成年大鼠脊髓损伤后轴突生长导向因子Slit2的表达及Rho GTPases失衡对轴突再生性修复的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分神经生长导向因子Slit2在成年大鼠急性脊髓损伤后的表达和定位
     目的:
     观察轴突生长导向因子Slit2在成年大鼠急性外伤性脊髓损伤(traumatic spinal cord injury,SCI)后不同时间段表达量的变化和分布情况,探讨Slit2对成年大鼠SCI后轴突再生性修复中导向性延伸的可能机制和意义。
     方法:
     取成年SD大鼠72只,体重200~250克,雌雄不限,采用Allen’s打击法制作SCI模型,分别于损伤后第2、4、7、14d剖取损伤脊髓组织,应用半定量RT-PCR方法分析Slit2 mRNA表达水平变化,免疫组织化学法观察Slit2蛋白在损伤脊髓区的分布情况,采用免疫荧光染色结合激光共聚焦扫描观察Slit2的表达和星形胶质细胞增生之间的关系。
     结果:
     成年大鼠SCI后随着星形胶质细胞的增生,Slit2 mRNA在脊髓损伤区的表达呈明显升高趋势(P<0.05)并于脊髓损伤后第7天达到峰值,光密度相对比值达到0.725±0.005,之后则逐步下降; Slit2蛋白阳性信号先后出现在急性SCI区灰质区星形胶质细胞胞质中及神经元胞膜上,以前、后角及中央管周围较为聚集;免疫荧光组织化学结合激光共聚焦扫描观察则发现随着星形胶质细胞的增生,损伤部位灰质内出现星形胶质细胞标记物GFAP和Slit2在中线区域的共聚焦表达现象,提示Slit2由中线星形胶质细胞分泌并被运输到上述部位发挥作用。
     结论:
     成年大鼠SCI后随着星形胶质细胞的增生,脊髓损伤区内有Slit2表达一过性上调现象出现并在损伤脊髓灰质内广泛分布,可能对SCI后的轴索再生性修复过程中生长锥导向性延伸起到关键性的推斥性引导作用。
     第二部分神经生长导向因子Netrin-1和Slit2在成年大鼠脊髓损伤后的共表达
     目的:
     观察成年SD大鼠急性脊髓损伤后不同时间段Netrin-1和Slit2的共表达及分布情况,探讨再生轴突所处微环境中吸引性和排斥性的导向线索相互整合并引导生长锥正确延伸的机制。
     方法:
     成年SD大鼠40只随机分为SCI2,4,7,14d组和对照组共5组,每组8只,SCI组制作Allen’s脊髓打击模型按时序取材,免疫荧光激光共聚焦扫描Netrin-1和Slit2蛋白在SCI后损伤脊髓局部的表达及定位情况。
     结果:
     SCI后2d,大鼠脊髓挫伤部位即出现轴突生长吸引性因子Netrin-1和排斥性因子Slit2的表达同步上调现象;而后二者表达迅速增强并于SCI后7d达到峰值,在前脚、中央管和后脚三个区域Netrin-1及Slit2荧光强度分别达到83.66±4.15/75.12±6.54、78.27±4.47/72.67±4.65和86.96±2.35/64.47±5.21,且Netrin-1和Slit2在轴突胞膜上有共同表达现象,使代表Netrin-1的绿色荧光和代表Slit2的红色荧光在轴突胞膜上产生融合而发出橙色荧光;SCI后同一时点损伤脊髓各部位Netrin荧光强度无明显差异,表达较均匀(P>0.05),而Slit2前角和中央管荧光强度无差异(P>0.05),但均强于后角(P<0.05);峰值过后二者又缓步下调,但Slit2下调幅度明显较Netrin-1大,SCI后14d时Slit2荧光强度脊髓三个视野中分别下调至42.33±5.64、43.77±4.35和33.43±4.65,而Netrin-1荧光强度则仅轻度下调,分别为79.29±3.68、70.77±3.64和74.28±4.35。
     结论:
     成年大鼠SCI后脊髓中枢存在吸引性导向因子Netrin-1和排斥因子Slit2的同步表达升高以及在轴突胞膜上共同表达现象,提示二者均能和轴突胞膜上各自特异性受体结合,这可能是SCI后星形胶质细胞反应性增生的一种表现。SCI后Netrin-1的表达比较均匀而Slit2的表达在受损灰质不同部位不同时间有所差异,这种吸引性和排斥性导向信号在再生脊髓前、后脚和中央管区域的轴突胞膜上以及不同时间段的整合变化可能对再生轴突的生长锥延伸方向起到关键性引导作用。
     第三部分成年大鼠急性脊髓损伤后轴突再生性修复过程中Rho GTPases的失衡性表达对轴突生长锥延伸的抑制作用
     目的:
     观察成年大鼠SCI(Spinal cord injury)后脊髓损伤区域中轴突内小G蛋白Rho族GTP酶中三个主要的蛋白质分子Rac1、Cdc42和RhoA的表达变化及Rho-Rho激酶(Rho associated kinase,ROK)下游作用底物肌球蛋白轻链(Myosin light chain ,MLC)的过度磷酸化变化情况,探讨成年大鼠SCI后轴突再生过程中生长锥易于萎陷的机制。
     方法:
     成年SD大鼠36只随机分为SCI4,7,14,21d组,对照组和假手术组共6组,每组6只,SCI组制作Allen’s脊髓打击模型并按时序取材, Western印迹检测Rac1、Cdc42和Rho A的表达变化以及MLC磷酸化程度变化, GST Pull down assay检测RhoA活化程度变化。
     结果:
     成年大鼠SCI后,脊髓挫伤部位Rac1和Cdc42蛋白的表达逐步升高(P<0.05),并在第7天达到峰值,之后二者则呈现下降趋势,至SCI后三周时表达基本回归初始水平(P>0.05);与之形成对比的是RhoA总蛋白的表达则无明显变化(P>0.05),但是Rho的下游信号通道,RhoA-ROK通路的作用底物肌球蛋白轻链MLC的磷酸化水平却逐步升高(P<0.05);另一方面,Pull down assay-RhoA活性测定则显示RhoA的活性形式GTP-RhoA在SCI后的表达呈逐步增高趋势(P<0.05),而且这种升高在SCI后三周时并无衰减。
     结论:
     成年大鼠SCI后3周时,在脊髓损伤区域的神经元轴突内出现了三个主要的Rho族GTP酶:Rac1、Cdc42和RhoA的表达失衡现象,从Rac1和Cdc42的表达占优势转变为GTP-RhoA的表达直线上升并失去控制,这种情况的出现可能是损伤区域的外周微环境中诸多吸引性和排斥性信号表达相互整合,相互制约机制出现失衡、失控的直接后果; RhoA活性持续异常的升高可以导致肌球蛋白轻链(myosin light chain,MLC)磷酸化程度的持续异常升高即过渡磷酸化,而这种MLC的过渡磷酸化可以导致再生轴突细胞骨架钙敏化(Ca2+ sensitization),即对钙离子的敏感性增高,刺激肌动-肌球蛋白的收缩性,进而使成年SD大鼠损伤脊髓的再生轴突生长锥发生萎陷和神经突起回缩。
     第四部分Rho-ROK通路的抑制对体外模拟脊髓缺血及再灌注诱导的神经元损伤中的保护作用
     目的:
     观察Rho-ROK通路抑制剂Y-27632对体外培养的神经元细胞模拟SCI后脊髓缺血及再灌注损伤过程中细胞骨架的保护作用,探讨成立哺乳动物SCI后轴突再生过程中Rho/Rho激酶的过渡激活对于生长锥易于萎陷的可能机制。
     方法:
     体外培养神经母细胞瘤细胞株N2a细胞,分为对照组、模拟缺血组和干预Ⅰ,Ⅱ组:将N2a神经元细胞置于5%CO2,95%N2的37℃培养箱中培养120min以模拟脊髓SCI后在所处的缺血缺氧环境中的变化和反应,干预Ⅰ组预先加入Rho激酶抑制剂Y-27632对在缺氧环境中培养的N2a神经元作用,干预Ⅱ组则在缺氧培养120min后再加入Y-27632对缺血再灌注中的神经细胞起作用,然后用FITC标记的鬼笔毒环肽染色神经细胞的纤维状肌动蛋白(F-actin)骨架,采用免疫荧光技术观察其重组及变构的变化;同时我们采用MTT细胞增殖实验分别检测用不同浓度Y-27632干预后及干预Ⅰ,Ⅱ组的细胞活力。
     结果:
     正常培养的N2a细胞生长良好,轴突、树突形态清晰,胞体比较大,有明显的深色的细胞核,胞浆区较为透亮,免疫荧光下可见纤维状肌动蛋白丝主要分布于细胞周边,成丝带状,应力纤维少;而经过缺氧培养后,可见细胞骨架发生重组变化,应力纤维明显增多,同时出现周边肌动蛋白丝带模糊,轴突回缩现象;然而预先加入Y-27632孵育后再经缺氧培养的神经细胞则无明显的重组变化,轴突回缩不明显,周边肌动蛋白丝带依然清晰,胞浆内应力纤维也较少;而缺氧培养后再加入Y-27632孵育也可明显逆转这一过程,使已经发生轴突回缩的神经细胞胞膜上重新出现轴突并生长;MTT细胞增殖实验则显示Y-27632能显著提高N2a细胞模拟缺血和缺血再灌注24h后的存活率(P<0.05),而且其保护效率和浓度在一定范围内成正比。
     结论:
     采用Rho激酶抑制剂Y-27632对在体外培养的神经细胞模拟SCI后的缺血缺氧及再灌注损伤过程进行干预,可以明显抑制缺血缺氧及再灌注损伤所导致的神经元轴突内肌动蛋白细胞骨架的塌陷和回缩,从而可以防止甚至进而逆转生长锥的萎陷及神经突起的回缩,即Y-27632对神经损伤具有保护作用,而且这种保护作用主要是通过对Rho激酶(Rho association kinase,ROK)作用,对Rho-ROK通路进行抑制而实现的。
PartⅠ: Slit2 Expression Variety And Distribution In Adult SD Rats During Acute Phase of Spinal Cord Injury
     Objective:
     To observe the Slit-2 expression distribution and expressive variety during SCI of the rats,then investigate the molecular biological reason of the growth cone guidance.
     Methods :
