除草剂咪唑乙烟酸对土壤微生物多样性影响及环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咪唑乙烟酸是咪唑啉酮类除草剂,主要用于大豆田防除一年生和多年生禾本科杂草及阔叶杂草。该除草剂是长残留除草剂,其长期大量重复使用不仅对后茬作物产生药害,形成所谓的“癌症田”,而且破坏了土壤生态系统和资源可持续利用。本文结合田间调查及室内培养试验研究了咪唑乙烟酸影响土壤微生物多样性的机制,探讨了除草剂咪唑乙烟酸在土壤中的消解动态、吸附解吸附等环境行为。主要研究结果如下:
     1.建立了土壤中咪唑乙烟酸残留量的超高液相色谱-串联四级杆质谱测定方法。该方法采用固相萃取(SPE)为样品前处理方法,超高效液相色谱-串联四极杆质谱联用(UPLC-MS/MS)检测土壤中咪唑乙烟酸的残留量。土壤样品经0.1 mol L-1的氯化铵与氨水缓冲液(pH=10)超声提取、C18 SPE柱净化后,应用超高效液相色谱串联四级杆质谱仪多离子反应监测(MRM)定量检测,分别以碎片离子m/z 290>176和m/z 290>245进行定性,m/z 290>245外标法定量。在0.01~0.5 mg kg~(-1)添加水平范围内咪唑乙烟酸的平均添加回收率在83.47%~101.70%之间;相对标准偏差在4.15%~5.28%之间。该方法对咪唑乙烟酸的定量检出限(LOQ)为0.075μg kg~(-1)。该方法灵敏度高,操作简单,定量准确,可用于土壤中咪唑乙烟酸的残留分析及大量样品的快速检测。
     2.采用田间调查试验和室内培养试验相结合,研究了咪唑乙烟酸对土壤微生物多样性影响的机制,为了解和预测土壤质量、土壤生态系统安全及农药生态风险评估提供了重要的科学依据。采集同一地点不同施药历史的大豆田土壤,分别测定其残留量、微生物生物量碳和PLFA含量。结果表明,施药历史1年和2年的土壤中咪唑乙烟酸的残留量分别为1.62μg kg~(-1)和1.79μg kg~(-1)。施药历史2年的土壤中微生物生物量碳和总的PLFAs含量显著高于空白对照。施药历史2年的土壤中用PLFAs表征的细菌、真菌、革兰氏阴性菌、革兰氏阳性菌显著高于未施药土壤。施药历史1年和2年的土壤中表征微生物群落的GN/GP值和压力指数显著高于未施药土壤。主成分分析结果表明3种不同施药历史的土壤微生物群落结构之间存在着显著差异。田间调查结果表明除草剂咪唑乙烟酸在田间推荐施用量的条件下,显著改变了土壤微生物生物量和微生物群落结构。
     2种土壤(soil HS,粘壤土;soil QL,壤土)在培养箱中以一定的温湿度预培养后,添加一定浓度(0.1、1和10 mg kg -1)的咪唑乙烟酸。添加后一定的时间间隔采集土样,分别测定其残留量、PLFA含量和微生物生物量碳。结果表明,除草剂咪唑乙烟酸在培养最初一段时间显著改变了土壤微生物的群落结构。咪唑乙烟酸在2种土壤中的消解动态符合一级动力学方程,在2种土壤中的半衰期为63.0~111.8d;咪唑乙烟酸在2种土壤中降解的较慢,尤其是在土壤HS(具有更低的pH值)更是如此。不同浓度的咪唑乙烟酸显著降低了土壤微生物的生物量(微生物生物量碳和总的PLFA含量)。在2种土壤中,GN/GP和fungi/bacteria值随着除草剂浓度的增加而降低。高浓度的咪唑乙烟酸处理(1 mg kg~(-1)、10 mg kg -1)显著提高了2种土壤的压力指数(cyc17:0 + cyc19:0)/(16:1ω7c + 18:1ω7c)。主成分分析的结果表明除草剂咪唑乙烟酸改变了土壤微生物的群落结构。在0.1~10 mg kg -1范围内对2种不同类型土壤微生物群落的影响是一致的,且恢复周期相同(基本上都在培养60d时恢复)。
     3.采用批量平衡法研究了咪唑乙烟酸在2种土壤中的吸附、解吸附动力学以及吸附、解吸附等温曲线。吸附、解吸附动力学试验结果表明,咪唑乙烟酸在2种土壤中的分配系数(Kd)分别为3.42和2.01,吸附率分别为40.60%和29.19%,吸附能力顺序为土壤HS >土壤QL;解吸附分配常数(Kdes)分别为19.85和12.83,解吸附能力相反,土壤HS <土壤QL。吸附、解吸附等温曲线试验结果表明,咪唑乙烟酸在2种土壤中的吸附等温曲线均符合Freundlich等温方程,吸附系数(KFads)分别为8.33和1.33,吸附能力顺序为土壤HS >土壤QL;咪唑乙烟酸在2种土壤中的回归系数1/n均小于1,属于L?型吸附等温线,即随着农药浓度的增加,其吸附率反而降低。以上结果都说明了土壤HS对咪唑乙烟酸的吸附能力较土壤QL强。
Imazethapyr, imidazolinone herbicide, is mainly used in soybean fields to control the annual grass weeds, perennial grass weeds and broad-leaved weeds. The long-term use and large amounts use of imazethapyr, long residual herbicide, caused not only succeeding crop injury, forming the so-called "cancer field," but also damaged the soil ecosystem and the sustainable use of resources. In this work, the mechanism of imazethapyr affecting soil microbial diversity were studied by the combination of field surveys and culture experiments in laboratory, and the degradation dynamics, adsorption behavior, and desorption behavior of imazethapyr were studied in soils. The results are as follows:
     1. A method for the determination of imazethapyr residues in soil was estimated based on solid phase extraction and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). The samples were extracted with 0.1 mol L-1 NH_4Cl/NH_3·H_2O (pH=10) buffer by ultrasonic wave, and cleaned up by C18 SPE cartridge. The imazethapyr residues were analyzed by UPLC-MS/MS under multiple-reaction monitoring mode. The qualitative results were obtained based on retention time, the precursor ion and two daughter ions, and the quantitative results were on the intention of the characteristic m/z 290>176 ion and m/z 290>245 ion. Average recoveries of imazethapyr in soil samples were found in the range of 83.47%~101.70% at three spiking levels from 0.01 mg kg~(-1) to 0.5 mg kg~(-1) with relative standard deviations of 4.15%~5.28%. Limit of quantification of imazethapyr was 0.075μg kg~(-1). The method is simple and suitable for the routine and confirmation analysis.
