呼兰河口保护区及周边水域水生动物生态监测与健康评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呼兰河口湿地自然保护区是松花江沿岸保存较完整、面积较大的沼泽湿地,生物多样性丰富,但近年由于人为工程建设等,使呼兰河口湿地水域面积增大,致使湿地生态系统的生物群落发生复杂变化,造成底栖动物和鱼类等生物群落的组成、结构和功能发生改变。本文以呼兰河口湿地水生态系统为研究对象,通过对底栖动物群落、鱼类组成和主要水环境因子等调查,运用多种数学分析方法和统计模型,分析了底栖动物和鱼类群落结构、时空特征,以及底栖动物与环境因子之间的相互关系,利用生物完整性指数对水生态系统健康状况进行了评价。结论如下:
     1.呼兰河口湿地底栖动物群落结构与时空特征分析
     (1)呼兰河口湿地底栖动物群落基本构成
     呼兰河口湿地共鉴定底栖无脊椎动物167种,其中昆虫纲121种,寡毛纲23种,软体动物16种,蛭纲5种,甲壳纲2种。不同的研究水域都有其代表性的优势种,如霍甫水丝蚓、苏式尾鳃蚓、林间环足摇蚊、斑点齿斑摇蚊等12种。
     (2)呼兰河口湿地底栖动物摄食功能群组成
     共有六种类型摄食功能群,研究结果表明:功能群组成存在时空差异,整个研究区域在春季以直接集食者为主要的摄食功能群,而夏秋季阿什河上游水域的主要摄食类群为过滤收集者。
     (3)呼兰河口湿地底栖动物水平分布格局
     利用AcrView软件模拟底栖动物密度的水平分布格局,其中水栖寡毛类生物量的分布格局在大顶山样点处呈现浓度最大斑块,这同水栖寡毛类易生活于有机质比较丰富的淤泥底质环境密切相关。
     2.呼兰河口湿地底栖动物与主要水环境因子的相关性分析
     利用典型对应分析(CCA分析)方法对底栖动物的生态学特征进行分析,结果表明,水温是影响底栖动物的主要环境因子,其次是水深、总磷、总氮、硝酸盐氮和电导率。
     3.利用底栖动物生物完整性指数(B-IBI)对呼兰河口湿地生态系统的健康评价
     (1)B-IBI参数的构建
     通过对候选生物参数判别能力的分析、敏感性分析、Pearson相关性分析,决定构成B-IBI值的参数共有6个,即:总分类单元数、EPT分类单元数、蜉蝣目%、直接集食者%、耐污类群%和生物指数BI。
     (2)建立评价水生态系统健康的5级标准
     利用比值法和三分法计算得到B-IBI值,建立了评价水体健康的5级标准。比值法为:>3.56健康,2.67-3.59亚健康,1.78-2.66一般,0.89-1.77差,<0.88极差;三分法为:>26健康,20-26亚健康,13~19一般,7-12差,<6极差。
     (3)健康评价
     利用上述标准对呼兰河口湿地水生态系统的健康状况进行评价,结果表明,三分法和比值法得到的结果基本一致。本研究选择的参照点评价结果为健康,呼兰河口湿地样点处于一般到业健康的状态。
     4.利用鱼类生物完整性指数(F-IBI)评价呼兰河口湿地水生态系统完整性
     鱼类生物完整性评价是水生态系统健康的一种有效方法,能在很大程度上反映湿地水生态系统目前的受损状态。
     (1)呼兰河口湿地鱼类种类组成与丰富度特征
     通过调查,呼兰河口湿地共有鱼类61种,隶属于8目,14个科。其中,鲤形目种类最多,为42种,占所有鱼类种数的68.85%。与历史数据相比,本研究中有15种鱼类未能出现,并且发现有2个外来种,如:鳙Aristichthys nobilis和湖拟鲤Rutilus rutilus lacustris;通过渔获物分析得到,呼兰河口湿地鱼类的优势种主要由一些小型的鱼类组成。
     (2)呼兰河口湿地鱼类营养级状况分析
     从摄食功能群角度分析所调查鱼类的食性,其中软体动物食性、水生昆虫食性、小鱼虾食性和碎屑食性为鱼类的主要偏好食性;而浮游植物食性、草食性、浮游动物食性、着生藻类食性为鱼类的次要食性。因此,呼兰河口湿地水域处于初级消费者的鱼类物种数相对较少,物种多样性较低;而顶级消费者、次级消费者和食碎屑鱼类物种数量大,物种多样性相对更高。
     (3)呼兰河口湿地鱼类的耐污性特征及湿地健康状况分析
     从鱼类物种对水体富营养化和污染物的耐污性来看,呼兰河口湿地水生态系统中鱼类物种主要以耐污种占优势,敏感种和中等耐污种占次要优势地位,非常耐污种极少。研究发现,呼兰河口湿地自然保护区水生态系统健康处于差—一般的状态,通过分析推测,鱼类完整性受损与人工筑坝和采砂等人类活动有关。
     本研究对呼兰河口湿地自然保护区的生物多样性保护及生态监测等提供理论基础,为湿地自然保护区水生态系统健康评价及湿地生态恢复提供科学依据。
The Hulan Estuary Wetland along the bank of the Song Hua Jiang River is protected more completely, belonging to swamp wetland with the bigger water areas and rich biodiversity. But in recent years, the waters area is increasing due to human activities intensify, so the biological communities constituted a wetland ecological system also are experiencing complex changes, which can affect the survival about the composition, tructure and function for macroinvertebrate community and fish community.
