填埋气体胁迫下适生植物根际土壤微生物分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,卫生填埋作为城市生活垃圾广泛应用的最终处置方式日益暴露出局限性。卫生填埋场封场植被恢复缓慢,恶臭和温室气体污染以及景观生态破坏严重等问题,已成为影响我国城镇生态文明建设的制约因素之一。因此,本论文针对目前垃圾填埋场植被恢复缓慢所带来的若干问题,通过对杭州市天子岭垃圾填埋场植被调查和筛选,获得系列国内外首次报道的垃圾填埋场适生植物,在此基础上,构建了一种污泥或污泥堆肥强化覆土肥力适生植物适配种植的垃圾填埋场植被恢复技术,通过实验室模拟试验,探讨了填埋气体胁迫下适生植物白藜和高羊茅根际土壤微生物种群结构多样性及功能变化,阐明了填埋气体胁迫下污泥及堆肥污泥覆土改良及提升适生植物根际土壤甲烷氧化微生物分子生态学机理。研究结果为垃圾填埋场植被快速恢复和温室气体减排提供技术与理论依据。
     以杭州市天子岭垃圾填埋场为研究对象,运用植物分类学与植物生态学相结合的方法,调查分析了垃圾填埋场35科86种植物及其分布状况,发现填埋场植被自然恢复周期较长,约需7~8年,植被主要以耐干旱贫瘠,具有强侵占性和破坏性的草本植物为主,灌木次之,藤本植物和乔木的种类相当稀少,演替趋势符合废弃地植被演替的一般趋势。提出以人工控制天然草本植物的繁衍为基础,适当引入耐干旱贫瘠的抗性浅根系植物品种,通过强化填埋覆土肥力,促进植物生长,加速垃圾填埋场封场植被恢复进程的措施和建议。
     以垃圾填埋场植被调查为依据,结合生物多样性与景观生态设计原则,选取乔、灌木植物20种和草本植物9种,人工筛选获得女贞、湿地松、珊瑚朴、白藜、高羊茅等11种耐性适生植物,其中珊瑚朴、黄连木、大叶榉、红叶石楠、紫荆和白藜为国内外首次报道的垃圾填埋场适生植物。创建了以女贞、湿地松、珊瑚朴、红叶石楠、紫荆、高羊茅和画眉草等耐性适生植物为基础的“乔木+灌木+草本”组合适配填埋场覆土植被种植方案,自主研发了一套污泥强化覆土填埋场植被快速恢复技术,可缩短垃圾填埋场植被恢复时间2年以上。
     以垃圾填埋场适生植物白藜为试材,在实验室条件下,研究并探讨填埋气体胁迫下,适生植物白藜的生长发育对填埋覆土甲烷氧化活性和微生物种群结构多样性的影响及其相互关系。研究结果表明,白藜的种植可显著提高土壤中可培养细菌数量(P<0.05)。在填埋气体胁迫下,自白藜生长的花期(90天),覆土可培养甲烷氧化菌数量和甲烷氧化活性均显著高于未经填埋气体处理的对照土壤(P<0.05)。在白藜生长发育进入果期(150天)时,填埋气体胁迫下白藜根际土壤甲烷氧化菌数量和甲烷氧化活性最高。变性梯度凝胶电泳(PCR-DGGE) -分子克隆的研究结果表明,填埋气体胁迫下白藜根际土壤细菌种群结构多样性与纯土、纯土种植白藜和纯土加填埋气体处理土壤存在显著性差异。甲基八叠球菌属(Methylosarcina)是填埋气体胁迫下白藜根际土壤优势甲烷氧化菌群,而甲基球菌属(Methylococcus)、甲基孢囊菌属(Methylocystis)、甲基弯曲菌属(Methylosinus)则是未种植白藜的填埋覆土的主要甲烷氧化菌群。因此,填埋气体胁迫下,白藜根际对优势甲烷氧化菌群具有选择性,白藜的种植可显著提高覆土的甲烷氧化活性和细菌种群结构及多样性。
     选取垃圾填埋场适生植物高羊茅为研究对象,研究探讨了填埋气体胁迫下污泥和堆肥污泥等覆土添加剂对植物生长、光合性能、根际土壤甲烷氧化活性、根际土壤微生物种群结构多样性的影响及其相互关系。研究结果表明,填埋气体胁迫下,污泥或堆肥污泥的添加,可显著提高植物叶片叶绿素含量和光合特性,促进植物生长。末端限制性片段长度多态性分析(T-RFLP)技术分析结果表明,填埋气体胁迫下,污泥和堆肥污泥的添加可改变适生植物高羊茅根际土壤细菌种群结构多样性。添加污泥和污泥堆肥可显著提高根际土壤可培养甲烷氧化菌数量及其甲烷氧化活性(P<0.05),相比之下,堆肥污泥添加效果更为明显。PCR-DGGE-分子克隆分析表明,添加污泥和堆肥污泥可显著提升高羊茅根际土壤甲烷氧化菌生物多样性,并使Ⅱ型甲烷氧化菌成为了其中的优势甲烷氧化菌。填埋气体处理与植物种植前,填埋覆甲烷氧化菌主要以Ⅰ型甲烷氧菌甲基球菌属(Methylococcus)和甲基杆菌属(Methylobacter)微生物为优势。在填埋气体胁迫下,添加堆肥污泥处理的高羊茅根际土壤甲烷氧化微生物甲基球菌属(Methylococcus)、甲基暖菌属(Methylocaldum)和甲基孢囊菌属(Methylocystis)为优势,且Ⅰ型甲烷氧化菌的丰度比Ⅱ型甲烷氧化菌更高;而添加污泥处理的高羊茅根际土壤甲烷氧化菌则以甲基暖菌属(Methylocaldum)、甲基孢囊菌属(Methylocystis)和甲基弯曲菌属(Methylosinus)为优势,根际土壤甲烷氧化菌群种类明显低于堆肥污泥处理,并以Ⅱ型甲烷氧化菌为主。显然,不同的填埋覆土改良剂对填埋气体胁迫下,适生植物根际土壤甲烷氧化微生物多样性的形成、数量及其活性的影响机制存在差异。尽管如此,添加污泥或堆肥污泥提升高羊茅根际土壤甲烷氧化活性的机理可能是由于养分促生,覆土孔隙度改善以及根系氧压增加的结果;填埋气体胁迫下,高羊茅根际土壤甲烷氧化菌群结构多样性差异是导致不同覆土改良剂作用下高羊茅根际土壤甲烷氧化活性存在显著性差异的重要因素。
