CF-FM蝙蝠下丘神经元的恢复周期及频率调谐研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自由声场刺激条件下,采用恒频(constant frequency, CF)、调频(frequency modulation,FM)以及模拟大蹄蝠(Hipposideros armiger)自然状态下的恒频-调频(constant frequency-frequency modulation, CF-FM)回声定位信号为声刺激,在12只听力正常的大蹄蝠上观察和细胞外记录了下丘(inferior colliculus, IC)神经元的声反应,研究不同声刺激模式对IC神经元声反应类型(response pattern)、恢复周期(recovery cycle )、以及频率调谐(frequency tuning)等反应特性的影响。主要研究结果如下:
     1.通过研究不同声刺激模式对IC神经元声反应类型的影响,发现IC神经元在CF和FM声刺激下的发放类型基本一致,均只产生一个on反应。而在CF-FM声刺激下,156个IC神经元表现出两类不同的反应,Single-on (n=118)和Double-on反应(n=38)。Single-on神经元将CF-FM声信号作为一个整体来处理,而Double-on神经元将CF-FM声信号中的CF和FM成分分别处理。
     2.测量了114个IC神经元的恢复周期曲线。结果显示,85个Single-on神经元在CF、FM和CF-FM三种双声刺激模式下的平均恢复周期分别为44.4±33.0 (CF),28.4±18.9 (FM)和44.1±30.3 (CF-FM) ms (one-way ANOVA,P<0.01).29个Double-on神经元在三种声刺激模式下的平均恢复周期分别为45.8±31.6 (CF),17.7±16.7 (FM)和30.0±25.9 (CF-FM) ms (one-way ANOVA, P<0.01).此外,在FM和CF-FM声刺激下,Double-on神经元恢复周期明显短于Single-on神经元。实验结果还显示部分特殊的Single-on和Double-on神经元在CF-FM双声刺激重叠时表现出一种特殊的恢复能力,而在CF或FM双声刺激重叠时却对第二个声刺激不产生反应。另外,与CF和FM声刺激相比,特殊类型的神经元在CF-FM声刺激下的恢复周期最短。以上结果提示Double-on神经元可能较Single-on神经元在蝙蝠靠近及捕获靶物的过程中发挥更重要的作用,而特殊类型的Single-on和Double-on神经元则可能是CF-FM蝙蝠的听觉系统为处理CF-FM回声定位信号而演化和适应的结果。
     3.采用模拟的CF-FM声信号为声刺激,研究了下丘神经元恢复周期特点及其对声脉冲跟随率的影响。结果发现根据IC神经元(n=93)恢复率达50%时的双声刺激间隔(interpulse interval, IPI, onset-onset),可将其分为长时恢复型(long recovery, LR; 47.4%)、中等时间恢复型(moderaterecovery, MR; 35.1%)和短时恢复型(short recovery, SR; 17.5%)。每种类型依据其恢复率随IPI增加而呈现的不同变化又可进一步分为单IPI反应区神经元,多IPI反应区神经元,以及单调IPI反应神经元。LR, MR和SR型神经元恢复率达50%时的平均IPI分别为64.0±24.8,19.6±5.8和7.1±2.4 ms(P<0.001),相对应的平均理论每秒声脉冲数分别为18.2±7.0,55.4±15.7和171.3±102.9Hz(p<0.001)。结果提示单IPI和多IPI反应区神经元具有特殊IPI反应特性,能对蝙蝠捕食和巡航期间所处的时相做出准确判断;而单调IPI反应神经元对IPI变化的敏感性较强,但时相判断性较差。另外LR,MR和SR型神经元恢复周期和理论脉冲跟随率的平均结果均能与这种蝙蝠回声定位期间3个时相的发声行为相匹配,且神经元恢复周期参与决定声脉冲跟随率,满足了蝙蝠巡航、捕食的行为学需要。
     4.获得了175个IC声敏感神经元的频率调谐曲线(frequency tuning curve, FTC)。在单声刺激下,神经元频率调谐曲线可分为8种类型:V型;U型;高频边锐化型;低频边锐化型;低频倾向型;高频倾向型;多峰型和封闭型。在期待(CF-FM)或非期待(CF)的声刺激加入后,神经元频率调谐类型发生转变,且主要表现为低频边锐化型神经元增多。研究还发现期待(CF-FM)和非期待(CF)的声刺激对蝙蝠IC神经元频率调谐敏感性产生影响。在不同声脉冲模式下,神经元平均Q20值(Mean±1/2SD)分别为4.5±3.7 (Test),6.6±5.1 (PulseCF-Test)和8.0±7.3(Pulse CF-FM-Test),配对t检验显示期待和非期待声刺激加入后,神经元Q20值均较单声刺激对照有显著性差异(P<0.01),且CF-FM声脉冲刺激加入后,神经元FTCQ20值最大。此外,不同声脉冲刺激下,IC神经元低频边斜率平均值(Mean±1/2SD)分别为-6.4±-3.9(Test),-8.2±-5.2(PulseCF-Test)和-11.5±-8.1 (PulseCF-FM-Test) dB/kHz,高频边斜率平均值(Mean±1/2SD)分别为11.2±4.9 (Test),12.3±6.1 (PulseCF-Test)和12.2±6.5 (PulseCF-FM-Test) dB/kHz,配对t检验显示非期待(CF)的声脉冲加入后,神经元高、低频边斜率较单声对照均无显著性差异(P>0.05,n=33),而期待的(CF-FM)声脉冲加入后, FTC低频边斜率显著升高(P<0.01,n=33)。以上结果提示大蹄蝠所期待的CF-FM声脉冲刺激较CF更能锐化神经元频率调谐曲线,且锐化主要发生在低频边。
Using constant frequency (CF), frequency modulation (FM), and mimic natural CF-FM echolocation signals as acoustic stimuli under free field stimulation condition, the responses of inferior colliculus (IC) neurons of 12 leaf-nosed bats (Hipposideros armiger) with normal hearing were recorded by extracellular recording method. In this experiment, we studied the effect of different sound stimuli on response patterns, recovery cycles, and frequency tuning curves (FTCs) of IC neurons, and the results obtained were summarized as following:
     1. The effect of different sound stimuli on response pattern of IC neurons was studied. The results showed that discharge patterns measured by FM sound stimulus were consist with them obtained by CF sound stimulus. And neurons had only one on response both under CF and FM sound stimulation conditions. Under CF-FM sound stimulation condition,156 neurons appeared two types of responses, single-on (n=118) and double-on (n=38) responses. Those single-on neurons in IC basically processed CF-FM signal as a whole, while the double-on neurons in IC generated responses to CF and FM components of CF-FM sound stimulation, separately.