     On the basis of wetland ecosystem in The Hulan estuary wetland, investigated the macroinvertebrate community, fish community and environmental factors such as water quality status, combining mathematical analysis methods and statistic model, analyzed the relationship between the macroinvertebrate/fish and the environmental parameters. Water ecosystem health of was assessed using Index of Biotic Integrity (IBI).
     Main conclusions from the four parts of dissertation were drawn:
     1. The composition structure and temporal-spatial characteristics for macroinvertebrate community
     (1) The basic composition of macroinvertebrate
     A total of167species were recorded, including aquatic insects121species, Oligochaeta23species, Mollusks16species, Hirudinea5species, Carapace class2species. Different waters had its dominant species, such as:Limnonodrilus hoffmeisteri, Branchiura sowerbyi, Cricotopus sylvestris and Stictochironomus maculipennis.
     (2) The composition of macroinvertebrate feeding functional group
     There are six kinds of feeding functional groups. The study shew that the feeding functional groups analyzed indicated that the functional groups were differences with the temporal and spatial, and gatherers-collectors were main feeding functional group for the whole research areas in spring, and the filterers was main feeding functional group in Ashihe (ASH) River upsteam in fall.
     (3) The distribution pattern for macroinvertebrate
     The total density distribution patterns of benthic macroinvertebrate were simulated by AcrView (312) software. The biomass distribution pattern for oligochaeta was the largest concentration of patches in DadingShan sampling site, which is closely related to aqutic oligochaeta are adapted to live in the environment rich silt sediment with organic matter.
     2. The relationship between macroinvertebrate and main water environmental parameters
     The ecology characteristics of macroinvertebrate species were analysized using typical correspondence analysis method (CCA analysis), and the results showed that water temperature was the main environment factor for influence macroinvertebrate, followed by water depth, total phosphorus, total nitrogen, nitrate nitrogen (NO3--N) and conductivity.
     3. The assessment of the integrity of wetland ecosystem using benthic index of biotic integrity (B-IBI) in Hulan Estury wetland
     (1) Establishing B-IBI evaluation parameters
     Through the discriminant power analysis by candidate biological parameters of, sensitivity analysis and Pearson's correlation analysis, as the result, the benthic index of biotic integrity (B-IBI) was composed by six metrics:Total number of taxa, EPT taxa, Ephemera%, Clingers%, Gatherers-collectors%, Intolerant taxa%and Biotic Index(BI).
     (2) The establishment of health assessment5lever criteria for water ecosystem based on B-IBI.
     The establishment of health assessment5lever criteria for water ecosystem using Ratio Method and Three Points Method. The former:>3.56, health;2.67~3.59, sub-health;1.78-2.66, good-fair;0.89~1.77, fair;<0.88poor; the latter:> health;20~26, sub-health,13~19, good-fair;7~12, fair;<6poor.
     The correlation between two scoring method and four scoring method was0.891. Therefore, the two methods were suitable for water ecosystem health assessment in the Hulan Estury wetland and the surrounding waters.
     (3) Health assessment
     The water ecosystem health was assessed based on the establishment standard above-mentioned in the Hulan Estury Wetland and the surrounding waters. The result indicated that there was no difference in the assessment result between Ratio Method and Three Points Method. All references were health. Hulan Estury Wetland was the condation from good fair to sub-heath.
     4. The assessment of the integrity of wetland ecosystem using Fish Index of Biotic Integrity (F-IBI) in Hulan Estury Wetland
     Fish Index of Biotic Integrity (F-IBI) is a kind of valid evaluation, which can reflect current damaged condition of the aquativ ecosystem in a great extent for Hulan Estury Wetland.
     (1) The fish species composition and richness characteristics
     The invesgation result indicated that there were61species, belonging to8orders,14families, among them Cypriniformes fish species most,42species, which accounted for68.85%of all species. Fifteen fish species had not been found compared with the historical data. There were two exotic fish (such as:Aristichthys nobilis and Rutilus rutilus lacustris), and dominant species were composed of some small-sized and lower-economic value fish species.
