Diego, CA,1998 (3326)
    [33]R. Venkataraman. A hybrid actuator[D]. Univ. of Maryland,1995
    [34]T. Akuta. Rotational type actuators with Terfenol-D rods. Proc.3rd. Int. Conf. New Actuators, VDI-VDE, Bremen, Germany,1992:244-248
    [35]F. Claeyssen, N. Lhermet, F. Barillot, et al. Giant Dynamic Strain in Magnetostrictive Actuators and Transducers[C]. ISAGMM 2006 CONEF., OCT.2006, CHINA
    [36]F. Claeyssen, F. Barillot, N. Lhermet, et al. Tunable Proof Mass Actuator Based on a Pendulum Structure[C].11th International Conference on New Actuators, Bremen, Germany, 9-11 June 2008
    [37]Toshiyuki Ueno, Chihiro Saito, Nobuo Imaizumi, et al. Miniature spherical motor using iron-gallium alloy (Galfenol)[J]. Sensors and Actuators A:Physical,2009,154:92-96
    [38]Toshiyuki Ueno, Toshiro Higuchi. Two-DOF Micro Magnetostrictive Bending Actuator for Wobbling Motion[J]. IEEE TRANSACTIONS ON MAGNETICS,2008,44(11):4078-4080
    [39]王博文.巨磁致伸缩材料及其应用[J].沈阳工业大学学报,1998,(3):64-67
    [40]Goran Engdahl. Handbook of Giant Magnetostrictive Materials[M]. Academic Press,2000
    [41]E. Quandt. Giant Magnetostrictive Thin Film Materials and Applications[J]. Journal of Alloys and Compounds,1997,258:126-132
    [42]Pons Jose L.执行器技术:微机电方法[M].北京:科学出版社,2007:181
    [43]Flatau A. B, Dapino M. J and Calkins F. T. High bandwidth tunability in a smart vibration absorber, SPIE Smart Structure and Materials Conference, San Diego,1998:463-473
    [44]Clark AE and Savage HT. Giant magnetically induced changes in elastic moduli in Tb(0.3)Dy(0.7)Fe(2), IEEE Transactions on Sonics and Ultrasonics, SU-22(1),1975:50-52
    [45]ETREMA Products, Inc. ULTRASONIC TRANSDUCER CU18A technical manual. http://www.etrema.com/
    [46]甘肃天星稀土功能材料有限公司.TX-VSR智能振动时效装置.http://hattiel.diytrade. com/
    [47]康仁科,马付建,董志刚,等.难加工材料超声辅助切削加工技术[J].航空制造技术,2012,44(16):4449
    [48]A. Harms, B. Denkena, N. Lhermet. TOOL ADAPTOR FOR ACTIVE VIBRATION CONTROL IN TURNING OPERATIONS. ACTUATOR 2004,9th International Conference on New Actuators,14-16 June 2004, Bremen, Germany,2004:694-697
    [49]马付建,康仁科,郭东明,等.三维编织碳纤维复合材料超声辅助车削可行性分析[J].宇航材料工艺,2011(03):65-69
    [50]F J Ma, D M Guo, R K Kang, et al. Surface quality of carbon/carbon composite after ultrasonic assisted turning[C]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2011,225(11):2144-2148
    [51]V.I. Babitsky, A.N. Kalashnikov, A. Meadows, et al. Ultrasonically assisted turning of aviation materials [J]. Journal of Materials Processing Technology,2003,132(1-3):157-167
    [52]C. S. Liu, B. Zhao, G. F. Gao, et al. Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composite SiCp/Al[J]. Journal of Materials Processing Technology,2002,129:196-199
    [53]B. Azarhoushang, J. Akbari. Ultrasonic-assisted drilling of Inconel 738-LC[J]. International Journal of Machine Tools & Manufacture,2007,47(7-8):1027-1033
    [54]J. Pujana, A.Rivero, A.Celaya et al. Analysis of ultrasonic-assisted drilling of Ti6A14V[J]. International Journal of Machine Tools & Manufacture,2009,49 (6):500-508
    [55]S. Sherrit, M. Badescu, X. Bao, Y. Bar-Cohen, Z. Chang. Novel Horn Designs for Power Ultrasonics[C].2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference.2004:2263-2266
    [56]Y. Bar-Cohen, S. Sherrit, X. Bao, and Z. Chang. Ultrasonic/Sonic Sampler and Sensor Platform for In-situ Planetary Exploration. Proceedings of the International Conference on MEMS, NANO and Smart Systems (ICMENS'03).2003:
    [57]Zensheu Chang, Stewart Sherrit, Xiaoqi Bao, and Yoseph Bar-Cohen. Design and analysis of ultrasonic horn for USDC (Ultrasonic/Sonic Driller/Corer). Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies.2004: 320-326
    [58]Jack Aldrich, Stewart Sherrit, Xiaoqi Bao, Yoseph Bar-Cohen, Mircea Badescu, Zensheu Chang. Extremum-seeking control for an Ultrasonic/Sonic Driller/Corer (USDC) driven at high-power. Smart Structures and Materials 2006:Modeling, Signal Processing, and Control, 2006:
    [59]B. Azarhoushang, T. Tawakoli. Development of a novel ultrasonic unit for grinding of ceramic matrix composites[J]. The International Journal of Advanced Manufacturing Technology,2011,59(9-12):945-955
    [60]任宇江.碳纤维复合材料的超声辅助磨削加工技术研究[D].大连:大连理工大学,2010
    [61]http://www.disco.co.jp/cn_s/index.html
    [62]高军,崔巍.超声切割技术在复合材料加工领域的应用[J].航空制造技术,2008,44:50-52
    [63][美]C.甄纳著.金属的弹性和滞弹性[M].北京:科学出版社,1965
    [64]葛庭燧著.固体内耗理论基础:晶界弛豫与晶界结构[M].北京:科学出版社,2000
    [65]A.S.Nowick, B.S.Berry. Anelastic relaxation in crystalline solids[M]. New York, Academic Press,1972
    [66]R.de Batist. Internal friction of structural defects in crystalline solids[M]. Amsterdam, New York, North-Holland Pub. Co.,1972
    [67]程开甲.内耗的热力学研究Ⅰ[J].物理学报,1955,11(2):163-177
    [68]程开甲,李正中.内耗的热力学研究Ⅱ:代位合金在有序或无序态的内耗理论[J].物理学报,1956,12(4):281-297
    [69]Adly A A, Mayergoyz I D. Experimental testing of the average Preisach model of hysteresis[J]. IEEE Transactions on Magnetics,1992,28(5):2268-2270
    [70]Restorff J B, Savage H T, Clark A E, et al. Preisach modeling of hysteresis in Terfenol-D[J]. Journal of Applied Physics,1990,67(9):5016-5018
    [71]Smith R C. Hysteresis modeling in magnetostrictive materials via Preisach operators[J]. Journal of Mathematical Systems, Estimation, and Control,1998,8(2):249-252
    [72]Natale C, Velardi F, Visone C. Modeling and compensation of hysteresis for magnetostrictive actuators[J].2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings 8-12 July 2001, Como, Italy,744-749
    [73]Brokate M. Some mathematical properties of the Preisach model for hysteresis [J]. IEEE Transactions on Magnetics,1989,25(4):2922-2924
    [74]Preisach F.uber Die Magnetische Nachwrikung[J]. Zeitschrift fur Physik,1935,94:277-302
    [75]Ktena, A., Fotiadis, D.I., Berger, A., et al. Preisach Modeling of AFC Magnetic Recording Media[J]. IEEE Transactions on Magnetics,2004,40(4):2128-2130
    [76]Gorbet, R.B., Morris, K.A., Wang, D.W.L., Passivity-Based Stability and Control of Hysteresis in Smart Actuators[J]. IEEE Transactions on Control System Technology,2001,9(1):5-16
    [77]Ram Venkataraman Iyer, Xiaobo Tan, P S Krishnaprasad. Approximate Inversion of the Preisach Hysteresis Operator with Application to Control of Smart Actuators[J]. IEEE Transactions on Automatic Control.2005,50(6):798-810
    [78]Mayergoyz I D. Mathematical models of hysteresis[M]. New York:Spring-Verlag,1991
    [79]Hughes D, Wen J T. Preisach modeling and compensation for smart materials hysteresis [J]. SPIE, Active Materials Smart Struct.,1994,2427:50-64
    [80]Philips D A, Dupre L R, Melkebeek J A. Comparizon of Jiles and Preisach hysteresis models in magnetodynamics[J]. IEEE Transactions on Magnetics,1995,31(6):3551-3553