Sanitary landfill technique of Municipal Solid Waste (MSW) disposal plays an important role, but faces more and more challenges. Retardation of revegetation, ever escalating water and air pollution caused by landfill and the degradation of land resource and landscape Scenary are becoming the major issues to be addressed in conserving the city ecology. According to the investigations on vegetation of Tianziling landfill, several tolerant plants under the stress of landfill gases were the frist time to be selected by us. Based on these findings, a novel technique for landfill revegetation was designed using municipal sewage sludge to enhance the landfill cover soil. The variation of the composition of microbial community in rhizosphere soil of tolerant plants: Chenopodium album L. (C. album) and Festuca ovina under the stress of landfill gas (LFG) was studied at laboratory level. Microbial molecular ecology of the methanotrophic bacteria community in rhizosphere soil of tolerant plants, enhanced by the addition of sewage sludge and compost to the landfill cover was investigated under the stress of LFG.
     The survey carried out in and around the Tianziling landfill of Hangzhou city, to understand the composition of vegetation, revealed that there are 86 species of plants belonging to 35 families, inside the landfill. The results show that it needs 7-8 years to cover the whole landfill by natural vegetation, and the dominant plants are herbs mainly composed of wild weeds, while plants belong to arbor and frutex are very rare in the landfill. The evolving trend is fit to the trends of general disused sites. However, the natural wild weeds play a destructive role in landfill revegetation. The effective strategy to enhance landfill revegetation is therefore first, to control the unlimited extension of wild weeds in the landfill and then, to select tolerant plants to the landfill amended with the landfill cover soil with biosolid and other nutrients.
     Based on the investigation of vegetation and the principles of landscape reclamation in landfill, 20 species of arbor and frutex plants and 9 species of herbs were used for the vegetation study in the Tianziling landfill site. It is found that Pinus elliottii, Ligustrum lucidum, Cercis chinensis, Festuca ovina, Eragrostis pilosa and Chenopdium album L (C. album) ect, are more tolerant to the landfill conditions. Celtis julianae、Zelkova schneideriana、Pistacia Chinese、Photinia serrulata、Cercis chinensis and Chenopdium album L. were selected for the first time as the tolerant plants used for landfill revegetation. These tolerant plants were seclected to be planted in the landfill according to the "Arbor + Frutex + Herb" principle, and a successful field demonstration was done to provide the novel landfill revegetation techniques of using municipal sewage sludge to enrich the landfill cover soil. The revegetation time of a landfill is expected to be shortening at least by two years with this technique.