     2. Recovery cycles of 114 neurons were examined in present experiment. The results showed that recovery cycles of 85 single-on neurons under CF, FM, and CF-FM stimulation conditions were 44.4±33.0 (CF),28.4±18.9 (FM) and 44.1±30.3 (CF-FM), respectively (one-way ANOVA, P<0.01). For 29 double-on neurons, their recovery cycles were 45.8±31.6 (CF),17.7±16.7 (FM) and 30.0±25.9 (CF-FM) ms, respectively (one-way ANOVA, P<0.01). And double-on neurons'recovery cycles apparently shorter than single-on neurons'under FM and CF-FM sound stimulation conditions. It is more interesting that when two 7 ms CF-FM sound stimuli were overlapped, a special kind of recovery was observed from partial single-on and double-on neurons and these neurons didn't generate any response to the second sound stimulus under two overlapped 2 ms FM or 7 ms CF stimulation condition. Our data showed that the mean IPI of 50% recovery under CF-FM sound stimulation condition in special single-on and double-on neurons was the shortest among three stimuli. These results demonstrated that double-on neurons could more effectively analyze the echo than single-on neurons during bat approaching the target. And the specific recovery cycle of single-on and double-on neurons was possibly an evolutionary result of CF-FM bat auditory system for echo information processing.
     3. The characteristics of recovery cycles in IC neurons and effect of the recovery cycle on the following pulse repetition rate were studied using mimic CF-FM sound stimuli. The results showed that IC neurons (n=93) were classified into three types, i.e. long recovery (LR,47.4%), moderate recovery (MR,35.1%), and short recovery (SR,17.5%), according to their inter-pulse interval (IPI) (ms) of 50% recovery under two CF-FM sound stimulation condition. Each type of the neurons could also be categorized different subtypes according to changes induced by IPI increasing such as single-IPI response area neurons, multi-IPI response area neurons, and monotonic-IPI response neurons. Mean IPIs of 50% recovery of LR, MR, and SR neurons were 64.0±24.8,19.6±5.8, and 7.1±2.4 ms, respectively (P<0.001). The calculated theoretically following pulse repetition rate (pulse per second, Hz) of LR, MR, and SR neurons by mean IPI of 50% recovery for each type were 18.2±7.0,55.4±15.7, and 171.3±102.9 Hz, respectively (P<0.001). These three types of IC neurons were well corresponding to their three hunting phases, search, approach, and catch phases. The sub-types of single-IPI response area neurons and multi-IPI response area neurons had hunting phase selectivity, and sub-type of monotonic-IPI response neurons had well sensitivity to IPI change, but their hunting phase selectivity was of a sort. These results demonstrated that recovery cycle of IC neurons determined the ability to follow pulse repetition rate and matched with this bat's echolocation behavior.
     4.175 FTCs of IC neurons were obtained in present experiment. Under single CF sound stimulation condition, FTCs of IC neurons were classified into 8 types:V-Shaped; U-Shaped; Lower-tail-upper-sharp, LTUS; Upper-tail-lower-sharp, UTLS; Slant-lower, SL; Slant-upper, SU; Multipeaked and Closed. Appending a prior expected (CF-FM) or unexpected (CF) sound stimulus changed the types of FTCs in IC neurons, and there was an increase in the number of UTLS neurons. The present study also found that expected (CF-FM) or unexpected (CF) sound stimulus affected the sensitivity of frequency tuning curves. The mean value of Q20 value of IC neurons under Test, PulseCF-Test, and PulseCF-FM-Test stimulation conditions were 4.5±3.7,6.6±5.1 and 8.0±7.3, respectively. Paired t test demonstrated that the value of Q2o had significant difference between Test and PulseCF-Test or PulseCF-FM-Test sound stimuli, and Q2o value measured by PulseCF-FM-Test sound stimulus was higher than other two sound stimulation conditions. In addition, the mean value of FTC-slope on lower-side under 3 stimulation conditions were-6.4±-3.9 (Test),-8.2±-5.2 (PulseCF-Test) and-11.5±-8.1 (PulseCF-FM-Test) dB/kHz, respectively; and on upper-side were 11.2±4.9 (Test), 12.3±6.1 (PulseCF-Test) and 12.2±6.5 (PulseCF-FM-Test) dB/kHz, respectively. Paired t test demonstrated that the FTC-slope on both lower-side and upper-side had no significant difference between Test and PulseCF-Test stimuli (P>0.05, n=33), but there was significant difference of FTC-slope on lower-side between Test and PulseCF-FM-Test stimuli (P< 0.01, n=33). These results suggested that expected CF-FM pulse could sharpen FTC more than unexpected CF pulse, and the sharpness mainly happened on the lower-side.