     2. The effects of imazethapyr on soil microbial diversity were studied by the combination of field surveys and culture experiments in laboratory, which provided important scientific evidence for the understanding and prediction of soil quality, soil ecosystem safety and ecological risk assessment of pesticides.
     In the field surveys, the soils were collected at the same location in different application history soybean field for the determination of imazethapyr residue, soil microbial PLFA content and soil microbial biomass C. The residue in was 1.62μg kg~(-1) in the soil (soil 1) with 1 year history of imazethapyr application, and 1.79μg kg~(-1) for the soil (soil 2) with 2 years history of imazethapyr application. The microbial biomass C and total PLFAs of soil 2 were much higher than the soil (blank soil) with no imazethapyr application. PLFA profiles showed that fatty acids for Gram-negative (GN) and Gram-positive (GP) bacteria, as well as total bacteria and total fungi in soil 2 were much higher than blank soil. GN/GP and the stress level were much more than the blank soil. Principal component analysis of the PLFAs showed that the microbial community structure differed substantially among the three different soybean field soils. The application of the herbicide imazethapyr to soybean fields clearly changed the soil microbial biomass and shifted the microbial community structure.
     In the culture experiments, two agricultural soils, a silty loam (HS) and a loamy soil (QL), were spiked with imazethapyr (CK, 0.1, 1 and 10μg g~(-1)) and incubated for 1, 15, 30, 60, 90 and 120 days. In addition, untreated controls received only water. The soil microbial community structures were characterized by investigating the phospholipid fatty acids (PLFA) and microbial biomass C. The results showed that the dissipation kinetics of imazethapyr in the two soils were described using a first order kinetics model, the half-time were 63.0~111.8d; there was a slow decline in imazethapyr that leveled out at longer incubation times,especially in soil HS with lower pH. The soil microbial biomass C and total concentration of PLFA were reduced by the addition of imazethapyr. Imazethapyr addition also decreased the ratios of GN/GP and fungi/bacteria. A larger stress level, measured as the ratio of PLFA (cyc17:0 + cyc19:0)/(16:1ω7c + 18:1ω7c), was found in the high concentration (1 and 10μg g~(-1)) herbicide treatment groups. Principal component analysis (PCA) of the PLFA clearly separated the treatments and incubation times. Both soils showed different total PLFA concentrations and ratios of GN/GP and fungi/bacteria, but similar changes in the PLFA pattern upon soil treatment. The soil microbial community structure was shifted by the addition of imazethapyr, which recovered after 60 days. Our results demonstrated that the addition of imazethapyr shifted the microbial community structure, but that it recovered after a period of incubation.