     The effect of a LFG tolerant plant: C. album on methane oxidation activity (MOA) and bacterial community composition in landfill cover soil was investigated at field level. Soil samples from four simulated lysimeters with and without LFG and plant vegetation were taken at 4 stages during the development cycle of the plant. Results showed that the total number of culturable bacteria in soil could significantly be increased (P < 0.05) by the growth of C. album. The total number of methanotrophs and MOA in soils with LFG was significantly higher (P < 0.05) than in soils without LFG on the sampling days of 90, 150 and 210. Further, the total number of methanotrophs and MOA in lysimeters with LFG, increased in the presence of C. album when the plant entered the seed setting stage. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) gel patterns of 16S rDNA gene fragment and band sequencing analyses apparently differed among soil bacterial communities in the presence of LFG and plant vegetation. Members of the genus Methylosarcina were found to be the most active and dominant methanotrophs in rhizosphere soil of C. album with LFG, while Methylococcus, Methylocystis, and Methylosinus were the primary methanotroph genera in LFG soil without C. album. Thus, C. album appears to be methanotrophic bacteria specific, in the presence of LFG. Soil MOA and microbial diversity can also be affected significantly by the presence of this plant. The inclusion of plants that are capable of tolerating LFG and specific on active methanotrophs may be critical in controling CH_4 emissions from landfills.
     Traditional cultivation and the rolling tube method combined with modern molecular microbiological techniques including the Terminal Fragment Length Polymorphism (T-RFLP) Analysis, PCR-DGGE and Clone techques were used to detect the Festuca ovina rhizosphere soil bacterial community compostion, the soil culturable methanotrphic bacteria and the soil methanotrphic bacteria community compostion under the landfill cover soil amended with sewage suldge and sewage sludge compost. The results showed that the biomass, chlorophyll content and photo-physiological characteristics of Festuca ovina were significantly increased by the LFG under the landfill cover soil amended with sewage suldge and sewage sludge compost(P<0.05). The T-RFLP anaysis showed that, the addition of sewage sludge or sewage sludge compost to the landfill cover plays an important role in improving the soil bacterial community compositon. The total number of methanotrophs and MOA in soils stressed by LFG could significantly be increased (P < 0.05) by using sewage sludge and sewage sludge compost. The results of PCR-DGGE combined 16S rDNA phylogenetic analysis showed that the methanotrophic bacterial community and composition of rhizosphere are obviously influenced by the stress of LFG and the addition of sewage sludge or sewage sludge compost to landfill cover. Type II methanotrophic bacteria also became one of the dominant microbes. The dominant methanotrophic bacteria in landfill cover soil, before the stress of LFG and with out the plantation of Festuca ovina were Methylococcus and Methylobactor which are type I methanotrophic bacteria. However, the dominant methanotrophic bacteria in rhizosphere soil of Festuca ovina amended with sewage sludge compost changed to Methylococcus, Methylocaldum and Methylocystis under the stress of LFG. Type I methanotrophic bacteria were more dominant than Type II methanotrophic bacteria under this situation. In contrast, when sewage sludge was used to amend the landfill cover soil, the dominant methanotrophic bacteria in rhizosphere soil of Festuca ovina turned to Methylocaldum, Methylocystis and Methylosinus under the stress of LFG, and Type II methanotrophic bacteria were more dominant under this situation. Consequently, the type of landfill cover has a significant influence on shaping the methanotrophic bacteria community composition and MOA in the rhizosphere soil of the tolerant plants, and the mechanisms may probably be different. The mechanisms attributable to this finding are: the improved availability of nutrients to the tolerant plants and the increased soil porosity, assuring increased supply of oxygen to the plant roots which can create niches for the colonization of methanotrophic bacteria. The variation of methanotrophic bacteria community composition in rhizosphere soil of tolerant plants among the different types of landfill cover is one of the key factors bringing about the significant differences of MOA in different kinds of landfill covers.