     Make the model of SCI with Allen’s method, 72 adult SD rats were randomly divided into SCI 2, 4, 7, 14d groups, sham operation group and normal control group. After the spinal cords of rat were injured, hemi-quantitative Reverse transcription polymerase chain reaction was applied to detect the expressive variety of Slit2 mRNA. On the other hand, Immunocytochemistry was done to detect the cell location of Slit2 protein expression, immunofluorescence was done to investigate the relation of Slit2 protein expression hoist and the reactive astrocytes hyperplasia
     Results :
     There was little detectable Slit2 mRNA expression in normal control group and sham operation group spinal cord tissue samples. However,the mRNA expression of Slit2 had began to be upregulated just 2 days after spinal cord injury(on day 2) of the experimental rats(p<0.05), and it increased on day 2 to day 4 . The expression of Slit2 mRNA reached to a peak level on day 7 after SCI, and the signal intensity for Slit2 mRNA decreased from day 7 to day 14; On the other hand,immunohistochemistry showed that there was little detectable expression of Slit2 protein in normal control group tissue. However, Slit2 was positive in the spinal cord gray astrocytes of all SCI rats, microscope demonstrated many secretive brown-yellow color granules with a high density in cells. The irregular granules with a high density were Slit2, they appeared in the astrocytes of spinal cord gray on day 2 of SCI, the Slit2 protein was expressed in the astrocytes and neurocytes cytoplasm on day 4. The expression of Slit2 protein distributed diffusely in the spinal cord gray of SCI on day 7, but the granules density of central canal and anterior motor column was significantly higher than the other region. Our study showed that on day 7, the expression of Slit2 protein of SCI group had a 28.92% higher level than control tissue(x2=0.019,P<0.05 ); The Slit2 immunofluorescence positive signal also appeared at the extensive area of spinal cord gray, located in the astrocyte.
     Conclusion:
     This study demonstrates that Slit2 mRNA was expressed in the damaged local and vicinity part of gray matter, Slit2 proteins were excreted from astrocytes and transported to plasma membrane of growth cone of the regenerative axon, it is likely to do something importantly with axon regeneration after SCI
     PartⅡ: Expression Variety and Distribution of Netrin-1 and Slit2 In Adult SD Rats During Acute Phase of Spinal Cord Injury through immunofluorescence techniques by Confocal Laser Microscopy
     Objective:
     To observe the Netrin and Slit expression distribution and expressive variety during posttraumatic acute phase of SCI and investigate the molecular biological mechanism of the regenerative growth cone guidance.
     Methods:
     40 SD rats were randomly divided into 5 groups( SCI2, 4, 7, 14d groups and one normal control group),the model of SCI was made by Allen’s method. The expression and distribution of Netrin-1 and Slit2 were detected through immunofluorescence techniques, the co-expression of then were observed by confocal laser microscopy.
     Results:
     significant expressions of Netrin and Slit were showed at injured location at 2nd day post SC(IP<0.05), extensive green fluorescence and manipulus scattered red fluorescence were showed at 3 fields microscopically;on day 4, the expressions of Netrin and Slit were intensified significantly(P<0.05), the former expressed more extensively with greater amplitude in contrast with the latter, the co-expression on the cell membrane of neuron was obvious;on day 7, Netrin persistently high-expressed, Slit peaked its expression, the co-focalization of Netrin and Slit was presented microscopically, but a circle orange fluorescence was emerged from the cell membrane of neuron. Slit expression was significantly intensified at spinal cord posterior horn;both’s expressions were weakened after 2 weeks, but the down-regulation of Slit was more significant compared with Netrin. hinted the expressions of Netrin and Slit post SCI was time-dependent;Netrin fluorescence intensity had no significant variation at same time of spinal cord damage at different regions(P>0.05),but the fluorescence of Slit anterior angle was stronger than that of central canal and posterior horn(P<0.05).