    [81]Adly A A, Mayergoyz I D. Magnetostriction simulation using anisotropic vector Preisach-type models[J]. IEEE Transactions on Magnetics,1996,32(5):4773-4775
    [82]Corbet R B, Wang D W L, Morris K A. Preisach model identification of a two-wire SMA actuator[C]. Presented at Proceeding- IEEE international Conference on Robotics and Automation, Leuven, Belgium,1998,3:2161-2167
    [83]Majima S, Kodama K, Hasegawa T. Modeling of shape memory alloy actuator and tracking control system with the model[J]. IEEE Transactions on Control Systems Technology,2001,9(1):54-59
    [84]Tan X. Control of smart actuators. PhD Dissertation, University of Maryland, available as ISR Technical Report PhD 2002:8
    [85]Tan X, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators[J]. Automatica,2004,40(9):1469-1480
    [86]E D Torre, L H Bennett, R A Fry. Preisach-arrhenius model for thermal aftereffect [J]. IEEE Transactions on Magnetics,2002,38(5):3409-3416
    [87]T Suzuki, E Matsumoto. Magnetoelastic behavior of ferromagnetic materials using stress dependent Preisach model based on continuum theory[J]. International Journal of Applied Electromagnetics and Mechanics,2004,19:485-489
    [88]Smith, R.C., Dapino, MJ., A Homogenized Energy Model for the Direct Magnetomechanical Effect [J]. Center for research in scientific computation, CRSC-TR05-31, http://www.ncsu.edu/crsc/reports.htm
    [89]Smith, R.C., Hatch, A.G., Parameter estimation techniques for a class of nonlinear hysteresis models[J]. Inverse problems,2005,21(4):1363-1377
    [90]Smith, R.C., Hatch, A.G., Mukherjee, B., et al. A Homogenized Energy Model for Hysteresis in Ferroelectric Materials:General Density Formulation[J]. Journal of intelligent material systems and structures,2005,6(9):713-732
    [91]Smith R C. Modeling techniques for magnetostrictive actuators[C]. Presented at Proceedings of SPIE -The International Society for Optical Engineering, San Diego, CA, USA,1997, 3041:243-253
    [92]Dapino M J, Smith R C, Flatau A B. Coupled structural-magnetic strain model for magnetostrictive transducers[C]. Proceedings of SPIE -The International Society for Optical Engineering,1999,3668(1):405-416
    [93]Calkins F T, Smith R C, Flatau A B. Energy-based hysteresis model for magnetostrictive transducers[J]. IEEE Transactions on Magnetics,2000,36(2):429-439
    [94]Dapino M J, Smith R C, Flatau A B. Structural magnetic strain model for magnetostrictive transducers [J]. IEEE Transactions on Magnetics,2000,36(3):545-556
    [95]曹淑瑛.超磁致伸缩致动器的磁滞非线性动态模型与控制技术:[博士学位论文].天津:河北工业大学,2004
    [96]曹淑瑛,王博文,闫荣格,等.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145-149
    [97]Cao S Y, Wang B W, Yan R G, et al. Optimization of hysteresis parameters for Jiles-Atherton model using a genetic algorithm[J]. IEEE Transaction on Applied Superconductivity,2004, 14(2):1157-1160
    [98]曹淑瑛,王博文,郑家驹,等.应用混合遗传算法的超磁致伸缩致动器磁滞模型的参数辨识[J].中国电机工程学报,2004,24(10):127-132
    [99]黄文美,王博文,曹淑瑛,等.计及涡流效应和应力变化的超磁致伸缩换能器的动态模型[J].中国电机工程学报,2005,25(16):132-136
    [100]Cao S Y, Wang B W, Zheng J J, et al. Modeling dynamic hysteresis for giant magnetostrictive actuator using hybrid generic algorithm[J]. IEEE Transactions on Magnetics,2006,42(4):911-914
    [101]Huang W M, Wang B W, Cao S Y, et al. Dynamic strain model with eddy current effects for giant magnetostrictive transducer[J]. IEEE Transactions on Magnetics,2007,43(4):1381-1384