引文
1.陈其才,Jen PHS,吴飞健.γ-氨基丁酸能抑制可锐化大棕蝠听皮层神经元频率调谐.动物学报.2002.48:346-352.
    2.唐佳,付子英,Jen PHS,陈其才.FM声成分对CF-FM蝙蝠下丘神经元恢复周期的作用.听力学及言语疾病杂志.2009.17:55-57.
    3.唐佳,付子英,吴飞健,陈其才.声刺激模式对CF/FM蝙蝠下丘神经元恢复周期的影响.生物医学物理研究.科学出版社.2008.107-112.
    4.王玢,左明雪.人体及动物生理学.高等教育出版社.2001.157-165.
    5. Admas JC, Mugnaini E. Dorsal nucleus of the later lemi-niscus:A nucleus of GABAergic projection neurons. Brain Res Bul.1984.13:585-590.
    6. Adams JC. Ascending projections to the inferior colliculus. J Comp Neurol.1979.83: 519-538.
    7. Aitkin LM, Webster WR. Medial geniculate body of cat:organization and responses to tonal stimuli of neurons in ventral division. JNeurophysiol.1972.35:365-380.
    8. Alan DG Hearing in bats:An overview. In:Hearing by bats (Popper AN, Fay RR, eds). New York:Springer-Verlag.1995.
    9. Altringham JD. Bats-biology and behavior. New York:Oxford university press.1996.
    10. Aytekin M, Grassi E, Sahota M, Moss CF. The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation. J Acoust Soc Am.2004.116:3594-3605.
    11. Blauert J, Divenyi PL. Spectral selectivity in binaural contralateral inhibition. Acustica.1998.66:267-274.
    12. Brosch M, Schreiner CE. Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol.1997.77:923-943.
    13. Bruns V. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J comp Physiol.1976a.106:77-86.
    14. Bruns V. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. Ⅱ. Frequency mapping in the cochlea. J comp Physiol. 1976b.106:87-97.
    15. Bruns V, Schmieszek E. Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res.1980.3:27-43.
    16. Calford MB, Webster WR, Semple MM. Measurement of frequency selectivity of single neurons in the central auditory pathway. Hear Res.1983.11:395-401.
    17. Casseday JH, Covey E. Frequency tuning properties of neurons in the inferior colliculus of an FM bat. J Comp Neurol.1992.319:34-50.
    18. Casseday JH, Covey E. Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats. In:Covey E, Hawkins HL, Port RF. Neural representation of temporal patterns. Plenum, New York,1995.25-51.
    19. Casseday JH, Covey E. A neuroethological theory of the operation of the inferior colliculus. Brain Behav Evol.1996.47:311-336.
    20. Casseday JH, Ehrlich D, Covey E. Neural measurement of sound duration:control by excitatory-inhibitory interaction in the inferior colliculus. J Neurophysiol.2000.84: 1475-1487.
    21. Casseday JH, Ehrlich D, Covey E. Neural tuning for sound duration:role of inhibitory mechanisms in the inferior colliculus. Science.1994.264:847-850.
    22. Casseday JH, Covey E, Vater M. Connections of the superior olivary complex in the rufous horseshoe bat Rhinolophus rouxi. J Comp Neurol.1988.278:313-329.
    23. Chen QC, Jen PHS. Pulse repetition rate increased the minimum threshold and latency of auditory neurons. Brain Res.1994.654:155-158.
    24. Condon CJ, White KR, Feng AS. Processing of amplitude-modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus. J Neurophysiol.1994.71:768-784.
    25. Covey E. Response properties of single units in the dorsal nucleus of the lateral lemniscus and paralemniscal zone of an echolocating bat. J Neurophysiol.1993.69: 842-859.
    26. Covey E. Neurobiological specializations in echolocating bats. Anat Rec A Discov Mol Cell Evol Biol. 2005.287:1103-1116.
    27. Covey E, Casseday JH. The monaural nuclei of the lateral lemniscus in an echolocating bat:parallel pathways for analyzing temporal features of sound. J Neurosci.1991.11:3456-3470.
    28. Covey E, Faure PA. Neural mechanisms for analyzing temporal patterns in echolocating bats. In:Auditory signal processing:physiology, psychoacoustics and models (Pressnitzer D, de Cheveigne A, McAdams S, Collet L, eds), New York: Springer-Verlag.2005.251-257.
    29. Covey E, Casseday JH. The lower brainstem auditory pathways. In:Hearing and Echolocation in Bats (Popper AN, Fay RR, eds), New York:Springer-Verlag.1995. 235-295.
    30. Covey E, Casseday JH. Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat Eptesicus fuscus. J Neurosci.1986.6:2926-2940.