     Conclusion:
     High level expressions and co-expression on plasma membrane of Netrin and Slit indicate that they may play some important roles in the progression of axon regeneration.
     PartⅢ: Expression Unbalance of The Rho GTPases: Rac,Cdc42 and Rho In Adult SD Rats During Acute Phase of Spinal Cord Injury and Growth Inhibition of Regenerative Axon
     Objective:
     Traumatic spinal cord injury(TSCI) is characterized by a progressive cell loss and a lack of axonal regeneration. In the central nervous system(CNS), the Rho GTPases: Rac, Cdc42 and RhoA are considered the molecule switch of the F-actin cytoskeleton recombination, having affinity with axon retractation.To observe the expression of the Rho-GTPases Rac,Cdc42 , Rho and the phosphorylation levels of myosin light chain(MLC) during posttraumatic acute phase of SCI ,we attempt to investigate the mechanism of the growth cones collapse of regenerative axon.
     Methods:
     36 SD adult rats were randomly divided into 6 groups( SCI4, 7, 14, 21d groups ,sham operation group and control group),the model of SCI was made by Allen’s method. The expressive variety of the Rho GTPases: Rac1,Cdc42, RhoA protein and the phosphorylation levels of MLC were detected through Western Blotting technique.On the other hand, GST Pull down assay was used to determine the level of GTP-RhoA.
     Results:
     The expressions of Rac1 and Cdc42 were manifestly increased at 4 day post SCI(P<0.05)and peaked at 7 day followed by a rapid decrease, both expressions fundamentally regressed to the initial levels at 3 weeks; On the contrast,RhoA total protein expression had no apparent variations post SCI, which compares unfavorably with Rac1 and Cdc42,RhoA expression levels had merely tenuous elevations compared with sham-operated groups at 4,7,14,21d post SCI, but with no statistical significance(P>0.05).On the other hand, Damaged spinal cord MLC phosphorylated level had a gradually elevated tendency with a time-lapse mode compared with sham-operated groups(P<0.05),nonetheless, no apprarant changes were detected in the expressions of myosin B chain total protein(P>0.05),and GST Pull down assay displayed in vivo regenerating axon GTP-RhoA expression had a gradually elevated tendency with a time-lapse mode post SCI(P<0.05).
     Conclusion:
     The expression unbalance of the GTPases Rac,Cdc42 and Rho may be important for the collapse of the growth cones of regenertative axon. we confirmed that the activation of Rho had increased notwithstanding its total protein had no apparent changes to switch on Rho-ROK pathway. Rho GTPases activations are regulated by in vitro cellular targeting signalling, on these grounds, we consider that Rho over activation in vivo regenerating axon post SCI plays a negative role for growth cone elongation, especially as the attractive signaling is attenuated at 3 weeks post SCI, we presume that the episode of disequilibrium was occurred in the attractive and repellent signals of SCI microenvironment at 3 weeks post SCI in rats ,this sort of disequilibrium is likely induced by astrocyte persistent hyperplasy, which directly leading to unbalanced expressions among in vivo regenerating axons Rac,Cdc42 and Rho, resulting in uncontrollable enhanced Rho activation followed by GTP-Rho activating ROK,after ROK phosphorylation Ca2+ non-dependent myosin B chain phosphatase myosin binding with subunit to inactivate it, thus cut down the dephosphorylation function on phosphorylational, causing MLC over-phosphorylation, MLC over-phosphorylation is likely one of the chief causes leading to growth cone ultimate detelectasis, which make albumen cytoskeleton calcium–sensitized, accordingly contributing on the polymerization and depolymerization of actin-globulin, ultimately leading to growth cone detelectasis,axon recovery.
     PartⅣ: Protection Effect of The Inhibition of Rho Association Kinase During N2a cell Mimic Ischemia and Ischemia Reperfusion Injury in Vitro
     Objective:
     To observe the reorganization of F-actin of neuron during mimic ischemia and ischemia reperfusion injury in vitro,we attempt to investigate the mechanism of the growth cones collapse of regenerative axon and the protection effect of the inhibition of Rho-ROK.
     Methods:
     After N2a cells induced by ischemia and ischemia-reperfusion were treated with different dilute Y-27632, a specific inhibitor of Rho association kinase, cell damage was analyzed by cell proliferation assay(MTT assay); on the other hand , N2a cells were then prepared for routine scanning observation through Immunofluorescence techniques by Confocal Laser Microscopy which stained with Fitc-phalloidin for F-actin visualization.
     Results:
     Ischemia induced a striking reorganization of actin cytoskeleton with a weakening of fluorescent intensity of the peripheral filament actin bands and formation of the long and thick stress fibers, lamellipodia and filopodia, but Pretreatment of Y-27632 could reversed the changes of ultrasturcture on the cellular surface, the stress fibers were diminished by pretreatment of it, and the protection of Y-27632 has related with its concentration in determinate bound. MTT assay show that Y-27632 could prolong the survival time of the N2a cells after mimic ischemia-reperfusion for 24h.
     Conclusion:
     The activation of Rho had a exceptional hoist after SCI. The activation of Rho association kinase(ROK) is likely to induce the collapse of the growth cone . Suppression of Rho association kinase activity could promote axonal growth on inhibitory spinal cord through ischemia and ischemia-reperfusion.
引文
1. Weidner N, Blesch A, Grill RJ, et al. Nerve growth factor- hypersecreting Schwann cell grafts augent and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1[J].Comp Neurol,1999, 413(4):495-506.
    2. Liu Y,Kim,D,Hies BT et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons[J].Neurosci,1999, 19 (11):4370-4387.
    3. Li HS, Chen JH, Wu W et al. Vertebrate Slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons[J]. Cell,1999,96:807-818.
    4. Wang KH, Brose K,Arnott D, et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching.[J].Cell, 1999:771-784
    5. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance[J]. Science, 1996,274(5290): 1123-1133.
    6. Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C.elegans UNC-6. Cell, 1994, 78 (3):409-424
    7. Keino-Masu K, Masu M, Hinck L, et al. Deleted in colorectal cancer(DCC) encodes a netrin receptor.Cell, 1996,87:175-185
    8. Virginie O,Francois S,Yohanns B,et al.Slit-Robo signaling prevents sensory cells from crossing the midline in drosophila.[J]. Elsevier,2004,Mechanisms of Development 121:427-436
    9. Wu W,Wong K,Chen JH,et al.Directional guidance of neuronal migration in the olfactory system by the protein slit. [J]. Nature, 1999, 400: 331-336
    10. Rothberg JM, Artavanis-tsakona S. Modularity of the Slit protein. Characterization of a conserved carboxy-terinal sequence in secreted proteins and a motif implicated in extraceluar protein interactions[j]. J Mol Biol, 1992,227(2):367-370.