     (2) The characteristics for fish trophic level
     Invertivores, insectivorous, top-piscivores and detritivores for the main preference food according to the analysis with feeding functional group; planktivorous, herbivorous, zooplanktivorous and phytobenthivores fish were secondary feeding fish. Therefore, fish of primary consumers were relatively less, species diversity is lower, and top consumers, the numbers of secondary consumers and detritivores fish species species diversity are higher in the Hulan Estury Wetland.
     (3) The fish tolerance and wetland health status
     From the tolerance for fish faced with water eutrophication, tolerance species were dominant, intolerant and intermediate were subdominant, very tolerant fish were less. The results showed that aqutic ecosystem health was condition from fair to good fair in Hulan Estury Wetland. The analysis indicated that the integrity fish damaged were correlation human activities, such as building dam and mining sands.
     This study provided the theoretical basis for the biodiversity protection and ecological monitoring in Hulan Extury Wetland Natural Reserves, and the scientific evidence for water ecosystem health evaluation and wetland ecological restoration for wetland natural reserves.
引文
1. Dudgeon D, A H Arthington, M O Gessner, et al. Freshwater biodiversity:importance, threats, status and conservation challenges. Biological Review,2006,81:163-182
    2. Bonada N, N Prat, V H Resh, and B. Statzner. Developments in aquatic insect biomonitoring:a comparative analysis of recent approaches. Annual Review of Entomology,2006,51:495-523
    3. Hawkins C P. Quantifying biological integrity by taxonomic completeness:its utility in regional and global assessments. Ecological Applications,2006,16(1):277-294
    4. Barbour M T, J Gerritsen, B D Snyder, et al. Rapid bioassessment protocols for use in streams and wadeable rivers:periphyton, benthic macroinvertebrates and fish, second edition. EPA 841-B-99-002. U.S. EPA; Office of Water; Washington, D.C,1999
    5. Yoder C O, and M A Smith. Using fish assemblages in a state biological assessment and criteria program:essential concepts and considerations. In:Smith, T.P. (ed) Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press, Boca Raton, Florida.1999:17-56
    6. Weeler B D, and S C Shaw. A focus on fens-controls on the composition of fen vegetation in relation to restoration, In:Wheeler, B.D., S. C. Shaw, A.J. Sojt, et al. Restoration of Temperate wetlands. Chichedter:John wiley U Sons Ltd.,1995,49-72
    7.王敬贤.建立湖北省生物监测系统的必要性与可行性分析.环境科学与技术.2000,16:11~17
    8.王备新.大型底栖无脊椎动物水质生物评价研究.南京农业大学博士学位论文.2002,4-17
    9.林丽明,朱延彬,谭石慈,等.利用原生动物的趋化性进行水质检测的方法研究.华南示范大学学报,1994,4:42-46
    10. Stevenson R J. An introduction to algal ecology in freshwater benthic habitats. In Stevenson R J, M L Bothwell, and R L Lowe (editors). Algal ecology. Academic Press, San Diego, California,1996:3-30
    11. Wetzel R G. Limnology:lake and river ecosystems.3rd edition. Academic Press, New York,2001
    12.杜宝汉.利用水生维管束植物监测湖泊水质.云南环境科学,1993,12(2):49~52
    13. Phillips G L, D Eminson, and B Moss. A mechanism to account for macrophyte decline in progressively eutrophicated fresh waters. Aquat Bot,1978,4(2):103-126
    14. Blindow I, G Andersson, and A Haregy. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshw Biol,1993,30 (1):159-167
    15. Mayumi Y, and M Kaoru. Comparison of sampling methods for aquatic insect indicators of forest condition in terms of collection efficiency. Bulletin of FFPRI,2004,3(3): 213-219
    16. Brinkhurst R O. Evolution in the Annelida. Can. J.Zool.,1982,60:1043-1059
    17. Liang Y L. Preliminary study of some benthic Oligochaeta from the Parana River. Hydrobilogia,1987,155:195-198
    18. Brinkhurst R O, and B G M Jamieson. Aquatic oligochaeta of the world. Oliver and Boyd, Edinburgh,1971
    19. Milbrink G. On the use of indicator communities of Tubificidae and some Lumbriculidae in the assessment of waterpollution in Swedish lakes. Zoon,1973,1:125-139
    20. Brinkhurst R O, and D G Cook. Aquatic earthworms (Annelida:Oligochaeta). In Hart C W, & S L H Fuller (eds). Pollution Ecology of Freshwater Invertebrates. Academic Press, New York,1974:143-156
    21. Chapman P M, M A Farrell, and R O Brinkhurst. Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology,1982, 2:47-67
    22. Sarkka J. Lacustrine, profundal meiobenthic oligochaetes as indicators of trophy and organic loading. Hydrobiologia,1994,278:231-241
    23. Peter M C. Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment. Hydrobiologia,2001,463:149-169
    24.刘月英,张文珍,王跃先,等.中国经济动物志—淡水软体动物.北京:科学出版社,1979:1-3