    31. Covey E, Vater M, Casseday JH. Binaural properties of single units in the superior olivary complex of the mustached bat. J Neurophysiol.1991.66:1080-1094.
    32. Dai H, Wright BA. Detecting signals of unexpected or uncertain durations. J Acoust Soc Am.1995.98:798-806.
    33. Dai H, Wright BA. Predicting detectability of tones with unexpected durations. J Acoust Soc Am.1999.105:2043-2046.
    34. Dear SP, Fritz J, Haresign T, Ferragamo M, Simmons JA. Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol.1993a.70:1988-2009.
    35. Dear, SP, Simmons, J., Fritz, J. A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat. Nature.1993b.364:620-623.
    36. Egorova M, Ehret G, Vartanian I, Esser KH. Frequency response areas of neurons in the mouse inferior colliculus. I. Threshold and tuning characteristics. Exp Brain Res. 2001.140:145-161.
    37. Ehret G Merzenich MM. Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res Rev. 1988.13:139-163.
    38. Emde VG, Schnitzler HU. Classification of insects by echolocating greater horseshoe bats. J Comp Physiol A.1990.167:423-430.
    39. Faure PA, Fremouw T, Casseday JH, Covey E. Temporal masking reveals properties of sound-evoked inhibition in durationtuned neurons of the inferior colliculus. J Neurosci.2003.23:3052-3065.
    40. Faye LH. The neocortical projection to the inferior colliculus in the albino rat. Anat Embryol.1985.173:53-70.
    41. Friend JH, Suga N, Suthers RA. Neural responses in the inferior colliculus of echolocating bats to artificial orientation sounds and echoes. J Cell Physiol.1966.67: 319-332.
    42. Fu ZY, Tang J, Jen PHS Chen QC. The single-on and double-on responders in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res.2010.1036: 39-52.
    43. Fuzessery ZM, Hall JC. Sound duration selectivity in the pallid bat inferior colliculus. Hear Res.1999.137:137-154.
    44. Fuzessery ZM. Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus. JNeurophysiol.1994.72:1061-1079.
    45. Gaioni SJ, Riquimaroux H, Suga N. Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. J Neurophysiol.1990.64:1801-1817.
    46. Games KD, Winer JA. Layer V in rat auditory cortex:projection to the inferior colliculus and contra lateralcortex. Hear Res.1988.34:1-25.
    47..Gooler DM, Feng AS. Temporal coding in the frog auditory midbrain:the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. JNeurophysiol.1992.67:1-22.
    48. Griffin DR. Listening in the dark. Yale Univ Press, New Haven, CT (Reprinted by Dover Publications, New York,1974).1958.57-89.
    49. Grinnell AD. The neurophysiology of audition in bat:intensity and frequency parameters. JPhysiol (Lond.).1963a.167:38-66.
    50. Grinnell AD. The neurophysiology of audition in bats:temporal parameters. JPhysiol (Lond).1963b.167:67-96.
    51. Grinnell, AD. Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z vergl Physiol.1970.68:117-153.
    52. Grinnell AD. Neural processing mechanisms in echolocating bats, correlated with differences in emitted sounds. JAcoust Soc Am.1973.54:147-156.
    53. Grinnell AD. Hearing in Bats:An overview. In:Hearing by bats (Popper AN, Fay RR, eds), New York:Springer-Verlag.1995.1-36.
    54. Grothe B. The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol.2000.61:581-610.
    55. Grothe B, Covey E, Casseday JH. Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains. J Neurophysiol.2001.86:2219-2230.
    56. Grothe B, Park TJ, Schuller G Medial superior olive in the free-tailed bat:response to pure tones and amplitude-modulated tones. JNeurophysiol.1997.77:1553-1565.
    57. Grothe B, Schweizer H, Pollak GD, Schuller G, Rosemann C. Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana. J Comp Neurol.1994.343:630-646.
    58. Grunwald JE, Schornich S, Wiegrebe L. Classification of natural textures in echolocation. Proc Natl Acad Sci USA.2004.101:5670-5674.
    59. Hafter ER, Schlauch RS, Tang J. Attending to auditory filters that were not stimulated directly. JAcoust Soc Am.1993.94:743-747.
    60. Heiligenberg W. The Neural Basis of Behavior:A Neuroethological View. Annual Review of Neuroscience.1991.14:247-267.
    61. Henson OW, Bishop JA, Keating A. Biosonar imaging of insects by Pteronotus p. parnelli, the mustached bat. Natl Geogr Res.1987.3:82-101.
    62. Herbert H, Aschoff A, Ostwald J. Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol.1991.304:103-122.
    63. Holderied MW, Helversen VO. Binaural echo disparity' as a potential indicator of object orientation and cue for object recognition in echolocating nectar-feeding bats. J Exp Biol.2006.209:3457-3468.
    64. Hou T, Wu M, Jen PHS. Pulse repetition rate and duration affect the responses of bat auditory cortical neurons. Chin JPhysiol.1992.35:259-278.
    65. Huffman RF, Henson OW. The descending auditory pathways and acoustic motor system:connections with the inferior colliculus. Brain Res Rev.1990.15:295-323.
    66. Huffman RF, Argeles PC, Covey E. Processing of sinusoidally amplitude modulated signals in the nuclei of the lateral lemniscus of the big brown bat, Eptesicus fuscus. Hear Res.1998.126:181-200.