    11. Brose K,Bland K,Wang KH,et al.Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance. [J] .Cell,1999, 96: 795-806
    12. Keleman, K., Rajagopalan, S., Cleppien, D., Teis, D., Paiha, K., Huber, L., Technau, G. and Dickson, B.J. Comm sorts Robo to control axon guidance at the Drosophila midline[J]. Cell. 2002,110, 415–427.
    13. Thies E, Davenport R W. Independent roles of Rho-GTPases in growth cone and axonal behavior[J]. J Neurobiol, 2003, 54(2):358-369.
    14. Hall A. Rho GTPase and the actin cytoskeleton [J]. Science,1998, 279 (5350): 509-514.
    15. Moon S Y,Zheng Y.Rho GTPase-activating proteins in cell regulation[J]. Trends in Cell Biology, 2003, 13(1):13-22.
    16. Van Aelst L,D’Souza-Schorcy C. Rho GTPases and signaling networks[J]. Genes Dev,1997,11:2295-34.
    17. Li HS, Chen JH, Wu W, et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell, 1999, 96(6):807 -818
    18. Stein E, Tessier-Lavigne M. Hierarchial organization of guidance receptor: silencing of netrin attraction by slit through a robo/dccreceptor complex. Science,2001,291 (5510): 1928-1938
    1. NusSlein-Volhard C,Wiechaus E,Kluding H.Mutations affecting the pattern of the larval Cuticle in drosophila melanogaster.I.zygotic locion the second chromosome[J]. Rouxs Arch Dev Biol,1984,193:267-283
    2. Kidd T,Brose K,Mitchell KJ,et al.Roundabout C axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors[J].Cell, 1998,92:205-215
    3. Brose K,Bland K,Wang KH,et al.Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance. [J] .Cell,1999,96: 795-806
    4. Stein.E,Tessier Lavigne.M,et al.Hierarchical organization of guidance receptors:silencing of netrin attraction by slit through a Robo/DCC receptor complex [J].Science,2001,291:1928-1938
    5. Wu W,Wong K,Chen JH,et al.Directional guidance of neuronal migration in the olfactory system by the protein slit. [J]. Nature, 1999, 400:331-336
    6. Wang KH, Brose K, Arnott D, et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching.[J].Cell, 1999:771-784
    7. Seita Hagino,Ken Iseki,Tetsuji Mori,et al.Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain.[J].Glia,2003,42:130-138
    8. Keleman, K., Rajagopalan, S., Cleppien, D., Teis, D., Paiha, K., Huber, L., Technau, G. and Dickson, B.J. Comm sorts Robo to control axon guidance at the Drosophila midline[J]. Cell. 2002,110, 415–427.
    9. Georgiou, M. and Tear, G. (2002). Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline. Development 129, 2947–2956.
    10. Virginie O,Francois S,Yohanns B,et al.Slit-Robo signaling prevents sensory cells from crossing the midline in drosophila.[J]. Elsevier,2004,Mechanisms of Development 121:427-436
    11. Li Jia,Lan Cheng,Jonathan R,et al.Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk.[J].Elserier,2005, Devlopmental Biology 282:411-421
    12. Neil V,Victor L,Izabell M,et al.Expression patterns of slit and robo family members during vertebrate limb development.[J]. Elsevier, 2001,Mechanisms of Development 106:175-180
    13. Ling Lin,Yi Rao,Ole Isacson.Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. [J]. Elsevier, 2005,Mol. Cell, Neurosci, 28:547-555
    14.刘宏志,李佐文,杨永利。脊髓损伤大鼠组织形态学变化与不同时点的Netrin-1表达。中国临床康复,2005,9(14):98-99
    15.周友清,陈亮,顾玉东。不同年龄大鼠坐骨神经损伤后slit2 mRNA表达的差异。中华医学杂志,2004,84(13):1110-1113
    16.闵敏,丁新生,田向阳等。神经生长导向因子Slit mRNA在人胚胎脊髓的原位杂交定位。江苏医药杂志,2004,30(5):337-338
    17. Wong K,Ren XR,Huang YZ,et al.Signal transduction in neuronal migration:roles of GTPases activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway[J].Cell,2001,107:209-221
    18. Kidd T,Brose K,Mitchell KJ,et al.Roundabout controls axon crossing of the CNS midline and defines a new subfamily of evolutionary conserved guidance receptors.[J]. Cell, 1998,92:205-214
    19. Matsumoto M,Ohtake K,Wakamatsu H,et al.Anesth Analg,2001;92(2):418-423
    1. Kennedy TE, Serafini T, Tessier-Lavigne M, et al. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell,1994,78(3):425-435
    2. Brose K, Bland K, Wang KH, et al. Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance.[J].Cell, 1999,96:795-806
    3. Seita Hagino, Ken Iseki, Tetsuji Mori, et al. Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain.[J]. Glia,2003, 42: 130-138
    4. Liu HZ,Li ZW,Yang YL.Expression of Netrin-1 and histomorphological changes in rats at different stages after spinal cord injury. [J].Chinese Journal of Clinical Rehabilitation,2005,9(14):98-99
    5. Yang SH, Zheng QX, Shao ZW, et al. Applied surgery of vertebral column. People’s military medical publishing company, 2004: 202-204
    6. Ling Lin, Yi Rao, Ole Isacson.Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. [J]. Elsevier,2005, Mol.Cell, Neurosci,28:547-555
    7. Tessier-Lavigne M,Placzek M, Lumsden AG,et al. Chemotropic guidance of developing axons in the mammalial central nervous system. Nature, 1988,336 (6201) : 775-778
    8. Keino-Masu K, Masu M, Hinck L, et al. Deleted in colorectal cancer(DCC) encodes a netrin receptor.Cell, 1996,87:175-185
    9. Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C.elegans UNC-6. Cell, 1994, 78(3): 409-424
    10. Shirasaki R, Katsumata RT, Murakami F, et al. Change in chemoattractant responsiveness of developing axons at an intermediate target. Science, 1998, 279(5347):105-107
    11. Kidd T, Brose K, Mitchell KJ, et al. Roundabout C axon crossing of the CNS midlineand defines a novel subfamily of evolutionarily conserved guidance receptors[J]. Cell, 1998,92:205-215
    12. Ming M, Ding XS,Tian XY,et. Expression of the nerve growth guidance cue Slit in the spinal cord of human embryo.[J]. JiangShu Medicine and Pharmic Joural,2004,30(5):337-338
    13. Li HS, Chen JH, Wu W, et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell, 1999, 96(6): 807-818
    14. Kidd T, Bland KS, Coodman CS. Slit is the midline repellent for the robo receptor in Drosophila.Cell,1999,96(6)785-794
    15. Bashaw GJ, Goodman CS. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell, 1999, 97:917-926
    16. Kidd T, Russell C, Goodman CS, et al. Dosagesensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midine.Neuron, 1998,20:25-33
    17. Stein E, Tessier-Lavigne M. Hierarchial organization of guidance receptor: silencing of netrin attraction by slit through a robo/dccreceptor complex. Science, 2001, 291(5510):1928-1938
    18. Zhou SQ, Gong JP, et al. Surgery-Insights and controversy(Second Edition). People’s healthy publishing company, 2005: 981-982