    25.陈玉霞,卢晓明,何岩,等.底栖软体动物水环境生态修复研究进展.净水技术,2010,29(1):5-8
    26.全为民,沈新强,严力蛟.富营养化水体生物净化效应的研究进展.应用生态学报,2003,14(11):2057~2061
    27. Resh V H, R H Norris, and M T Barbour. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Australian Journal of Ecology,1995,20:108-121
    28. Michael T B, J Gerritsen, B D. Snyder, et al. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers:Periphyton, Benthic Macroinvertebrates, and Fish. Second Edition. EPA 841-B-99-002. http://www.epa.gov/OWOW/monitoring/techmon.html
    29. Karr J R, K D Fausch, P L Angermeier, et al. Assessing biological integrity in running waters:A method and its rationale. Champaign,Ill:Illinois Natural History Survey.1986
    30. Joseph E F, J B Stribling, and J P Michael. Concepts and Approaches for the Bioassessment of Non-wadeable Streams and Rivers. EPA/600/R-06/127. U.S. Environmental Protection Agency, Office of Research and Development Washington, DC. 2006
    31. McIntyre S, S Lavorel, R M Tremont. Plant life-history attributes:their relationship to disturbance response in herbaceous vegetation. Journal Ecology,1995,83:31-44
    32. Gitay H, I Noble. What are functional types and how should we seek them? In:Smith T, Shugart, et al. Plant Functional Types:Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press,1997:3-19
    33. Boer M, Stafford, and M Smith. A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire. Journal Vegetation Science,2003, 14:333-344
    34. Tilman D, J Knops, D Wedin, et al. The influence of functional diversity and composition on ecosystem processes. Science,1997,277:1300-1302
    35. Grime J P. Biodiversity and ecosystem function:the debate deepens. Science,1997,277: 1260-1261
    36. Zhang B, I Valentine, and P D Kemp. A decision tree approach modelling functional group abundance in a pasture ecosystem. Agriculture, Ecosystems and Environment,2005, 110:279-288
    37. Fulton E A, A D M Smith, and A E Punt. Which ecological indicators can robustly detect effects of fishing? Journal of Marine Science,2005,62:540-551
    38. Matsumoto L S, A M Martines, M A Avanzi, et al. Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Applied Soil Ecology,2005,28:57-65
    39. Sternberg M, M Gutman, A Perevolotsky, et al. Vegetation response to grazing management in a Mediteranean herbaceous community:a functional group approach. Journal of Applied Ecology,2000,37:224-237
    40. Naeem S, S Li. Biodiversity enhances ecosystem reliability. Nature,1997,390:507-509
    41. Pearson T H, and R Rosenberg. Feast and famine:Structuring factors in marine benthic communities In:Gee J H R, and P S Giller, eds. Organization of Communities Past and Present. Oxford:Blackwell science,1987:373-395
    42. Bonsdorff E, A Norkko, and E Sandberg. Structuring zoobenthos:the importance of predation, cropping and physical disturbance J. Exp. Mar.Biol. Ecol.,1995,192:125-144
    43. Christian H, M Bouteille. Modifications of the specific diversity and feeding guilds in an intertidal sediment colonized by an eelgrass meadow (Zostera marina). Life Science,1999, 322:1121-1131
    44. Lars Hakanson, V V Boulion. A general dynamic model to predict biomass and production of phytoplankton in lakes. Ecological Modelling 2003,165:285-301
    45. Beukema J J, G C Cade, and R Dekker. Zoobenthic biomass limited by phytoplankton abundance:evidence from parallel changes in two long-term data series in the Wadden Sea. Journal of Sea Research,2002,48:111-125
    46. Douglas J S, W J Mitsch. A model of macroinvertebrate trophic structure and oxygen demand in freshwater wetlands. Ecological Modelling,2003,161:183-194
    47.袁中兴,陆健健,刘红.长江口底栖动物功能群分布格局及其变化.生态学报,2002,22(12):2054~2062
    48.朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群.动物学研究,2003,24(5):355~361
    49. Bryan G N, R Costanza, and B D Haskell. Ecosystem Health:New Goals for Environmental Management.1 edition, Island Press,1992
    50. Karr J R. Defining and assessment ecological integrity:beyond water quality. Environmental toxicology and chemistry,1993,12:1521-1531
    51.邓培雁,刘威.湿地退化的制度成因分析.生态经济,2007,(8):149~151
    52.崔保山,杨志峰.湿地健康生态系统研究进展.生态学杂志,2001,20(3):3 1~36
    53.蒋魏国,李京,李加洪,等.辽河三角洲湿地生态系统健康评价.生态学报,2005,25(3):408~414
    54.刘子刚,赵金兰.湿地生态系统健康评价研究——以黑龙江省七星河国家级自然保护区为例.生态经济,2009,(7):149~153
    55. Simpson R B. Economic analysis and ecosystem:Some concepts and issues. Ecological Application,1998,8(2):342-349
    56.赵魁义,陈毅峰,娄彦景,等.湿地生物多样性.北京:中国林业出版社,2008:82
    57.李瑾,安树青,程小莉等.生态系统健康评价的研究进展.植物生态学报,2001,25(6):641-647
    58. Karr J R. Assessment of biotic integrity using fish communities. Fisheries,1981,66: 21-27
    59.王备新,杨莲芳.用河流生物指数评价秦淮河上游水质的研究.生态学报,2003,23(10):2082~2091.