    67. Jen PHS, Chen QC. The effect of pulse repetition rate, pulse intensity, and bicuculline on the minimum threshold and latency of bat inferior collicular neurons. J Comp Physiol A.1998.182:455-465.
    68. Jen PHS, Schlegel PA. Auditory physiological properties of the neurones in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A.1982. 147:351-363.
    69. Jen PHS, Zhang J. The role of GABAergic inhibition on direction-dependent sharpening of frequency tuning in bat inferior collicular neurons. Brain Res.2000. 862:123-127.
    70. Jen PHS, Zhou XM. Temporally patterned sound trains affect duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A.1999.185: 471-478.
    71. Jen PHS, Zhou XM. Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res.2003.184:91-106.
    72. Jen PHS, Chen QC, Sun XD. Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. J Comp Physiol A.1998.183:683-697.
    73. Jen PHS, Sun XD, Chen QC. Corticofugal control of central auditory sensitivity. Neurosci Abstr.1996.22:404.
    74. Jen PHS, Wu FJ, Chen QC. The effect of two-tone stimulation on responses of two simultaneously recorded neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res.2002.168:139-149.
    75. Kalko EKV, Schnitzler HU. How echolocating bats approach and acquire food. Bat Biology and Conservation (Kunz TH, Racey PA, eds), Washington DC:Smithsonian Institution.1998.197-204.
    76. Katsuki Y, Sumi T, Uchiyama H, Watanabe T. Electric responses of auditory neurons in cat to sound stimulation. JNeurophysiol.1958.21:569-588.
    77. Katsuki Y, Watanabe T, Maruyama. Activity of auditory neurons in upper levels of brain of eat. J Neurophysiol.1959a.22:343-359.
    78. Katsuki Y, Watanabe T, Suga N. Interaction of auditory neurons in response to two sound stimuli in cat. J Neurophysiol.1959b.22:603-623.
    79. Kelly JP, Wong D. Laminar connections of the cat's auditory cortex. Brain Res.1981. 212:1-15.
    80. Kemmer M, Vater M. Functional organization of the dorsal cochlear nucleus of the horseshoe bat (Rhinolophus rouxi) studied by GABA and glycine immunocytochemistry and electron microscopy. Anat Embryol (Berl).2001.203: 429-447.
    81. Kiang NY, Sachs MB, Peake WT. Shapes of tuning curves for single auditory-nerve fibers. JAcoust Soc Am.1967.42:1341-1342.
    82. Kiang NYS, Watanabe T, Thomas EC, Clark LF. Discharge patterns of single fibers in the cat's auditory nerve. MIT Research Monograph,35, MIT Press, Cambridge, MA.1965.
    83. Kidd SA, Kelly JB. Contribution of the dorsal nucleus of the lateral lemniscus to binaural responses in the inferior colliculus of the rat:interaural time delays, J Neurosci.1996.16:7390-7397.
    84. Klug A, Park TJ, Pollak GD. Glycine and GABA influence binaural processing in the inferior colliculus of the mustache bat. JNeurophysiol.1995.74:1701-1713.
    85. Knudsen El, Konishi M. Space and frequency are represented separately in auditory midbrain of the owl. JNeurophysiol.1978.41:870-884.
    86. Kober R, Schnitzler HU. Information in sonar echoes of fluttering insects available for echolocating bats. JAcoust Soc Am.1990.82:882-896.
    87. Koch U, Grothe B. GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat. JNeurophysiol. 1998.80:71-82.
    88. Kossl M. Evidence for a mechanical filter in the cochlea of the'constant frequency' bats, Rhinolophus rouxi and Pteronotus parnellii. Hear Res.1994.72:73-80.
    89. Kubke MF, Massoglia DP, Carr CE. Developmental changes underlying the formation of the specialized time coding circuits in barn owls (Tyto alba). J Neurosci. 2002.22:7671-7679.
    90. Lu Y, Jen PHS. GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Exp Brain Res.2001.141:331-339.
    91. Lu Y, Jen PHS. Binaural interaction in the inferior colliculus of the big brown bat, Eptesicusfuscus. Hear Res.2003.177:100-110.
    92. Lu Y, Jen PHS. Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus. Hear Res.2002.169:140-150.
    93. Lu Y, Jen PHS, Zheng QY. GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons. J Comp Physiol A.1997.181:331-341.
    94. Luo F, Ma J, Li AA, Wu FJ, Chen QC, Zhang SY. Echolocation calls and neurophysiological correlations with auditory response properties in the inferior colliculus of Pipistrellus abramus (Microchiroptera:Vespertilionidae). Zool Stud. 2007.46:622~630.
    95. Luo F, Metzner W, Wu FJ, Zhang SY, Chen QC. Duration-sensitive neurons in the inferior colliculus of horseshoe bats:adaptations for using CF-FM echolocation pulses. JNeurophysiol.2008.99:284-296.
    96. Malmierca MS, Hernanbdez O, Rees A. Intercollicular commissural projections modulate neuronal responses in the inferior colliculus. Eur J Neurosci.2005.21: 2701-2710.
    97. Manabe T, Suga N, Ostwald J. Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science.1978.200: 339-42.
    98. Markovitz NS, Pollak GD. Binaural processing in the dorsal nucleus of the lateral lemniscus. Hear Res.1994.73:121-140.