     3. Adsorption, desorption kinetics and adsorption, desorption isothermal experiments were studied using batch equilibrium method. The results of adsorption, desorption kinetics experiments showed that distribution coefficient (Kd) of imazethapyr in the two soils were 3.42 and 2.01, the adsorption rates were 40.60% and 29.19%, adsorption capacity was soil HS > soil QL. The desorption distribution constant (Kdes) were 19.85 and 12.83, and desorption capacity was soil HS < soil QL. Adsorption, desorption isotherm results showed that adsorption isotherms were described by Freundlich isotherm equation, adsorption coefficient (KFads) were 8.33 and 1.33, adsorption capacity was soil HS > soil QL. Regression coefficient 1/n of imazethapyr in the two soils were less than 1, which indicating Langmuir adsorption isotherm and the adsorption rate reducing with the increase of the concentration of pesticides. Our results demonstrated that imazethapyr adsorption was higher in soil HS than that of soil QL.
引文
[1]白震,何红波,张威,解宏图,张旭东,王鸽.磷脂脂肪酸技术及其在土壤微生物研究中的应用[J].生态学报, 2006, 26(7):2387~2394.
    [2]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000:25~108.
    [3]陈婷婷,崔兆杰,李强.加速溶剂萃取-高效液相色谱法测定土壤中咪唑乙烟酸残留量[J].分析实验室, 2007, 26 (9):95~98.
    [4]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990:18~22.
    [5]陈中云,闵航,吴伟祥,陈美慈,张夫道,赵秉强.农药污染对水稻田土壤反硝化细菌种群数量及其活性的影响[J].应用生态学报,2003,14(10):1765~1769.
    [6]陈中云,闵航,张夫道,赵秉强.农药污染对水稻田土壤硫酸盐还原菌种群数量及其活性影响的研究[J].土壤学报,2004, 41(1):97~102.
    [7]崔兆杰,陈婷婷.土壤中咪唑啉酮类除草剂的分析及归趋研究[J].环境工程学报,2007,1(1):113~117.
    [8]范志金,刘丰茂,钱传范.磺酰脲除草剂的现状和发展趋势分析[J].农药,1999,38(5):6~9.
    [9]傅丽君,杨文金.4种农药对批把园土壤磷酸酶活性及微生物呼吸的影响[J].中国生态农业学报,2007,15(6):113~116.
    [10]胡笑形.中国农药走向世界[J].新农药,2003,5:25~28.
    [11]黄智,李时银,刘新会,韩朔睽,张爱茜,王连生.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响[J].环境化学,2002,21(5):481~484.
    [12]黄家章.氟虫腈在土壤中的吸附、淋溶以及降解特性研究[黄家章硕士学位论文].北京:中国农业科学院,2005.
    [13]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报, 2004, 35 (6):789~792.
    [14]李海屏.20世纪80年代以来世界除草剂新品种开发进展及特点[J].农药科学与管理, 2004,25(4):28~31.
    [15]李伟格,吕静,江涌.普杀特在大豆上的残留动态[J].农村生态环境学报, 1995, 11(2):781~784.
    [16]李为忠,范东升,栾宇博.胺苯磺隆、氯嘧磺隆和咪唑乙烟酸的应用现状、问题及对策[J].农药,2008,47(11):32~34.
    [17]李永山,范巧兰,陈耕,柴永峰,张冬梅,李燕娥.利用PLFA方法研究转Bt基因棉花对土壤微生物群落结构变化的影响[J].棉花学报, 2009, 21(6):503~507.
    [18]廖敏,黄昌勇.镉在有机酸存在时对红壤土中微生物生物量的影响[J].应用生态学报.2002,13(3):300~302.
    [19]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志.1999, 18(2):63~66.
    [20]林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010:170~170.
    [21]刘惠君,詹秀明,刘维屏.Rac-异丙甲草胺及其S-对映体对土壤微生物量碳、氮的影响[J].土壤学报,2006,43(5):875~878.
    [22]刘娜,唐保宏,张美香.百草枯对土壤中蛋白酶和过氧化氢酶活性影响研究[J].安徽农业科学,2009,37(20):9594~9595.
    [23]刘维屏,王棋全,方卓.除草剂绿虫定(Triclopyr)在土壤-水环境中的吸附和光解[J].中国环境科学,1995,15(4):311~315.
    [24]刘维屏,郑巍,宣日成,王琪全.除草剂咪草烟在土壤上吸附-脱附过程及作用机理[J].土壤学报,1998,35(4):475~481.
    [25]刘延,刘波,王险峰.中国化学除草问题与对策[J].农药,2005,44(7):289~293.
    [26]马婧炜,陈黎,王金芳.SPE-HPLC法测定土壤中咪唑乙烟酸的残留量[J].农药, 2007, 46(12):843~845.
    [27]闵航,赵宇华,徐进.氟乐灵对土壤微生物和蚯蚓的影响[J].农村生态环境, 1993, 3:40~43.