    1. Etienme-Manneville,S.,and Hall,A.Rho GTPases in cell biology[J]. Nature 2002, 420,629-635.
    2. Dickson,B,J.Rho GTPases in growth cone guidance[J]. Curr. Opin. Neurobiol.2001, 11,103-110.
    3. Tessier-Lavigne, M., and Goodman, C.S. The molecular biology of axon guidance. Science 1996, 274, 1123-1133.
    4. Yoshikawa,S.,and Thomas,J.B. Secreted cell signaling molecules in axon guidance[J].Curr.Opin.Neurobio.2004,14,45-50.
    5. Ng,J.,Nardine,T.,Harms,M.,Tzu,J.,et al.Rac GTPases control axon growth,guidance and branching[J].Nature 2002,416,442-447.
    6. Wong,K.,Ren,X.R.,Huang,Y.Z.,Xie,Y.,Liu,G.,Brady-Kalnay,S.M.,Rao,Y.,et al. Signal transduction in neuronal migration :roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway[J].Cell 2001,107,209-221.
    7. Wahl,S.,Barth,H.,Ciossek,T.,Aktories,K.,and Mueller,B.K.Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase[J].Cell Biol.2000,149,263-270.
    8. Aurandt,J.,Vikis,H.G.,Gutkind,J.S.,Ahn,N.,and Guan,K.L. The semaphoring receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor[J]. LARG. Proc. Natl,Acad.Sci.U.S.A.2002,99,12085-12090.
    9. Shamah,S.M.,Lin,M.Z.,Goldberg,J.L.,Estrach,S.,Sahin,M.,Hu,L.,et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin[J].Cell 2001,105,233-244.
    10. Rohm,B.,Rahim,B.,Kleiber,B.,Hovatta,I.,and Puschel,A.W.The semaphoring 3A receptor may directly regulate the activity of small GTPases[J].FEBS Lett.2000,486, 68-72.
    11. Ma,A.D., Mejian,A., Bagrodia,S., Taylor,S., and Abrams, C.S. Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase, a Rac guanosine exchange factor,and Rac[J].Mol.Cell.Biol. 1988,18,4744-4751.
    12. Price,L.S.,Langestag,M.,Collard,J.G.,et al. Calcium signaling regulates translocation and activation of Rac[]. Biol.Chem. 2003,278,39413-39421.
    13. Fleming,I.N.,Flliott,C.M.,Buchanan,F.G.,Downes,C.P.,andm Exton, J.H. Ca2+/ calmodulin-dependent protein kinase II regulates Tiam1 by reversible protein phosphorylation [J].Biol.Chem.1999,274,12753-8.
    14. Machesky,L.M.,and Insall,R.H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex[J].Curr. Biol.1998,8,1347-1356.
    15. Manser,E., Leung,T., Salihuddin,H., Zhao,Z.S. and Lim,L. A brain serine/theronine protein kijnase activated by Cdc42 and Rac1[J]. 1994,367,40-46.
    16. Sanders,L.C., Matsumura,F.,Bokoch,G.M.,and De Lanerolle,P. Inhibition of myosin light chain kinase by p21-activated kinase[J].Science 1999,283,2083-2085.
    17. Leung,T.,Chen,X.Q., Manser,E.,and Lim,L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton[J].Mol.Cell Biol.1996, 16, 5313-5327.
    18. Bito,H., Furuyashiki,T., Ishihara,H., Shibasaki,Y.,et al. A critical role for a Rho-associated kinase, p160ROCK,in determining axon outgrowth in mammalian CNS neurons[J].Neuron 2000,26,431-441.
    19. Kimura,K., Ito,M., Amano,M.,Chihara,K., Fukata,Y.,Nakafuku,M.,et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase(Rho-kinase)[J].Science 1996,273,245-248.
    20. aekawa,M.,Ishizaki,T.,Boku,S.,Watanabe,N.,et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase[J].Science 1999,285,895-898.
    21. Ohashi,K.,Nagata,K.,Maekawa,M.,Ishizaki,T.,et al. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop[J].Biol.Chem.2000,275,3577-3582.
    22. Hall A. Rho GTPase and the actin cytoskeleton [J]. Science,1998, 279 (5350): 509-514.
    23. Hall A, Nobes C D. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton [J]. Philos Trans R Soc Lond B Biol Sci, 2000, 355(1399):965-970
    24. Thies E, Davenport R W. Independent roles of Rho-GTPases in growth cone and axonal behavior[J]. J Neurobiol, 2003, 54(2):358-369.
    25. Moon S Y, Zheng Y. Rho GTPase-activating proteins in cell regulation[J]. Trends in Cell Biology, 2003, 13(1):13-22.
    26. Yuan X B, Jin M, Xu X, et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance[J]. Nat Cell Biol, 2003, 5(1):38-45.
    27.刘宏志,李佐文,杨永利.脊髓损伤大鼠组织形态学变化与不同时点的Netrin-1表达.中国临床康复,2005,9(14):98-99.
    28.肖卫东,易成腊,陈安民等.神经生长导向因子Slit2在成年大鼠急性脊髓损伤后的表达.中华实验外科杂志,2006,8(23):987-989.
    29. Yamagata S, Ichinose M, Sugiura H, et al. Effect of a calcium sensitization modulator, Y-27632, on isolated human bronchus and pulmonary artery[J]. Pulm Pharmacol Ther, 2000,13(1):25-29.
    30. eng J, Ito M, Ichikawa K, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase [J]. J Biol Chem, 1999, 274(52): 37385-37390.
    31. Lucius C, Amer A, Steusloff A, et al. Clostridium difficile toxin B inhibits carbachol-induced force and pryosin light chain phosphorylation in guinea-pig smooth muscle: role of Rho proteins[J]. J Physiol, 1998,506(Pt 1):83-93.
    32. Awano Y, Fukata Y, Oahiro N, et al. Phosphorylation of myosin-binding subunit(MBS) of myosin phosphatase by Rho-kinase[J]. J Cell Biol, 1999,147(7): 1023-1037.
    33. Nobe K, Paul R J. Distinct pathways of Ca2+ sensitization in porcine coronary arteryeffects of Rho-related kinase and protein kinase C inhibition on force and intracellular Ca2+[J]. Circ Res, 2001, 88:1283-1290.