    99. Mendelson JR, Schreiner CE, Sutter ML, Grasse KL. Functional topography of cat primary auditory cortex:responses to frequency-modulated sweeps. Exp Brain Res. 1993.94:65-87.
    100. Metzner W. A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature.1989.341:529-532.
    101. Metzner W, Radtke-Schuller S. The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A.1987.160:395-411.
    102. Moss CF, Schnitzler HU. Behavioral studies of auditory information processing. In:
    Hearing by bats (Popper AN, Fay RR, eds), New York:Springer-Verlag.1995. 87-144.
    103. Nataraj K, Wenstrup JJ. Roles of inhibition in creating complex auditory responses in the inferior colliculus:facilitated combination-sensitive neurons. J Neurophysiol. 2005.93:3294-3312.
    104. Neuweiler G. Neurophysiologische Untersuchungen zum Echoortungssystem der Grossen Hufeisennase Rhinolophusferrurnequinum Schreber,1774. Z vergl Physiol. 1970.67:273-306.
    105. Neuweiler G Auditory processing of echoes:peripheral processing. In:Busnel RG ed. Animal Sonar Systems. New York:Plenum.1980.519-548.
    106. Neuweiler G Foraging ecology and audition in echolocation bats. Tree.1989.4: 160-166.
    107. Neuweiler G Evolutionary aspects of bat echolocation. J Comp Physiol A.2003. 189:245-256.
    108. Neuweiler G, Schmidt S. Audition in echolocating bats. Curr Opin Neurobiol.1993. 3:563-569.
    109. Neuweiler G, Bruns V, Schuller G Ears adpted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. J Acoust Soc Am.1980.68:741-753.
    110. Neuweiler G, Metzner W, Heilmann U, Rubsamen R, Eckrich M, Costa HH. Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav Ecol Sociobiol.1987.20:53-67.
    111. Olsen JF, Suga N. Combination-sensitive neurons in the medial geniculate body of the mustached bat:encoding of relative velocity information. J Neurophysiol.1991a. 65:1254-1274.
    112. Olsen JF, Suga N. Combination-sensitive neurons in the medial geniculate body of the mustached bat:encoding of target range information. J Neurophysiol.1991b.65:
    1275-1296.
    113. Olsen JF, Knudsen EI, Estedy SD. Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. JNeurosei.1989.9:2591-2605.
    114. O'Neill WE. Responses to pure tones and linear FM components of the CF-FM biosonar signal by single units in the inferior colliculus of the mustached bat. J Comp Physiol.1985.157:797-815.
    115. O'Neill WE, Suga N. Neural Axis Representing Target Range in the Auditory Cortex of the Mustache Bat. Science.1979a.206:351-353.
    116. O'Neill WE, Suga N. Target range-sensitive neurons in the auditory cortex of the mustache bat. Science.1979b.203:69-73.
    117. O'Neill WE, Suga N. Encoding of target range and its representation in the auditory cortex of the mustached bat. JNeurosci.1982.2:17-31.
    118. Pinheiro AD, Wu M, Jen PHS. Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A.1991.169: 69-85.
    119. Pollak G, Henson OW, Novick JA. Cochlear microphonic andiograms in the "pure tone" bat Chilonycteris parnellii parnellii. Science.1972.176:66-68.
    120. Pollak GD, Bodenhamer R, Marsh DS, Souther A. Recovery cycles of single neurons in the inferior colliculus of unanesthetized bats obtained with frequency-modulated and constant-frequency sounds. J Comp Physiol.1977.120: 215-250.
    121. Pollak GD, Park TJ. The effects of GABAergic inhibition on monaural response properties of neurons in the mustache bat's inferior colliculus. Hear Res.1993.65: 99-117.
    122. Pollak GD, Burger RM, Park TJ, Klug A, Bauer EE. Roles of inhibition for transforming binaural properties in the brainstem auditory system. Hear Res.2002. 168:60-78.
    123. Pollak GD, Casseday JH. The neural basis of echolocation in bats. Berlin: Springer-Verlag.1989.
    124. Roberts CE, Ribak. An electron microscopic study of GABAergic neurons and terminals in the central nucleus of the inferior colliculus of the rat. J Neurocytol. 1987.16:333-345.
    125. Rubsamen R, Schafer M. Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A.1990.167:757-769.
    126. Salda E, Feliciano M., Mugnaini EJ. Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. Comp Neurol.1996.371:15-40.
    127. Sanchez JT, Gans D, Wenstrup JJ. Glycinergic "inhibition" mediates selective excitatory responses to combinations of counds. JNeurosci.2008.28:80-90.
    128. Sawaki S, Shimozawa T, Butman JA, Suga N. Effects of inhibitory amino acid antagonists on frequency tuning in the auditory cortex of the mustached bat. Assoc. Res. Otolaryngol. Abstr.1992.141:420.
    129. Schnitzler HU. Die Ultraschall-Ortungslaute der Hufeisen-Fledermause (Chiroptera-Rhinolophidae) in verschiedenen Orientierungs-situationen. Zool Vgl Physiol.1968.57:376-408.
    130. Schnitzler HU. Echoortung bei der Fledermaus Chilonycteris rubiginosa. Zool Vgl Physiol.1970.68:25-38.
    131. Schnitzler HU, Kalko EKV. Echolocation by insect-eating bats. Bioscience.2001. 51:557-569.
    132. Schnitzler HU, Suga N, Simmons JA. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophusferrumequinurn. Ⅲ. Cochlear microphonics and auditory nerve responses. J comp Physiol.1976.106:99-110.