    [102]D C Jiles. Introduction to Magnetism and Magnetic Materials[M]. Chapman and Hall Press, London, UK,1995
    [103]Jiles, D.C., Atherton, D.L., Theory of ferromagnetic hysteresis [J]. Journal of Magnetism and Magnetic Materials,1986,61:48-60
    [104]Jiles D C, Atherton D L. Ferromagnetic hysteresis [J]. IEEE Transactions on Magnetics, 1983,19(5):2183-2185
    [105]Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis [J]. IEEE Transactions on Magnetics,1992,28(1):27-35
    [106]Sablik M J, Kwun H, Burkhardt G L, et al. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis[J]. J. Appl. Phys.,1987,61(8):3799-3801
    [107]Sablik M J, Jiles D C. A model for magnetostriction hysteresis [J]. J. Appl. Phys.,1988, 64(10):5402-5404
    [108]Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostriction hysteresis[J]. IEEE Transactions on Magnetics,1993,29(3):2113-2123
    [109]Jiles D C. Theory of magnetomechanical effect[J]. J. Phys. D,1995,28:1537-1546
    [110]Sablik M J. A model for asymmetry in magnetic property behavior under tensile and compressive stress in steel[J]. IEEE Transactions on Magnetics,1997,33:3958-3960
    [111]Sablik, M.J., Jiles, D.C., Coupled Magnetoelastic Theory of Magnetic and Magnetostrictive Hysteresis[J]. IEEE Transactions on Magnetics,1993,29(3):2113-2123
    [112]Dapino, M.J., Smith, R.C., Faidley, L.E., et al. A Coupled Structural-Magnetic Strain and Stress Model for Magnetostrictive Transducers[J]. Journal of Intelligent Material Systems and Structures,2000,11:135-152
    [113]D C Jiles, A Ramesh, Y Shi, et al. Application of the anisotropic extension of the theory of hysteresis to the magnetization curves of crystalline and textured magnetic materials [J]. IEEE Transactions on Magnetics,1997,33(5):3961-3963
    [114]D C Jiles. Theory of the magnetomechanical effect[J]. Journal of Applied Physics,1995,28: 1537-1546
    [115]D C Jiles. Modeling the effects of eddy current losses on frequency dependent hysteresis loops in electrically conducting media[J]. IEEE Transactions on Magnetics,1994,30(6):4326^328
    [116]Sina Valadkhan, Kirsten Morris, Amir Khajepour. Review and Comparison of Hysteresis Models for Magnetostrictive Materials [J]. Journal of Intelligent Material Systems and Structures,2009,20(2):131-142
    [117]W. D. Armstrong. Magnetization and magnetostriction processes in Tb0.27-0.30 Dy 0.73-0.70 Tel.9-2.0[J]. Journal of Applied Physics,1997,81(5):2317-2326
    [118]W. D. Armstrong. An incremental theory of magneto-elastic hysteresis in pseudo-cubic ferromagneto-strictive alloys[J]. Journal of Magnetism and Magnetic Materials,2003,263:208-218
    [119]P. G. Evans, M. J. Dapino. State-space constitutive model for magnetization and magnetostriction of Galfenol alloys[J]. IEEE Transactions on Magnetics,2008,44(7):1711-1720
    [120]Smith R C, Dapino M J, Seelecke S. Free energy model for hysteresis in magnetostrictive transducers[J]. Journal of Applied Physics,2003,93(1):458-466
    [121]Nealis J M, Smith R C. Robust control of a magnetostrictive actuator[C]. Presented at Proceedings of SPIE, Smart Structure and Materials 2003:Modeling, Signal Processing, and Control, San Diega, CA, United States,2003,5049:221-232
    [122]Smith Ralph C., Dapino Marcelo J., Braun Thomas R., et al. A homogenized energy framework for ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics,2006,42(7):1747-1769