引文
Allen M.R., Braithwaite A., Hills C.C., 1997. Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environmental Science and Technology, 31(4): 1054-1061
    Anderson T.A., Guthrie E.A., Wahon B.T., 1993. Bioremediation in the rhizosphere. Environmental Science and Technology, 27(13): 2630-2636
    Aprill W., Sims R.C., 1990. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20(1-2), 253-265
    Auman A.J., Stolyar S., Armey L., 2000. Molecular characterization of methanotrophic isolate from freshwater lake sediment. Applied Environmental Microbiology, 66(12):5259-5266
    Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C., 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry, N., Banuelos, G.S. (Eds.), Phytoremediation of Contaminated Soil and Water. CRC Press, Boca Raton, FL, USA, pp. 85-107
    Baker A.J.M., Reeves R.D., McGrath S.P., 1991. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants - a feasibility study. In: Hinchee, R.E., Olfenbuttel, R.F. (Eds.),In situ Bioremediation. Butterworth-Heinemann, Stoneham, MA, pp.539-544
    Baker P. W., Futamata H., Harayama S., Watanabe K., 2001. Molecular diversity of pMMO and sMMO in a TCE-contaminated aquifer during bioremediation. FEMS Microbiology Ecology, 38(2-3):161-167
    Barlaz M.A., Green R.B., Chanton J.P., Goldsmith C.D., Hater G.R., 2004. Evaluation of a Biologically Active Cover for Mitigation of Landfill Gas Emissions. Environmental Science and Technology, 38(18):4891-4899
    Barlaz M.A., Ham R.K., Schaefer D.M., 1990. Methane production from municipal refuse. A review of enhancement techniques and microbial dynamics. Critical Reviews in Environmental Control, 19(3), 557-584
    Bender M, Conrad R., 1993. Kinetics of methane oxidation in oxic soils. Chemosphere, 26(1-4): 687-696
    Blaylock M.J., Huang J.W., 2000. Phytoextraction of metals. In:Raskin, I., Ensley, B.D. (Eds.), Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. John Wiley, New York, pp. 53-70
    Bodelier PLE, Laanbroek HJ, 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments, FEMS Microbiology Ecology, 47 (3): 265-277
    Bodrossy L., Holmes E.M., 1997. Analysis of 16SrRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Archives of Microbiology, 168(6):493~503
    Boeckx P., Van Cleemput O., 1996. Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature and nitrogen-turnover. Journal of Environment Quality, 25:178-183
    Bogner J.E., Spokas K.A., Burton E.A., 1997.Kinetics of Methane Oxidation in Landfill Cover Soil: Temporal Variations, a Whole-Landfill Oxidation Experiment, and Modeling of Net CH4 Emissions. Environmental Science and Technology, 31 (9):2504-2514
    B(?)rjesson G., Sundh I., Svensson B., 2004. Microbial oxidation of CH_4 at different temperatures in landfill cover soils, FEMS Microbiology Ecology, 48 (3): 305-312
    B(?)rjesson G., Sundh I., Tunlid A., Svensson B.H., 1998.Methane oxidation in landfill cover soil, As revealed by potential oxidation measurements and phospholipid fatty acid analysis. Soil Biology and Biochemistry, 30(10/11):1423-1433
    Bourne D.G., McDonald I. R., Murrell J.C., 2001. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Applied and Environmental Microbiology 67(9):3802-3809
    Bowman D.G., Sly L.I., 1995. The phylogenetic position of the family Methylococcaceae. International Journal of Systematic Bacteriology, 45(3): 182-185
    Bowman J.P., Skerratt J.H., Nichols P.D., Sly L.I., 1991. Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiology Letters, 85(1): 15-22
    Brown S.L., Chaney R.L., Angle J.S., Baker A.J.M., 1994. Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc and cadmium-contaminated soil. Journal of Environmental Quality, 23:1151-1157
    Brusseau G.A., Bulygina E.S., Hanson R. S., 1994. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Applied and Environmental Microbiology 60(2):626-636.
    Cheng Y.S., Halsey J.L., Fode K.A., Remsen C.C., Collins M.L.P., 1999. Detection of methanotrophs in groundwater by PCR. Applied and Environmental Microbiology, 65(2):648-651
    Charlotte S., Mosbaek H., Kjeldsen P., 2004. Attenuation of methane and volatile organic compounds in landfill soil covers, Journal of Environmental Quality, 33 (1): 61-71
    Chen Y., Dumont M.G., Cebron A., Murrell J. C, 2007. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environmental Microbiology, 9(11):2855-2869
    Conrad R., 1996.Soil microorganism as controllers of atmospheric trace gases (H_2, CO, CH_4, OCS. N_2O and NO). Microbiological Reviews, 60(4): 609-640
    Costello A.M., and Lidstrom M.E., 1999. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied and Environmental Microbiology, 65(11):5066-5074
    Crossman Z.M., Abraham F., Evershed R.P., 2004. Stable Isotope Pulse-Chasing and Compound Specific Stable Carbon Analysis of Phospholipid Fatty Acids to Assess Methane Oxidizing Bacterial Population in Landfill Cover Soils. Environmental Science and Technology, 38(5):1359-1367
    De Visscher A., Thomas D., Boeckx P., Van Cleemput O., 1999. Methane Oxidation in Simulated Landfill Cover Soil Environments. Environmental Science and Technology, 33(11):1854-1859
    Dedysh S.N., Derakshani M., Liesack W., 2001. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Applied and Environmental Microbiology, 67(10): 4850-4857
    Dedysh S.N., Dunfield P.F., Derakshani M., Stubner S., Heyer J., Liesack W., 2003. Differential detection of type Ⅱ methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiology Ecology, 43(3):299-308
    Dunbar J., Takala S., Barns S.M., 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16Sr RNA gene cloning. Applied and Environmental Microbiology, 65(4): 1662-1669
    Dwyer S.F., Wolters G.L., Newman G., 2000. Sandia report: SAND2000-2900. Sandia National Laboratories.