    133. Schreiner CE, Mendelson JR, Sutter ML. Functional topography of cat auditory
    cortex:representation of tone intensity. Exp Brain Res.1992.92:105-122.
    134. Schuller G, Beuter K, Schnitzler HU. Response to frequency-shifted artificial echoes in the bat Rhinolophusferrumequinum. J Comp Physiol.1974.89:275-286.
    135. Shamma SA, Fleshman JW, Wiser PR, Versnel H. Organization of response areas in ferret primary auditory cortex. JNeurophysiol.1993.69:367-383.
    136. Shneiderman A, Oliver DL. EM autoradiographic study of the projections from the dorsal nucleus of the lateral lemniscus:a possible source of inhibitory inputs to the inferior colliculus, J Comp Neurol.1989.286:28-47.
    137. Simmons JA. The resolution of target range by echolocating bats. J Acoust Soc Am. 1973.54:157-173.
    138. Simmons JA. A view of the world through the bat's ear:the formation of acoustic images in echolocation. Cognition.1989.33:155-199.
    139. Simmons JA, Vernon JA. Echolocation:discrimination of targets by the bat, Eptesicus fuscus. JExp Zool.1971.176:315-328.
    140. Simmons JA, Fenton MB, O'Farrell MJ. Echolocation and pursuit of prey by bat, Science.1979.203:16-21.
    141. Simmons JA, Freedman EG, Stevenson SB, Chen L, Wohlgenant TJ. Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am.1989.86:1318-1332.
    142. Simmons JA, Saillant PA, Wotton JM, Haresign T. Composition of biosonar images for target recognition by echolocating bats. Neural Networks.1995.8:1239-1261.
    143. Simmons JA, Lavender WA, Lavender BA, Doroshow CA, Kiefer SW, Livingston R, Scallet AC, Crowley DE. Target structure and echo spectral discrimination by echolocating bats. Science.1974.186:1130-1132.
    144. Suga N. Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. J Physiol (Lond).1964a.172:449-474.
    145. Suga N. Recovery cycles and responses to frequency modulated tone pulses in auditory neurones of echolocating bats. JPhysiol (Lond).1964b.175:50-80.
    146. Suga N. Analysis of frequency modulated sounds by neurons of echolocating bats. J Physiol (Lond).1965a.179:26-53.
    147. Suga, N. Functional properties of auditory neurones in the cortex of echolocating bats. J Physiol (Lond).1965b.181:671-700.
    148. Suga N. Analysis of frequency-modulated and complex sounds by single auditory neurones of bats. J Physiol (Lond).1968.198:51-80.
    149. Suga N. Classification of inferior colliculus neurones of bats in terms of responses to pure tones, FM sounds and noise bursts. J Physiol.1969.200:555-574.
    150. Suga N. Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science.1977.196:64-67.
    151. Suga N. The Extent to Which Biosonar Information is Represented in the Bat Auditory Cortex. In:Edelman, G.M., Gall, W. E., Cowan, W. M. (eds). Dyamic aspects of neocortical function. New York:Wiley and Sons.1984.315-374.
    152. Suga N. Biasonar and nural computation in bat. Sci Am.1990a.262:60-68.
    153. Suga N. Cortical Computational Maps for Auditory Imaging. Neural Networks. 1990b.3:3-21.
    154. Suga N. Sharpening frequency tuning by inhibition in central auditory system. tribute to Yasuji Katsuki. Neurosci Res.1995.21:287-299.
    155. Suga N. Tribute to Yasuji Katsuki's major findings:sharpening of frequency tuning in the central auditory system. Acta Otolaryngol Suppl.1997.532:9-12.
    156. Suga N, Jen PHS. Further studies on the peripheral auditory system of CF-FM bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol.1977. 69:207-232.
    157. Suga N, Jen PHS. Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol.1975.62:277-311.
    158. Suga N, Manabe T. Neural basis of amplitude-spectrum representation in the
    auditory cortex of the mustached bat. JNeurophysiol.1982.47:225-255.
    159. Suga N, Schelegel P. Coding and processing in the auditory system of FM signal producing bats. JAcoust Soc Am.1973.54:174-190.
    160. Suga N, Tsuzuki K. Inhibition and level-tolerant frequency tuning in the auditory cortex of the mustached bat. J Neurophysiol.1985.53:1109-1145.
    161. Suga N, Neuweiler G, Moller J. Peripheral Auditory Tuning for Fine Frequency Analysis by the CF-FM Bat, Rhinolophus ferrumequinum IV. Properties of Peripheral Auditory Neurons. J comp Physiol.1976.106:111-125.
    162. Suga N, Niwa H, Taniguchi I, Margoliash D. The personalized auditory cortex of the mustached bat:adaptation for echolocation. J Neurophysiol.1987.58:643-654.
    163. Suga N, Olsen JF, Butman JA. Specialized subsystems for processing biologically important complex sounds:cross-correlation analysis for ranging in the bat's brain. Cold Spring Harb Symp Quant Biol.1990.55:585-597.
    164. Suga N, O'Neill WE, Kujirai K, Manabe T. Specificity of combination-sensitive neurons for processing of complex biosonar signals in the auditory cortex of the mustached bat. J Neurophysiol.1983.49:1573-1626.