    34. Schmidt J T, Morgan P, Dowell N, et al. Myosin light chain phosphorylation and growth cone motility[J]. Neurobiol, 2002, 52(3):175-188.
    35. Borisoff J F, Chan C C, Hiebert G W, et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates[J]. Mol Cell Neurosci, 2003, 22(3):405-416.
    1. Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature, 2002, 420: 629-635.
    2. Hall A. Rho GTPase and the actin cytoskeleton [J]. Science,1998, 279 (5350): 509-514.
    3. Moon S Y, Zheng Y. Rho GTPase-activating proteins in cell regulation[J]. Trends in Cell Biology, 2003, 13(1):13-22.
    4. Malosio,M.L., Gilardelli,D., Paris,S., et al. Differential expression of distinct members of Rho family GTP-binding proteins during neuronal development: identification of Rac1, a neural -specific member of the family[J]. Neurosci,1997, 17(17): 6717-25.
    5. Kozma,R.,Sarner,S.,Almed,S.,et al. Rho family of GTPases and neuronal growth cone remodelling:relationship between increased complexity induced by Cdc42Hs,Rac1,and acetycholine and collapse induced by RhoA and lysophosphatidic acid[J].Mol Cell Biol,1997,17:1201-11.
    6. Hall A, Nobes C D. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton [J]. Philos Trans R Soc Lond B Biol Sci, 2000, 355(1399):965-970
    7. Thies E, Davenport R W. Independent roles of Rho-GTPases in growth cone and axonal behavior[J]. J Neurobiol, 2003, 54(2):358-369.
    8. Katoh,H.,Aoki,J.,Ichikawa,A.,et al. p160 RhoA-binding kinase ROKαinduces neurite retraction[J].Biol Chem,1998,273(5):2489-92.
    9. Matsui,T.,Amano,M.,Yamamoto,T.,et al. Rho-associated kinase, a novel serine/ threonine kinase, as a putative target for the small GTP binding protein Rho[J].EMBO J,1996,15(9):2208-16.
    10. Kimura,K.,Ito,M.,Amano,M.,et al. Regulation of myosin phosphatase by Rho and Rho-association kinase(Rho-like)[J]. Science,1996, 273(5272):245-248.
    11. Schmidt,J.T.,Morgan,P.,Dowell,N.,et al. Myosin light chain phosphorylation and growth cone motility[J].Neurobiol, 2002, 52(3):175-188.
    12. Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology[J]. J Mol Med, 2002, 80(10): 629-638.
    13. Somlyo AP., Somlyo AV. Ca2+ sensitivity of smooth muscle and non-muscle myosinⅡ: modulated by G proteins, kinases, and myosin phosphatase[J]. Physiol Rev, 2003, 83(4): 1325-1358.
    14. Yamagata S, Ichinose M, Sugiura H, et al. Effect of a calcium sensitization modulator, Y-27632, on isolated human bronchus and pulmonary artery[J]. Pulm Pharmacol Ther, 2000,13(1):25-29.
    15. Feng J, Ito M, Ichikawa K, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase [J]. J Biol Chem, 1999,274 (52): 37385-37390.
    16. Nobe K, Paul R J. Distinct pathways of Ca2+ sensitization in porcine coronary artery effects of Rho-related kinase and protein kinase C inhibition on force and intracellular Ca2+[J]. Circ Res, 2001, 88:1283-1290.
    17. Schmidt J T, Morgan P, Dowell N., et al. Myosin light chain phosphorylation and growth cone motility[J]. Neurobiol, 2002, 52(3):175-188.
    18. Borisoff J F, Chan C C, Hiebert G W, et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates[J]. Mol Cell Neurosci, 2003, 22(3):405-416.
    1. Albright, T.D, Jessell, T.M, Kandel, E.R, et al. Neural science: A century of progress and the mysteries that remain. Cell 2000, 100, Suppl: S1-55.
    2. Goodman, C.S, and Shatz, C.J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 1993, 72, Suppl: 77-98.
    3. Tessier-Lavigne, M., and Goodman, C.S. The molecular biology of axon guidance. Science 1996, 274, 1123-1133.
    4. Song, H.J., and Poo, M-m. The cell biology of neuronal navigation. Nat. Cell Biol. 2001, 3, E81-8.
    5. Dickson, B.J. Molecular Mechanisms of Axon Guidance. Science 2002, 298, 1959-1964.
    6. Chisholm, A., and Tessier-Lavigne, M. Conservation and divergence of axon guidance mechanisms. Curr. Opin. Neurobiol. 1999(9): 603-615.
    7. Grunwald, C.I., and Klein, R. Axon guidance: receptor complexes and signaling mechanisms. Curr. Opin. Neurobiol. 2002(12): 250-259.
    8. Sperry, R.W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Nat1. Acad. Sci. U.S.A. 1963(50):703-710.
    9. Bonhoeffer, F., and Huf, J. Recognition of cell types by axonal growth cones in vitro. Nature 1980(288): 162-164.
    10. Bonhoeffer, F., and Huf, J. In vitro experiments on axon guidance demonstrating an anterior-posterior gradient on the tectum. EMBO J. 1982, 1, 427-431.
    11. Cheng, H.J., and Flanagan, J.G. Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 1994, 79, 157-168.
    12. McLaughlin, T., Hindges, R., and O’Leary, D.D. Ragulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 2003, 13, 57-69.
    13. Wilkinson, D.G. Multiple roles of EPH receptors and ephrins in neural development.Nat. Rev. Neurosci. 2001, 2,155-164.
    14. Feldheim, D.A.,Kim, Y.I.,Bergemann,A.D.,Frisen,J.,Barbacid,M.,et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron2000, 25,563-574.
    15. Brown,A.,Yates, P.A.,Burrola,P.,Ortuno,D.,Vaidya,A.,Jessell,T.M.,et al.Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell2000, 102,77-88.
    16. Mann,F.,Ray,S.,Harris,W.,and Holt,C.. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 2002, 35, 461-473.
    17. Hindges,R.,McLaughlin,T.,Genoud,N.,Henkemeyer,M.,and O’Leary,D.D. EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron2002, 35,475-487.
    18. Kennedy,T.E.,Serafini,T.,de la Torre,J.R., and Tessier-Lavigne,M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 1994,78,425-435.
    19. Serafini,T.,Kennedy,T.E.,Galko,M.J.,Mirzayan,C.,Jessell,T.M.,and Tssier-Lavigne,M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6.Cell1994,78,409-424.
    20. Hedgecock,E.M.,Culotti,J.G.,and Hall,D.H. The unc-5,unc-6,and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C.elegans.Neuron 1990,4,61-85.
    21. Ishii, N., Wadsworth,W.G., Stern,B.D., Culotti,J.G., and Hedgecock, E.M. UNC-6,a laminin-related protein, guides cell and pioneer axon migrations in C.elegans.Neuron 1992,9,873-881.