    Eller G., Stubner S., Frenzel P., 2001. Group-specific 16S rRNA targeted probes for the detection of type Ⅰ and type Ⅱ methanotrophs by fluorescence in situ hybridisation. FEMS Microbiology Letters, 198(2):91-97
    Fjellbirkeland A., Torsvik V., Ovreas L., 2001. Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF, and 16S rDNA sequences. Antonie van Leeuwenhoek 79:209-217
    Flower F.B., 1975. Case history of landfill gas movement through soils. Proceedings of the research symposium "Gas and leachate from landfills" [M]. New Jersey: Rutgers University, 177-189
    Flower, F.B., Gilman, E.F., Leone, I.A., 1981. Landfill gas. What it does to trees and how its injurious effects may be prevented? Journal of Arboriculture, 7, 43-52
    Frank S., Chistoph C.T., 1998. A New Approach To Utilize PCR-Single-Strand-Conformation Polymorphism for 16S rRNA Gene-Based Microbial Community Analysis. Applied and Environmental Microbiology, 64 (12):4870-4876
    Frenzel P., 2000. Plant-Associated Methane Oxidation in Rice Fields and Wetland. Advanced Microbiological Ecology,16:85-114
    Fujiwara K., You H.M., Miyawaki A., 2000. The potential natural vegetation and proposals for restoration of green environ mental in Xuzhou City. Bulletin of the Kanagawa Phytosociological Society, 5:19-31
    Fuse H., Ohta M., Takimura 0., Murakami K., Inoue H., Yamaoka Y., Oclarit J.M., Omori T., 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Bioscience, Biotechnology, and Biochemistry, 62:1925-1931.
    Gendebien A., Pauwels M., Ledrut-Damanet M.J., Nyns E.J., Willumsen H.C., Butson J., Fabry R., Ferrero G.L., 1992. Potential landfill gas damages to vegetation. In: Landfill Gas from Environment to Energy. Commission of the European Communities, Luxembourg, pp. 35-46
    Gilbert B., Frenzel P., 1998. Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biology and Biochemistry, 30(14):1903-1916
    Green P.N., 1992. Taxonomy of methylotrophic bacteria. In:Murrel JC, eds. Microbial Growth on Cl Compounds[C]. London : Intercept Press Ltd. pp. 23-84
    Guerinot M.L., 2000. Molecular mechanisms of ion transport in plant cells. In: Raskin, I., Ensley, B.D. (Eds.), Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. John Wiley, New York, pp. 271-285
    Gulledge J., Ahmad A., Steudler P.A., Pomerantz W.J., Cavanaugh CM., 2001. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Applied and Environmental Microbiology, 67(10):4726-4733
    Hanson R.S., Bratina B.J., Brusseau G.A., 1993. Phytogeny and ecology of methylotrophic bacteria. In: Microbial Growth on C1 Compounds (Murrell, J.C. and Kelly, D.P., Eds.), Intercept Press, Andover, UK. 285-302
    Hanson R.S., Hanson T.E., 1996. Methanotrophic Bacteria. Microbiological Reviews , 60(2):439-471
    Hanson R.S., Netrusov A.L., 1991. The obligate methanotrophic bacteria Methylococcus, Methylomonas, Methylosinus and related bacteria. In: Balows A. eds. The Prokaryotes[C]. New York: Springer Verlag, 2350-2365.
    Henson J.M., Yates M.V., Cochran J.W., 1989. Metabolism of chlorinated methanes, ethanes, and ethylenes by a mixed bacterial culture growing on methane. Journal of Industrial Microbiology, 4(1):29-35.
    Hilger H.A., Wollum A.G., Barlaz M.A., 2000. Landfill methane oxidation response to vegetation, fertilization, and liming. Journal of Environmental Quality, 29(1):324-334
    Holmes A.J., Costello A.M., Lidstrom M.E., Murrell J.C, 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters, 132(3):203-208
    Holmes A.J., Owens N.J.P., Murrell J.C., 1995. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141:1947-1955.
    Horz H.P., Yimga M.T., Liesack W., 2001. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA based terminal restriction fragment length polymorphism profiling. Applied and Environmental Microbiology, 67(9):4177-4185
    Hutchens E., Radajewski S., Dumont M.G., McDonald I.R., Murrell J.C., 2004. Analysis of methanotrophic bacteria in Movile Cave by stable-isotope probing. Environmental Microbiology, 6(2): 111-120
    Infelmo F., Canet R., Ibanez M. A., 1998. Use of MSW compost, dried sewage sludge and other waste as partial substitutes for peat and soil. Bioresource Technology 63, 123-129
    Kalyuzhnaya M.G., Makutina V.A., Rusakova T.G., Nikitin D.V., Khmelenina V.N., Dmitriev V.V., Trotsenko Y.A., 2002. Methanotrophic communities in the soils of the Russian Northern Taiga and Subarctic tundra. Mikrobiologiya 71:227-233.