    165. Suga N, Simmons JA, Jen PHS. Peripheral specialization for fine analysis of Doppler-shifted echoes in the auditory system of the "CF-FM" bat Pteronotus parnellii.JExp Biol.1975.63:161-192.
    166. Suga N, Simmons JA, Shimozawa T. Neurophysiological studies on echolocation system in awake bats producing CF-FM orientation sounds. J Exp Biol.1974.61: 379-399.
    167. Suga N, Zhang Y, Yan J. Sharpening of frequency tuning by inhibitionin the thalamic auditory nucleus of the mustached bat. J Neurophysiol.1997.77: 2098-2114.
    168. Sullivan WE. Neural Representation of Target Distance in Auditory Cortex of the Echolocating Bat Myotis lucifugus. Journal of Neurophysiology.1982a.48:
    1011-1031.
    169. Sullivan WE. Possible Neural Mechanisms of Target Distance Coding in Auditory System of the Echolocating Bat. Myotis lucifugus.1982b.48:1033-1047.
    170. Sun XD, Chen QC, Jen PHS. Corticofugal control of central auditory sensitivity in the big brown bat, Eptesicus fuscus. Neurosci Lett.1996.212:131-134.
    171. Surlykke A, Moss CF. Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. JAcoust Soc Am.2000.108:2419-29.
    172. Sutter ML, Schreiner CE, McLean M, O'Connor N, Loftus WC. Organization of inhibitory frequency-receptive fields in cat primary auditory cortex. J Neurophysiol. 1999.82:2358-2371.
    173. Tang J, Pi JH, Wang D, Wu FJ, Chen QC. Effect of weak noise on the frequency tuning of mouse inferior collicular neurons. Zool Res.2004.25:191-197.
    174. Thiele J, Winter Y. Hierarchical strategy for relocating food targets in flower bats: Spatial memory versus cue-directed search. Anim Behav.2005.69:315-327.
    175. Ulanovsky N, Moss CF. What the bat's voice tells the bat's brain. PNAS.2008.105: 8491-8498.
    176. Vater M, Feng AS. Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. J Comp Neurol.1990.292: 373-395.
    177. Vater M, Habbicht H, Krssl M, Grothe B. The functional role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bat. J Comp Physiol A.1992.171:541-553.
    178. Wang X, Jen PHS, Wu FJ, Chen QC. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition. Brain Res.2007.1167:80-91.
    179. Wang X, Luo F, Wu FJ, Chen QC, Jen PHS. The recovery cycle of bat duration-selective collicular neurons varies with hunting phase. Neuroreport.2008.
    19:861-865.
    180. Wenstrup JJ, Grose CD. Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat:the missing fundamental. J Neurosci.1995. 15:4693-4711.
    181. Winer JA, Wenstrup JJ. The neurons of the medial geniculate body in the mustached bat (Pteronotus parnellii). J Comp Neurol.1994.346:183-206.
    182. Wong D, Masao M, Hidkazu T. The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus. J Comp Physiol A.1992.170:393-402.
    183. Wright BA. Combined representation for frequency and duration in detection templates for expected signals. JAcoust Soc Am.2005.117:1299-1304.
    184. Wright BA, Dai H. Detection of unexpected tones with short and long durations. J Acoust Soc Am.1994.95:931-938.
    185. Wright BA, Fitzgerald MB. The time course of attention in a simple auditory detection task. Percept Psychophys.2004.66:508-516.
    186. Wu M, Jen PHS. Recovery cycles of neurons in the inferior colliculus, the pontine neuclei and the auditory cortex of the big brown bat, Eptesicus fuscus. Chin J Physiol.1998.41:1-8.
    187. Wu CH, Jen PHS. GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol.2006.192:985-1002.
    188. Xie R, Gittelman JX, Pollak GD. Rethinking tuning:in vivo whole-cell recordings of the inferior colliculus in awake bats. JNeurosci.2007.27:9469-9481.
    189. Xie R, Gittelman JX, Li N, Pollak GD. Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus. Neuroscience.2008.154: 245-256.
    190. Yang L, Pollak GD, Resler C. GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol. 1992.68:1760-1774.
    191. Young ED, Shofner WP, White JA, Robert JM, Voigt HF. Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In:Auditory Function:Neurobiological Bases of Hearing, edited by Edelman GM, Gall WE, and Cowan WM. New York:Wiley.1988.277-312.
    192. Zhang SY, Zhao HH, Feng J, Sheng LX, Wang H, Wang LX. Relationship between echolocation frequency and body size in two species of hipposiderid bats. Chin Sci Bull.2000.45:1587-1590.
    193. Zhou XM, Jen PHS. Corticofugal inhibition compresses all types of rate-intensity functions of inferior collicular neurons in the big brown bat. Brain Res.2000.881: 62-68.
    194. Zhou XM, Jen PHS. The effect of bicuculline application on azimuth-dependent recovery cycle of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Brain Res.2003.973:131-141.
    195. Zhou XM, Jen PHS. Azimuth-dependent recovery cycle affects directional selectivity of bat inferior collicular neurons determined with sound pulses within a pulse train. Brain Res.2004.1019:281-288.
    196. Zook JM, Casseday JH. Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol.1982.207:1-13.
    197. Zook JM, Leake PA. Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol.1989.290: 243-261.