    60.王备新,杨莲芳,胡本进,等.应用底栖动物完整性指数B-IBI.评价溪流健康.生态学报,2005,25(6):1481~1489
    61.王建华,田景汉,吕宪国.挠力河流域河流的B-IBI评价.生态学报,2009,29(12):6672~6678
    62.陈宏文,张萌,刘足根,等.赣江流域淡水生态系统完整性与健康状态的鱼类F-IBI值评价.长江流域资源与环境,2011,20(9):1098~1107
    63. Reynoldson T B, R C Bailey, K E Day, et al. Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology,1995,20:198-219
    64. Karr J R, and E W Chu. Sustaining living rivers. Hydrobiologia,2000,422-423:1-14
    65. Kolkwitz R, and M Marsson. Okologieder tierischen Saprobien. Int. Rev. Gesamten. Hydrobiol,1908,2:120-131
    66. Kolkwitz R, and M Marsson. Okologieder tierischen Saprobien. Int. Rev. Gesamten. Hydrobiol,1909,2:126-152
    67. Metcalfe J L. Biological water quality assessment of running waters based on macromvertebrate communities:Histroy and present states in Europe. Envriornmental pollution,1989,60:101-139
    68. Woodiwiss F S. The biological system of stream classification used by the Trent River Board Chemistry and Industry,1964,11:443-447
    69. Fitzgerald K. The Ord River Catchment Regeneration Project. Bulletin 3599, Department of Agriculture, Perth.1968
    70. Chandler J R. A biological approach to water quality management. Water Pollution Control, 1970,415-421
    71. Chutter F M. An empirical biotic index of the quality of water in South African streams and rivers. Water Resources,1972,6:19-30
    72. Hilsenhoff W L. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society,1988,7(1):65-68
    73. Lena* D R. A biotic index for the southeastern United States:derivation and list of tolerance values, with criteria for assessing water-quality rating. J N Am Benthol Soc, 1993,12:279-290
    74. Resh V H, and J K Jackson. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In:Rusenberg D M, and V H Resh, Eds. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New Youk,1993:159-154
    75. Barbour M T, and J Gerritsen. Subsampling of benthic samples:a defense of the fixed-count method. Journal of the North American Benthological Society,1996,15:386-391
    76. Maxted J R, M T Barbour, and J Gerritsen. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. J N Am Benthol Soc,2000,19(1): 128-144
    77. Tetra Tech, Inc. A stream condition index for West Virginia wadeable streams. Owings Mills, MD.,2000 (Available as of June 2005 http://www.dep.state.wv.us/Docs/536_WV-In-dex.pdf)
    78. Raburu P O, and F O Masese. Development of a fish-based index of biotic integrity (FIBI) for monitoring riverine ecosystems in the lake Victoria drainage basin, Kenya. River Res. Applic,2012,28:23-38
    79. Wang L Z, L John, K Paul, et al. We compared watershed land-use and fish community data between the 1970s and 1990s in 47 small streams in south-eastern Wisconsin. Journal of the American water resources association,2000,36(5):1173-1189
    80. Genito D, W J Gburek, and A N Sharpley. Response of stream macroinvertebrates to agricultural land cover in a small watershed. Journal of freshwater ecology,2002,917(1): 109-11
    81. Morley S A, and J R Karr. Assessing and restoring the health of urban steams in the Puget Sound Basin. Conservation Biology.2002,16:1498-1509
    82. Link S, R H Norris, D P Faith, et al. ANNA:a new prediction method for bioassessment programs. Freshwater Biology,2005,50:147-158.