    22. Colamarino,S.A.,and Tessier-Lavigne,M. The axonal chemoattractant netrin-1 is also a cheorepellent for trochlear motor axons.Cell 1995,81,621-629.
    23. Keino-Masu,K.,Masu,M.,Hinck,L.,Leonardo,E.D.,Chan,S.S.,Culotti, J.G., and Tessier-Lavigne,M. Deleted in Colorectal Cancer(DCC) encodes a netrin receptor. Cell1996, 87,175-185.
    24. Leonardo,E.D.,Hinck,L.,Masu,M.,Keino-Masu,K.,Ackerman,S.L., and Tessier-Lavigne,M. Vertebrate homologues of C.elegans UNC-5 are candidate netrin receptors.Nature 1997,386,833-838.
    25. Hong,K.,Hinck,L.,Nishiyama,M.,Poo,M-m,Tessier-Lavigne,M., and Stein,E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion.Cell 1999,97,927-941.
    26. Mitchell,K.J.,Doyle,J.L.,Serafini,T.,Kennedy,T.E.,Tessier-Lavign et al. Genetic analysis of netrin genes in Drosophila:netrins guide CNS commissural axons and peripheral motor axons.Neuron 1996,17,203-215.
    27. Deiner,M.S., Kennedy,T.E., Fazeli,A.,Serafini,T.,et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc:loss of function leads to optic nerve hypoplasia.Neuron 1997,19,575-589.
    28. Kidd,T.,Brose,K.,Mitchell,K.J.,Fetter,R.D.,Tessier-Lavigne,M.,et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors.Cell1998,92,205-215.
    29. Brose,K.,Bland,K.S.,Wang,K.H.,Amott,D.,Tessier-Lavigne,M., Kidd, T, et al.Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance[J].Cell,1999,96:795-806.
    30. Kidd,T.,Bland,K.S.,and Goodman,C.S.,Slit is the midline repellent for the robo receptor in Drosophila[J].Cell 1999,96,785-795.
    31. Li,H.S.,Chen,J.H.,Wu,W.,Fagaly,T.,Zhou,L.,Yuan,W.,Rao,Y.,et al. Vertebrate slit, a secreted ligand for the rransmembrane protein roundabout,is a repellent for olfactory bulb axons[J].Cell 1999,96,807-818.
    32. Zallen, J.A.,Yi,B.A.,and Bargmann, C.I. : The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance inC.elegans[J]. Cell 1998, 92, 217-227.
    33. Wu,W., Wong,K., Chen,J., Jiang,Z., Dupuis,S., Wu,J.Y., and Rao,Y. Directional guidance of neuronal migration in the olfactory system by the protein slit[J].Nature 1999,400,331-336.
    34. Brose,K.,and Tessier-Lavigne,M. Slit proteins:key regulators of axon guidance, axonal branching, and cellmigration[J]. Curr. Opin. Neurobiol. 2000,10,95-102.
    35. Raper,J.A. Semaphorins and their receptors in vertebrates and invertebrates[J]. Curr.Opin.Neurobiol.2000,10,88-94.
    36. Luo,Y.,Raible,D.,and Raper,J.A.Collapsin:a protein in brain that induces the collapse and paralysis of neuronal growth cones[J].Cell 1993,75,217-227.
    37. Tamagnone,L.,Artigiani,S.,Chen,H.,Tessier-Lavigne,et al. Plexins are a large family of receptors for transmembrane, secreted,and GPI-anchored semaphorins in vertebrates[J].Cell 1999,99,71-80.
    38. Takahashi,T.,Fournier,A.,Nakamura,F.,et al. Plexin-neuropilin-1 complexes form functional semaphoring-3A receptors[J].Cell 1999,99,59-69.
    39. Polleux,F.,Morrow,T.,and Ghosh,A. Semaphorin 3A is a Chemoattractant for cortical apical dendrites[J].Nature 2000,404,567-573.
    40. Bagri,A.,Cheng,H.J.,Yaron,A.,Pleasure,S.J.,and Tessier-Lavigne,M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphoring family[J].Cell 2003, 113, 285-299.
    41. Yuan,X-B.,Jin,M.,Xu,X.,Song,Y-q.,et al.Signalling and crosstalk of Rho GTPases in mediating axon guidance[J]. Nat.Cell Biol. 2003, 5,38-45.
    42. Guan,K,L.,and Rao,Y. Signalling mechanisms mediating neuronal responses to guidance cues[J].Nat.Rev.Neurosci.2003,4,941-956.
    43. Yoshikawa,S.,and Thomas,J.B. Secreted cell signaling molecules in axon guidance[J].Curr.Opin.Neurobio.2004,14,45-50.
    44. Henley,J.,and Poo,M-m. Guiding neuronal growth cones using Ca2+ signals[J].Trends in Cell Biol.2004,14,320-330.
    45. Ater,S.B.,and Mills,L.R.Regulation of growth cone behavior by calcium[J]. Neurosci. 1991,11,891-899.
    46. Hong,K., Nishiyama,M., Henley,J., Tessier-Lavigne,M.,et al. Calcium signaling in the guidance of nerve growth by netrin-1[J].Nature 2000,403,93-98.
    47. Henley,J.,and Poo,M-m. Cyclic AMP-dependent calcium signaling mediates the conversion of neuronal growth cone responses from repulsion to attraction[J]. Mol. Biol.Cell 2003,14,406-417.
    48. Gordon-Weeks,P.R. Microtubules and growth cone function[J]. Neurobiol. 2004, 58,70-83.
    49. Song,H.,and Poo,M-m.Signal transduction underlying growth cone guidance by diffusible factors[J]. Curr.Opin.Neurobiol. 1999,9,355-363.
    50. Clapham,D.E.Calcium signaling[J].Cell 1995,80,259-268.
    51. Tam,T.,Mathews,E.,Snuteh,T.P.,et al. Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans[J].Dev.Biol.2000,226,104-117.
    52. Wang,G.,and Poo,M-m.Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cone[J].Nature AOP,2005,doi: 10.1038/ nature 03478.
    53. Zhang,F.,Lu,C.,Severin,C.,and Sretavan,D.W.GAP-43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation[J]. Development 2000,127,969-980.
    54. Hartwig,J.H.,Thelen,M.,Rosen,A.,Janmey,P.A.,et al.MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin[J].Nature 1992,356,618-622.
    55. Chen,N., Furuya,S., Doi,H., Hashimoto,Y., et al.Ganglioside/ calmodulin kinase II signal inducing Cdc42-mediated neuronal actin reorganization[J].Neuroscience 2003,120,163-176.
    56. Etienme-Manneville,S.,and Hall,A.Rho GTPases in cell biology[J].Nature 2002,420, 629-635.
    57. Dickson,B,J.Rho GTPases in growth cone guidance[J]. Curr. Opin. Neurobiol. 2001, 11,103-110.
    58. Ng,J.,Nardine,T.,Harms,M.,Tzu,J.,et al.Rac GTPases control axon growth,guidance and branching[J].Nature 2002,416,442-447.