    Kightley D., Nedwell D.B., Cooper M., 1995.Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms. Applied and Environmental Microbiology, 61(2): 592-601
    Kolb S., Knief C, Stubner S., Conrad R., 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69(5):2423-2429
    Lal A., Edwards G.E., 1996 Analysis of inhibition photosynthesis under water stress in the C_4 species Amaranthus cruentus and Zea mays: electron transport, CO_2 fixtion and carboxylatiton capacity. Aust. J. Plant Physiol., 23: 403-412
    Lasat M.M., 2002. Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environment Quality, 31:109-120.
    Lelieveld J., Crutzen P.J., Dentener F.J., 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 50(2):128-150
    Licht L.A., Isebrands J.G., 2005. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28:203-218.
    Lin J.L., Joye S.B., Scholten J.C.M., Sch(?)fer H., McDonald I.R., Murrell J.C., 2005. Analysis of methane monooxygenase genes in Mono Lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Applied and Environmental Microbiology, 71(10):6458-6462
    Liu W.T., Marsh T.L., Cheng H., 1997. Characterization of microbial diversity by detemining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and and Environmental Microbiology, 63(11):4516-4522
    Mariley L., Vogt G., Blanc M.,Aragno M., 1998, Bacterial diversityin the bulk rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis. Plant and Soil, 198(2): 219-224
    Maurice C, 1998. Landfill gas emission and landfill vegetation. Licentiate thesis, Lulea University of Technology.
    Maurice C, Bergman A., Ecke H., Lagerkvist A., 1995. Vegetation as a biological indicator for landfill gas emissions. Initial investigations. In:Proceedings of Sardinia '95, Fifth International Landfill symposium, S.Margherita di Pula, Italy, 2-6 October, 1995.
    McDonald I.R., Bodrossy L., Chen Y., Murrell J.C., 2008. Molecular Ecology Techniques for the Study of Aerobic Methanotrophs. Applied and Environmental Microbiololgy, 74(5): 1305-1315
    McDonald I.R., Kenna E.M., Murrell J.C., 1995. Detection of methanotrophic bacteria in environmental samples with the PCR. Applied and Environmental Microbiology,61(1):116-121
    McGrath S.P., Shen Z.G., Zhao F.J., 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspiochroleucum grown in contaminated soils. Plant Soil 188,153-159.
    Meadows M., Franklin C, Campbell D.V.J., Wenborn M., Berry J., 1996. Methane Emissions from Land Disposal of Solid Waste; Report PH2/6 by ETSU to the IEA Greenhouse Gas R&D Programme: Cheltonham, Gloucestershire, U.K.
    Miguez C.B., Bourque D., Sealy J.A., Greer C.W., Groleau D., 1997. Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microbiological Ecology, 33:21-31.
    Miller M., Dana J., Davis L.C., Narayanan M., Erickson L.E., 1996. Phytoremediation of VOC contaminated groundwater using Poplar trees. In: Proc. 26th Annual Biochem. Eng. Symp. Kansas State University, Manhattan, September 21.
    Moffat A.J., Houston T.J., 1991. Tree establishment and growth at Pit sea landfill site, Essex, UK. Waste Manage and Research, 9(1):35-46
    Murrell J.C., Dalton H., 1983. Nitrogen fixation in obligate methanotrophs. Journal of General Microbiology, 129(11): 481-3486
    Nagendran R., Selvam A., 2006 Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review Waste Management, 26(12): 1357-1369
    Nichola P.D., Smith G.A., Wallace JB, 1985.Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria. FEMS Microbiology Ecology, 31(6):327-335
    Reinhart D.R., Grosh C.J., 1998. Analysis of Florida MSW landfill leachate quality. Report no. 97-3, Florida center for solid and hazardous waste management, Gainsville, FL.