    [123]R C Smith, S Seelecke, M Dapino, et al. A unified framework for modeling hysteresis in ferroic materials[J]. Journal of Mechanics and Physics of Solids,2006,54:46-85
    [124]田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型的数值实现[J].机械科学与技术,2005,24(6):650-652
    [125]Tian Chun, Wang Hongzhen. Dynamic free energy hysteresis model in magnetostrictive actuators[J]. Chinese Journal of Mechanical Engineering,2006,19(1):85-88
    [126]Cincotti S, Marchesi M, Serri A. A neural network model of parametric non-linear hysteresis inductors[J]. IEEE Transactions on Magnetics,1998,34(5):3040-3043
    [127]Vecchio P D, Salvini A. Neural netwok and fourier descriptor macromodeling dynamic hysteresis[J]. IEEE Transactions on Magnetics,2000,36(4):1246-1249
    [128]Minchev S V. Neural networks for modeling of dynamic systems with hysteresis[C]. First International IEEE Symosium "Intelligent Systems", Sept.,2002,42-47
    [129]Dimitre Makaveev, Luc Dupre, Marc De Wulf, et al. Modeling of quasistatic magnetic hysteresis with feed-forward neural networks[J]. Journal of Applied Physics,2001,89(11):6737-6739
    [130]Dimitre Makaveev, Luc Dupre, Marc De Wulf, et al. Dynamic hysteresis modelling using feed-forward neural networks[J]. Journal of Magnetism and Magnetic Materials, Proceedings of the 15th International Conference on Soft Magnetic Materials (SMM15), 2003,254-255:256-258
    [131]Dimitre Makaveev, Luc Dupre, Marc De Wulf, et al. Isotropic vector hysteresis modeling with feed-forward neural networks[J]. Journal of Applied Physics,2002,91(10):8322-8324
    [132]Dmure MaKaveev, Luc Dupre, Jan Melkebeek. Neural-network-based approach to dynamic hysteresis for circular and elliptical magnetization in electrical steel sheet[J]. IEEE Transactions on Magnetics,2002,38(5):3189-3191
    [133]F. T. Calkins. Design, Analysis, and Modeling of Giant Magnetostrictive Transducers[D]. Ames:Iowa State Univesity,1997
    [134]WANG Bowen, BUSBRIDGE S C, LI Yangxian, et al. Magnetostriction and magnetization process of Tb0.27Dy0.73Fe2 single crystal[J]. Journal of Magnetism and Magnetic Materials,2000,218(2-3):198-202.
    [135]PONS J L. Emerging Actuator technologies:a micro- mechatronic approach[M]. West Sussex, England:John Wiley & Sons Ltd,2005.
    [136]STILLESJO F, ENGDAHL G, BERGQVIST A. A design technique for magnetostrictive actuators with laminated active material[J]. IEEE Transactions on Magnetics,1998,34(4): 2141-2143.
    [137]袁惠群,孙华刚.超磁致伸缩材料内部磁场特性及材料参数对其影响分析[J].中国电机工程学报,2008,28(30):119-124.
    [138]孙华刚,袁惠群.超磁致伸缩材料内部磁场与涡流损耗理论分析[J].东北大学学报,2008,29(3):371-374.
    [139]李淑英,王博文,周严,等.叠层复合磁致伸缩材料驱动器的输出位移特性[J].仪器仪表学报,2009,30(1):71-75.
    [140]SLAUGHTER J. Investigation of eddy current losses in laminated Terfenol-D drivers[J]. Journal of the Acoustical Society of America,2001,109(5):2435.
    [141]贾傲,张天丽,孟皓,等.粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J].金属学报,2009,45(12):1473-1478.
    [142]ENGDAHL G. Handbook of giant magnetostrictive materials[M]. San Diego:Academic Press,2000.
    [143]WING S, NERSESSIAN N, CARMAN G P. Dynamic Magnetomechanical behavior of Terfenol-D/Epoxy 1-3 particulate composites[J]. IEEE Transactions on Magnetics,2004, 40(1):71-77.
    [144]MEEKS S W. The equivalent circuit in the mobility analogy of a magnetostrictive transducer in the presence of eddy currents[M]. Washington:Report of Naval Research Laboratory,1979.