    59. Wong,K.,Ren,X.R.,Huang,Y.Z.,Xie,Y.,Liu,G.,Brady-Kalnay,S.M.,Rao,Y.,et al. Signal transduction in neuronal migration :roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway[J].Cell 2001,107,209-221.
    60. Wahl,S.,Barth,H.,Ciossek,T.,Aktories,K.,and Mueller,B.K.Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase[J].Cell Biol.2000,149,263-270.
    61. Li,X.,Saint-Cyr-Proulx,E.,Aktories,K.&Lamarche-Vane,N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1receptor DCC(deleted in colorectal cancer) in N1E-115 neuroblastoma cells[J]. Biol. Chem. 2002,277,15207-15214.
    62. Wang,K.C.,Kim,J.A.,Sivasankaran,R.,Segal,R.and He,Z.P75 interacts with the Nogo receptor as a co-receptor for Nogo,MAG and Omgp[J].Nature 2002,420,74-78.
    63. Aurandt,J.,Vikis,H.G.,Gutkind,J.S.,Ahn,N.,and Guan,K.L. The semaphoring receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor[J]. LARG.Proc.Natl,Acad.Sci.U.S.A.2002,99,12085-12090.
    64. Shamah,S.M.,Lin,M.Z.,Goldberg,J.L.,Estrach,S.,Sahin,M.,Hu,L.,et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin[J].Cell 2001,105,233-244.
    65. Rohm,B.,Rahim,B.,Kleiber,B.,Hovatta,I.,and Puschel,A.W.The semaphoring 3A receptor may directly regulate the activity of small GTPases[J].FEBS Lett.2000,486, 68-72.
    66. Ma,A.D., Mejian,A., Bagrodia,S., Taylor,S., and Abrams, C.S. Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase, a Rac guanosine exchange factor,and Rac[J].Mol.Cell.Biol.1988,18, 4744 -4751.
    67. Price,L.S.,Langestag,M.,Collard,J.G.,et al. Calcium signaling regulates translocation and activation of Rac[]. Biol.Chem. 2003,278,39413-39421.
    68. Fleming,I.N.,Flliott,C.M.,Buchanan,F.G.,Downes,C.P.,and Exton,J.H. Ca2+/ calmodulin-dependent protein kinase II regulates Tiam1 by reversible protein phosphorylation[J].Biol.Chem.1999,274,12753-8.
    69. Rohatgi,R., Ma,L., Miki,H., Lopez,M., Kirchhausen,I.,et al.The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly [J].Cell 1999,97,221-231.
    70. Machesky,L.M.,and Insall,R.H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex[J]. Curr. Biol.1998,8,1347-1356.
    71. Manser,E., Leung,T., Salihuddin,H., Zhao,Z.S. and Lim,L. A brain serine/theronine protein kijnase activated by Cdc42 and Rac1[J]. 1994,367,40-46.
    72. Hing,H., Xiao,J., Harden,H., Lim,L., and Zipursky,S.I. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila[J].Cell 1999,97,853-863.
    73. Van Eyk,J.E., Arrell,D.K., Foster,D.B., Strauss,J.D.,et al. Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle[J]. Biol.Chem. 1998, 273,23433-23439.
    74. Sanders,L.C., Matsumura,F.,Bokoch,G.M.,and De Lanerolle,P. Inhibition of myosin light chain kinase by p21-activated kinase[J].Science 1999,283,2083-2085.
    75. Leung,T.,Chen,X.Q., Manser,E.,and Lim,L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton[J].Mol.Cell Biol.1996, 16, 5313-5327.
    76. Bito,H., Furuyashiki,T., Ishihara,H., Shibasaki,Y.,et al. A critical role for a Rho-associated kinase, p160ROCK,in determining axon outgrowth in mammalian CNS neurons[J].Neuron 2000,26,431-441.
    77. Kimura,K., Ito,M., Amano,M.,Chihara,K., Fukata,Y.,Nakafuku,M.,et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase(Rho-kinase)[J].Science 1996,273,245-248.
    78. Maekawa,M.,Ishizaki,T.,Boku,S.,Watanabe,N.,et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase[J].Science 1999, 285, 895-898.
    79. Ohashi,K.,Nagata,K.,Maekawa,M.,Ishizaki,T.,et al. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop[J].Biol.Chem.2000,275,3577-3582.
    80. Watanabe,N.,Madaule,P.,Reid,T.,Ishizaki,T.,Watanabe,G.,et al. p140mDia, a mammalian homolog of Drosophila di-aphanous, is a target protein for Rho small GTPase and is a ligand for profiling[J].EMBO.J.1997,16,3044-3056.
    81. Nakano,K.,Takaishi,K.,Kodama,A.,Mammoto,A.,Shiozaki.H.,et al. Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells[J]. Mol.Biol.Cell 1999,10,2481-2491.
    82. Bashaw,G.J., Kidd,T., Murray,D., Pawson,T., and Goodman,C.S. Repulsive axon guidance: Abelson and enabled play opposing roles downstream of the roundabout receptor[J].Cell 2000,101,703-715.
    83. Dent,E.W.,and Gertler,F.B. Cytoskeletal dynamies and transport in growth cone motility and axon guidance[J].Neuron 2003,40,209-227.
    84. Zheng,J.Q.,Wan,J.J. and Poo.M-m. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient[J].Neurosci.1996, 16, 1140-1149.
    85. Buck,K.B.,and Zheng,J.Q. Growth cone turning induced by direct local modification of microtubule dynamics[J].Neurosci.2002,22,9358-9367.
    86. Zhou,F.Q.,Waterman-Storer,C.M.,and Coban,C.S.Focal loss of actin bundles causes microtubule redistribution and growth cone turning[J].Cell Biol.2002,157,839-849.
    87. Nishiyama,M.,Hoshino,A.,Tsai,L.,Henley,J.,Goshima,Y.,et al. Cyclic AMP/ GMP- dependent modulation of Ca2+ channels sets the polarity of nerve growth-coneturning[J].Nature 2003,423,990-995.
    88. Shewan,D.,Dwivedy,A.,Anderson,R.,Holt,C.E. Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway[J]. Nat. Neurosci.2002,5,955-962.
    89. Campbell,D.S.,and Holt,C.E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cone[J].Neuron 2003,37,939-952.
    90. Stein,E.,and Tessier-Lavigne,M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex[J].Science 2001,291,1928-1938.
    91. Keleman,K.,Rajagopalan,S.,Cleppien,D.,Teis,D.,et al. Comm sorts robo to control axon guidance at the Dorsophila midline[J].Cell 2002,110,415-427.
    92. Keleman,K.,Ribeiro,C.,and Dickson,B.J. Comm function in commissural axon guidance:cell-autonomous sorting of Robo in vivo[J].Nat.Neurosci.2005,8,156-163.