    83. Hawkins C P. Quantifying biological integrity by taxonomic completeness:its utility in regional and global assessments. Ecological Applications,2006,16(1):277-294
    84. US-EPA. Wadeable stream assessment-a collaborative survey of the nation's streams. EPA 841-B-06-002. US-EPA, Office of Water, Washing, D.C.20460,2006
    85. Barbour M T, J Gerritsen, B D Snyder, et al. Stribling. Rapid bioassessment protocols for use in streams and wadeable rivers:periphyton, benthic macroinvertebrates and fish, second edition. EPA 841-B-99-002. U.S. EPA; Office of Water; Washington, D.C,1999
    86. Bonada N, N Prat, V H Resh, et al. Developments in aquatic insect biomonitoring:a comparative analysis of recent approaches. Annual Review of Entomology,2006,51: 495-523
    87. Verdonschot P F M, R C Nijboer. Testing the European stream typology of the Water Framework Directive for macroinvertebrates. Hydrobiologia,2004,516:35-54
    88. Morse J C, Y J Bae, G Munkhjargal, et al. Freshwater biomonitoring with macro-invertebrates in East Asia. Frontiers in Ecology and Environment,2007,5(1):33-42.
    89. Plafkin J L, M T Barbour, K D Porter, et al. Rapid Bioassessment Protocols for use in streams and rivers:benthic macroinvertebrates and fish. EPA/440/489001. Assessment and Water Protection Division, US Environmental Protection Agency, Washington, DC.
    90.颜京松,游贤文,苑省三.以底栖动物评价甘肃境内黄河干支流枯水期水质.环境科学,1980,1(14):14~20.
    91.刘保元.利用底栖动物评价图门江污染的研究.环境科学学报,1981,1(4):337~348
    92.黄玉瑶,滕德兴.利用大型底栖无脊椎动物种类多样性指数监测蓟运河污染.动物学集刊,1982,2:133
    93.谢翠娴.洞庭湖水环境质量生物学评价的研究.长江水资源保护,1985,(6):47-52
    94.郭智明.栾河十四个断面大型底栖无脊椎动物的调查和水质评价.环境科学,1984,5(4):39-45
    95.杞桑,林美心.用大型底栖动物对珠江广州河段进行污染评价.环境科学学报,1982,(3):81~187
    96.杞桑,林美心.用大型底栖动物再次对珠江广州河段污染的评价.环境科学学报,1985,(3):354-359
    97.任淑智.北京地区河流中大型底栖无脊椎动物与水质关系的研究.环境科学学报,1991,11(1):31-46.
    98.任淑智.北京小型湖泊底栖无脊椎动物群落结构特征与营养状况的研究.应用生态学报,1991,2(3):221-225
    99.任淑智.京津地区及邻近地区底栖动物群落特征与水质等级.生态学报,1991,11(3):262~268.
    100.杨莲芳,田立新.中国水生昆虫研究史梗概.昆虫知识,1994,31(5):308~314
    101.龚志军,谢平,唐汇娟,等.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物,,2001,25(3):210-216
    102.袁兴中,刘红,陆健健.生态系统健康评价——概念构架与指标选择.应用生态学报,2001,12(4):627~629
    103.袁兴中,陆健健.长江口潮沟大型底栖动物群落的初步研究.动物学研究,2001,22(3):211~215
    104.袁兴中,陆健健.围恳对长江口南岸底栖动物群落结构及多样性的影响.生态学报,2001,21(10):1642~1647
    1(15.袁兴中,叶林奇.生态系统健康评价的群落学指标.环境导报,2001,1:45-47
    106.戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物学评价.生态学报,2000,20(2):277~282
    107.戴友芝,唐受印,张建波.利用底栖动物群落特征评价洞庭湖污染的研究.湘潭大学自然科学报,1999,21(4):83~87
    108.王新华,纪炳纯,刘越.天津市主要公园底栖动物及其水质评价(续完).动物科学与动物医学,2002,19(6):17~19
    109.张建波,李利强,田琪.洞庭湖底栖动物多样性及水质现状评价.内陆水产,2002(3):42-43
    110.王建国,黄恢柏,杨明旭,等.庐山地区底栖大型无脊椎动物耐污值与水质生物学评价.应用与环境生物学报,2003,9(3):279-284
    111.王备新,杨莲芳.我国东部底栖无脊椎动物主要分类单元耐污值.生态学报,2004,24(2):2768~2775
    112.李强,杨连芳,吴昊,等.底栖动物完整性指数评价西苕溪溪流健康.环境科学,2007,28(9):2141~2147
    113.李金国,王庆成,严善春,等.凉水、帽儿山低级溪流中水生昆虫的群落特征及水质生物评价.生态学报,2007,27(12):5008-5018
    114.谢志才,马凯,叶麟,等.保安湖大型底栖动物结构与分布格局研究.水生生物学报,2007,37(2):174-183
    115.吴璟,杨莲芳,姜小三,等.浙江西苕溪土地利用变化对溪流大型底栖无脊椎动物完整性的影响.生态环境,2008,28(3):1183-1191
    116.薛建,安正帅,牛长缨,等.水生双翅目昆虫监测水体重金属污染的研究.昆虫知识,2008,45(3):378-383
    117.戴纪翠,倪晋仁.底栖动物在水生生态系统健康评价中的作用分析.生态环境,2008,17(6):2107-2111
    118.周晓蔚,王丽萍,郑丙辉,等.基于底栖动物完整性指数的河口健康评价.环境科学,2009,30(1):242-247
    119.Karr J R. Biological integrity-a long-neglected aspect of water-resource management. Ecological Applications,1991,1:66-84
    120.Flotemersch, J E, J B Stribling, and M J Paul. Concepts and Approaches for the Bioassessment of Non-wadeable Streams and Rivers. EPA/600/R-06/127. U.S. Environmental Protection Agency, Office of Research and Development Washington, DC, 2006
    121.Liang S H, and E B W Mensel. A new method to establish scoring criteria of the index of biotic integrity. Zoological Studies,1997,36(3):240-250
    122.David A J. Stream Ecology Structure and Function of Running Water. Chapman & Hall, New York,1995:329-330
    123.Smith D S, and P C Hellmund. Ecology of greenways. University of Minnesota, U.S.A., 1993:87-88