    RepmannF.,刘伟,余强,周超凡,2000.利用当地污水、污泥和工业残渣,使采矿废弃堆场植被重建.资源·产业,7,36-40
    Rettenberger G., Stegmann R., 1996. Landfill gas components. In T.H. Christensen, R. Cossu, and R. Stegmann (ed.) Landfilling of waste: Biogas. E F & N Spon, London. 51-58
    Sadowsky M.J., 1999. Phytoremediation: past promises and future practices. In: Bell, C.R., Brylinsky, M., Johnson-Green, P. (Eds.),Proc. 8th Int. Symp. on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
    Scheutz C., Kjeldsen P, 2003. Capacity for Biodegradation of CFCs and HCFCs in a Methane Oxidative Counter-Gradient Laboratory System Simulating Landfill Soil Covers. Environmental Science and Technology, 37 (22): 5143-5149
    Schuetz C, Bogner J., Chanton J., Blake D., Morcet M, Kjeldsen P., 2003. Comparative Oxidation and Net Emissions of Methane and Selected Non-Methane Organic Compounds in Landfill Cover Soils. Environmental Science and Technology, 37(22):5150-5158
    Scheutz C, Kjeldsen P., 2004. Environmental factors influencing attenuation of methane and hydrochloro fluorocarbons in landfill cover soils. Journal of Environmental Quality, 33 (1): 72-79
    Scheutz C, Kjeldsen P., 2005. Biodegradation of trace gases in simulated landfill soil cover systems. Journal of the Air & Waste Management Association, 55 (7): 878-885
    Schnoor J.L., 2000. Phytostabilization of metals using hybrid poplar trees. In: Raskin, I., Ensley, B.D. (Eds.), Phytoremediation of Toxic Metals. Plants to Clean up the Environment. John Wiley, New York, pp. 133-150
    Schwieger F., Tebbe C.C., 2000. Effect of Field Inoculation with Sinorhizobium meliloti L33 on the Composition of Bacterial Communities in Rhizospheres of a Target Plant (Medicago sativa) and a Non-Target Plant (Chenopodium album)-Linking of 16S rRNA Gene-Based Single-Strand Conformation Polymorphism Community Profiles to the Diversity of Cultivated Bacteria. Applied and Environmental Microbiology, 66(8): 3556-3565
    Schwitzguebel J.P., Van del Lelie D., Baker A., Glass D.J., Vangronsveld J., 2002. Phytoremediation - European and American trends:successes, obstacles and needs. Journal of Soils and Sediments 2: 91-99
    Shigematsu T., Hanada S., Eguchi M., Kamagata Y., Kanagawa T., Kurane R., 1999. Soluble methane monooxygenase gene clusters from trichloroethylene- degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Applied and Environmental Microbiology, 65(12): 5198-5206
    Shimp J.F., Tracy J.C., Davis L.C., Lee E., Huang W., Erickson L.E., Schnoor J.L., 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit. Rev. Environmental Science and Technology, 23:41 -77
    Siciliano S.D., Germida J.J., 1998a. Mechanisms of phytoremediation: biochemical and ecological interaction between plants and microbes. Environmental Review. 6:65-79.
    Siciliano S.D., Germida J.J., 1998b. Degradation of chlorinated benzoic acid mixtures by plant-bacteria associations. Environmental Toxicology and Chemistry, 17:728-733.
    Siciliano S.D., Germida J.J., 1998c. Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, 30(13):1717-l 723
    Sitaula B.K., Bakken L.R., Abrahamsen G., 1995. CH_4 uptake by temperate forest soil: Effect of N input and soil acidification. Soil Biology and Biochemistry, 27(7):871-880
    Sohngen N.L. , 1906. Ueber Bakterien, welche Methan als Kohlenstoffnahrung and energiequelle gebrauchen. Zentralbl. Bakteriol. Parasitik. Abt. I. 15: 513-517
    Steinkamp R., Zimmer W., Papen H., 2001. Improved method for detection of methanotrophic bacteria in forest soils by PCR. Current Microbiology, 42:316-322.
    Stralis-Pavese N, Bodrossy L, 等 2006.16SrDNA based T-RFLP analysis of methane oxidising bacteria-Assessment,critical evaluation of methodology performance and application for landfill site cover soils. Applied Soil Ecology,
    Stralis-Pavese N., Bodrossy L., Reichenauer T.G., Weilharter A., Sessitsch A., 2006. 16S rDNA based T-RFLP analysis of methane oxidising bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Applied Soil Ecology 31(3):251-266
    Stralis-Pavese N., Sessitsch A., Weilharter A., Reichenauer T., Riesing J., Csontos J., Murrel C, Bodrossy L., 2004. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant cover. Environmental Microbiology 6(4):347-363.
    Sundh I.,. Borga P., Nilsson M., Svensson B.H., 1995. Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of species phospholipids fattyacids. FEMS Microbiology Ecology, 18(2): 103-112
    Tchawa Yimga M., Dunfield P. F., Ricke P., Heyer J., Liesack W., 2003. Wide distribution of a novel pmoA-like gene copy among type Ⅱ methanotrophs, and its expression in Methylocystis strain SC2. Applied and Environmental Microbiology, 69(9):5593-5602
    Tsien H.C., Bratina B.J., Tsuji K., Hanson R.S., 1990. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Applied and Environmental Microbiology, 56(9):2858-2865.