    124.朱迪,常剑波.长江上游生物完整性指数的年际变化.武汉:第一届中日流域水环境技术研讨会,2010
    125.Lyons J, N Perezs, Cochranpa, et al. Development of a preliminary index of biotic integrity (IBI) based on fish assemblages to assess ecosystem condition in the lakes of central Mexico. Hydrobiologia,2000,418(1):57-72
    126.Morley S A, J R Karr. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conservation Biology,2002,16:1498-1509
    127.Blocksom K A, J P Kurtenbach, D J Klemm, et al. Development and evaluation of the lakemacroinvertebrate integrity index (LMII) for New Jersey lakesand reservoirs. EnvironmentalMonitoringandAssessment,2002,77(3):311-333
    128.Grime J P. Biodiversity and ecosystem function:the debate deepens. Science,1997,277: 1260-1261
    129.Early S K, R L Newell, and V F Medina. Use of macroinvertebrate and chemical indices to assess water quality of an irrigation waster way. Journal of Freshwater Ecology,2002,17 (2):191-197
    130.Wallace J B, and R Webster. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology,1996,41:115-139
    131.Cummins K W, M J Klug. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics,1979,10:147-172
    132.Morse J C, L-F Yang, L-X Tian. Aquatic Insects of China Useful for Monitoring Water Quality. Nanjing:HoHai University Press.1994:1-570
    133.Vannote R L, G W Minshall, K W Cummins, et al. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences.1980,37:130-137
    134 Merritt R W, and K W Cummins. An introduction to the aquatic insects of North American. Dubuque:Kendall/Hunt Publishing,1996:1-722
    135.Barbour M T, and J Gerritsen. Subsampling of benthic samples:a defense of the fixed-count method. Journal of the North American Benthological Society,1996,15:386-391
    136.Barbour M T, J Gerritsen, G E Griffith, et al. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc,1996, 15(2):185-211
    137.Horne A J, and C R Goldman. Limnology (2nd edition). New York:McGraw Hill, Inc, 1994
    138.Gong Z J, P Xie, and S D Wang. Macrozoobenthos in shallow, mesotrophic Chinese lake with contrasting sources of primary production. Journal of North American Benthological Society,2000,19(4):709-724
    139.王备新.大型底栖无脊椎动物水质生物评价研究.南京农业大学博士学位论文.2002:4-17
    140.王洪铸.中国小蚓类研究.北京:农业出版社.1979:1~126
    141.Wetzel R G. Limnology:lake and river ecosystems.3rd edition. Academic Press, New York,2001
    142.Allian J D. Stream Ecology-Structure and Function of Running Waters. London:Chapman Hall,1995:888
    143.Basaguren A, A Elosegui, and J Pozo. Changes in the Trophic Structure of Benthic Macroinvertebrate Communities Associated with Food Availability and Stream Flow Avariations. Revue Ges Hydrobiol,1996,81(1):79-91
    144.Hynes H B N. The Ecology of Running Waters. Toronto:Press of the University of Toronto,1970
    145.Statzner B, J A Gore, and V H Resh. Hydraulic Stream Ecology:Observed Patterns and Potential Applications. Journal of the North American Benthological Society,1988,7(4): 307-360
    146.李斌,张耀光,王志坚.怒江(云南段)大型底栖动物纵向分布和季节性变化规律研究.西南师范大学学报,2011,36(3):138~143
    147.闫云君,李晓宇,梁彦龄.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较.湖泊科学,2005,17(2):176~182
    148.Fisher S G. Pattern, process and scale in freshwater systems:some unifying thoughts. In: Giller P S, A G Hildrew, and D G Raffaelli (Eds.), Aquatic Ecology-Scale, Pattern and process. Blackwell Science,1994:575-592
    149.Xu F L, R W Tao, Dawson, et al. A GIS-based methods of lake eutrophication assessment. Ecological Modelling,2001,144:231-244
    150.Giovanni M, F Goretti, and V Tamanti. Macrobethos in Montedoglio Reservoir, Central Italy. Hydrobiologia,1996,321:17-28
    151.Brinklhurst R O. The benthos of Lakes. London:the MaCmillan Press,1974:1-190
    152.Xie Z C, T Tang, K Ma, et al. Influence of environmental variables on macroinvertebrates in a macrophyte dominated Chinese lake, with emphasis on the relationships between macrophyte heterogeneity and macroinvertebrate patterns. Journal of Freshwater Ecology, 2005,20(3):503-512
    153.Cyr H, and J A Downing. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwater Biol,1988,20:365-374
    154.Crowder L B, and W E Cooper. Habital structural complexity and interaction between bluegills and their prey. Ecology,1982,63:1802-1813
    155.Wiggins G B. Larvae of the North America caddisfly Genera (Trichoptera). Toronto: University of Toronnto Press,1978
    156.Nolte U, and T Hoffmann. Life cycle of Pseudodiamesa branichii (Chironomidae) in a small upland stream, Netherlands. Journal of Aquatic Ecology,1993,26:309-314
    157.Nelson W G. Experimental studies of selective predation on amphipods consequences for amphipod distribution and abundance. Journal of Experimental Marine Biology,1979,38: 225-245
    158.Coen L D, K L Hech, and L G Abele. Experiments on completion and predation among shrimps of sea grass meadow. Ecology,1981,62:1484-1494
    159.Buss D F, and D F Baptista, J L Nessian, et al. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assesmblages in neotropical streams. Hydrobiologia,2004,518(1):179-188
    160.段学花,王兆印,徐梦珍.底栖动物与河流生态评价.清华大学出版社,2011:76
    161.康乐.放牧干扰下的蝗虫—植物相互作用关系.生态学报,1995,15(1):1-10
    162.张觉民.黑龙江省鱼类志.哈尔滨:黑龙江科学技术出版社,1995:1~275
    163.Karr J R, K D Fausch, P L Anger, et al. Assessing biological integrity in running waters:A method and its rationale. Champaign,Ill:Illinois Natural History Survey,1986
    164.Drake M T, and D L Pereira. Development of a fish based index of biotic integrity for small inland lakes in central Minnesota. North American Journal of Fisheries Management, 2002,22:1105-1123
    165.刘明典,陈大庆,段辛斌,等.应用鱼类生物完整性指数评价长江中上游健康状况.长江科学院院刊,2010,27(2):1-10
    166.Novotn Y V, V A Bartoso, O'reillyn, et al. Unlocking the relationship of biotic integrity of impaired waters to anthropogenic stresses. Water Research,2005,39(1):184-198
    167.Baxter R M. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics,1997,8:255-283
    168.Young S P, J Chang, S Leck, et al. Conservation strategies for endemic fish species threatened by the three gorges dam. Conservation Biology,2003,17(6):1748-1758
    169.Carlos G L. The effect of man on the fish fauna of the River Guadalquivir, Spain. Fisheries Research,1991,12:91-100
    170.Zhang L, J Xu, P Xie, et al. Stable isotope variations in particulate organic matter and a fish in the Yangtze River. Journal of Freshwater Ecology,2007,22:383-386
    171.Harford W J, and R L McLaughlin. Understanding uncertainty in the effect of low-head dams on fishes of Great Lakes tributaries. Ecological Applications,2007,17:1783-1796
    172.Ourso R T, S A Frenael. Identification of linear and threshold responses in streams along a gradient of urbanization in Anchorage, Alaska. Hydrobiologia,2003,501:117-131.
    173.Walsh C J, K A Waller, J Gehling, R M Nally. Riverine invertebrate assemblages are degraded more by catchment urbanisation than by riparian deforestation. Freshwater Biology,2007,52 (3):574-587.
    174. Wang L. J Lyony, P Kanehl. Impaxts of urbanization on stream habitat and fish across multiple spatial scales. Environ. Manag.2001,28:255-266.
    175.Morse HC, A D Huryh, C Cronan. Impervious surface area as a predictor of the effects of urbanization on stream insect communities in Maine U.S.A. Environmental Monitoring and assessment.2003,89:95-127.
    176.Walters D M, D S Leigh, A B Bearden. Urbanization, sedimentation, and the homogenization offish assemblages in the Etowah River Basin, USA. Hydrobiologia. 2003,494,5-10.
    177.Pagliosaa P R, F Antonio, R Barbosab. Assessing the environment-ben thic fauna coupling in protected and urban areas of southern Brazil. Biological Conservation,2006,129: 408-417.
    178.Chardwick M A, D R Dobberfuhl, A C Benke, A D Huryn, K Suberkropp. Urbaniation affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecological applications,2006,16(5):1796-1807.
    179.Allan J D. landscapes and riverscapes:the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst.2004,35:257-84.