    Vallaeys T., Topp E., Muyzer G., Macheret V., Laguerre G., Rigaud A., Soulas G., 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology, 24(3): 279-285
    Vigliotta G., Nutricati E., Carata E., Tredici S.M., De Stefano M., Pontieri P., Massardo D.R., Prati M.V., De Bellis L., Alifano P., 2007. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Applied and Environmental Microbiology, 73(11):3556-3565.
    Walton B.T., Hoylman A.M., Perez M.M., Anderson T.A., Johnson T.R., Guthrie E.A., Christman R.F., 1994. Bioremediation through rhizosphere technology. In: Anderson, T.A., Coats, J.R. (Eds.), Rhizosphere Microbial Communities as a Plant Defense Against 1368 R. Nagendran 等 / Waste Management 26 (2006) 1357-1369 Toxic Substances in Soils. American Chemical Society, Washington, DC, pp. 82-92.
    Whalen S.C., Reeburgh W.S., Sandbeck K.A., 1990. Rapid methane oxidation in a landfill top cover soil. Applied and Environmental Microbiology, 56 (11):3405-3411
    Wise M.G., McArthur J.V., Shimkets L.J., 1999. Methanotroph diversity in landfill soil: Isolation of novel TypeⅠ and TypeⅡ methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Applied and Environmental Microbiology, 65(11):4887-4897
    Wong M.H., Yu C.T., 1989. Monitoring of Gin Drinkers' Bay Landfill, Hong Kong: Ⅱ. Gas contents, soil properties, and vegetation performance on the side slope. Environmental Management 13:753-762
    鲍士旦主编,2000.土壤农化分析(第三版)北京,中国农业出版社
    陈中云,吴伟祥,闵航,2000.两株能利用甲烷的吸水链霉菌(Streptomyces hygroscopicus)的分离和鉴定.浙江大学学报(农业与生命科学版),26(4):384-388
    丁维新,蔡祖聪,2003.植物在CH_4产生、氧化和排放中的作用.应用生态学报,14(4):604-608
    敦婉如,岳喜连,赵大民,1993.垃圾填埋场营造人工植被的研究.环境科学,15(2):53-58
    高吉喜,沈英娃,1997.垃圾土上植物的生长与生态毒性试验.环境科学研究,10(3):51-53
    花莉,城市污泥堆肥资源化过程与污染物控制机理研究[博士学位论文].杭州,浙江大学,2008.91-120
    黄立南,姜必亮,1999.卫生填埋场的植被重建.生态科学,18(2):68-74
    吉崇喆,满国弟,张云,隋儒楠,2005.沈阳市赵家沟垃圾填埋场稳定化与场地回用评价.环境保护科学,31(5):16-17
    林学瑞,廖文波,蓝崇钰,束文圣,黄立南,2002.垃圾填埋场植被恢复及其环境影响因子的研究.应用与环境生物学报,8(6):571-577
    梁战备,史奕,岳进,2004.甲烷氧化菌研究进展,生态学杂志,23(5):198-205
    马成仓,李清芳,高玉葆,2004.煤矿塌陷区造田复土中粉煤灰含量对高羊茅生理功能的影响.应用与环境生物学报,10(3):295-298
    舒俭民,沈英娃,高吉喜,刘连贵,高映新,曹洪法,1995.城市垃圾填埋场植树造林试验研究.环境科学研究,8(3):13-19
    王仁卿,藤原一绘,尤海梅,2002.森林植被恢复的理论和实践:用乡土树种重建当地森林-宫胁森林重建法介绍.植物生态学报,26(增刊):133-139
    王琛瑞,黄国宏,梁战备,吴杰,徐国强,岳进,史奕,2002.大气甲烷的源和汇与土壤氧化(吸收)甲烷研究进展.应用生态学报,13(12):1707-1712
    王英宇,杨建,韩烈保,2006.不同灌溉量对草坪草光合作用的影响.北京林业大学学报,28(增刊):26-31
    王智平,胡春胜,杨居荣,2003.无机氮对土壤甲烷氧化作用的影响.应用生态学报,14(2):305-309
    谢东,敦婉如,赵大民,宋泰璋,2002.植被生态对城市垃圾的处理利用及改良.青岛建筑工 程学院学报,23(3):41-44
    邢倩,谷艳芳,高志英,丁圣彦,2008.氮、磷、钾营养对冬小麦光合作用及水分利用的影响.生态学杂志,27(3):355-360
    周乃杰,胡冰,1998.植被对恢复卫生填埋场环境的作用.上海环境科学,17(4):40-44
    张淑娟,覃朝峰,王志刚,余冠明,2003.广州李坑生活垃圾填埋场周围植被现状调查与影响分析.环境污染与防治,25(3):145-147