    [28]牛红榜,刘万学,万方浩.紫茎泽兰入侵对土壤微生物群落和理化性质的影响[J].生态学报,2007,27(7):3051~3060.
    [29]农药行业:我国农药产品的发展概况.2010-3-29取自http://www. agronet. com. cn/News/ Detail_555152. aspx
    [30]庞福德.咪唑乙烟酸降解细菌的筛选及降解特性的研究[庞福德硕士学位论文].哈尔滨:东北农业大学, 2007.
    [31]浅谈二十一世纪的中国农药工业2010-03-25取自http://www. bjkp. gov. cn/kjbgt/k0840-03. htm
    [32]去年农药市场总体平稳.取自http://www. pesticide. com. cn
    [33]沈标,李顺鹏,赵硕伟,刘进军.氯苯、对硝基酚对土壤生物活性的影响[J].土壤学报,1997,34(3):309~314.
    [34]申屠佳丽,何振立,杨肖娥,李延强.青菜-萝卜轮作条件下镉对土壤微生物活性和磷脂脂肪酸特性的影响[J].浙江大学学报(农业与生命科学版),2009,35(5):569~577.
    [35]孙波,赵其国,张桃林,俞慎.土壤质量与持续环境Ⅲ土壤质量评价的生物学指标[J].土壤,1997,29(5):225~234.
    [36]苏少泉.长残留除草剂对后茬作物安全性问题[J].农药,1998,37(12):4~7.
    [37]苏少泉.抗咪唑啉酮类除草剂作物的发展与未来[J].现代农药,2006,5(1):1~4.
    [38]苏少泉.除草剂在土壤中的降解与使用[J].现代农药,2004,3(1):5~8.
    [39]孙佳为,郭正元,罗敏,谭智勇.多菌灵与氟硅唑对土壤微生物及酶活性的影响[J].湖南农业科学,2009,65(11):49~51.
    [40]唐玉姝,魏朝富,颜廷梅,杨林章,慈恩.土壤质量生物学指标研究进展,土壤,2007,39(2):157~163 .
    [41]田耀华,冯玉龙.微生物研究在土壤质量评价中的应用[J].应用与环境生物学报,2008,14(1):132~561.
    [42]王金花,朱鲁生,王军,孙瑞莲,赵秉强.除草剂阿特拉津对土壤脲酶活性的影响[J].应用生态学报,2003,14(12):2281~2284.
    [43]王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用[J].微生物学通报,2004, 31(1):114~117.
    [44]王险峰,关成宏,辛明远.我国长残效除草剂使用概况、问题及对策[J].农药,2003,42(11):5~10.
    [45]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:5~6.
    [46]余柳青,徐福强,余圣康,李扬汉,应存山.丁草胺和杀草丹对稻田土放线菌及其白色链霉菌的影响[J].中国农业科学,1997,30(6):81~83.
    [47]徐真,郭正元,黄帆,杨仁斌,唐美珍.唑螨酯对土壤呼吸作用和过氧化氢酶活性的影响[J].农药,2006,45(10):692~694.
    [48]颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):851~859.
    [49]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):21~26.
    [50]杨靖华.咪草烟在大豆田土壤及植株中残留动态及在土壤中吸附特性的研究[杨靖华硕士学位论文].长春:吉林农业大学,2005.
    [51]杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23~25.
    [52]姚槐应,何振立,陈国潮,黄昌勇.红壤微生物量在土壤-黑麦草系统中的肥力意义[J].应用生态学报,1999,10(6):725~728.
    [53]姚斌,徐建民,尚鹤,张超兰.甲磺隆污染土壤的微生物生态效应[J].农业环境科学学报,2005,24(3):557~561.
    [54]姚槐应,黄昌勇.土壤微生物生态学及其实验技术[J].北京,科学出版社,2006:52~52.
    [55]姚晓华.新杀虫剂啶虫脒对旱地土壤微生物生态影响及其降解研究[姚晓华博士学位论文].杭州,浙江大学,2005.
    [56]叶央芳,闵航,周湘池.苯噻草胺对水田土壤呼吸强度和酶活性的影响[J].土壤学报, 2004,41(1):93~96.
    [57]于建垒,宋国春,万鲁长,曹德强,于迎春.乙草胺对土壤微生物的影响研究[J].环境污染治理技术与设备,2000,l(5):61~65.
    [58]章家恩,蔡燕飞,高爱霞,朱丽霞.土壤微生物多样性实验研究方法概述[J].土壤, 2004, 36(4):346~350.
    [59]张壬午,张洪生,张汝安.中国环境保护和农业可持续发展[M].北京:北京出版社,2001:40~41.
    [60]张瑞福,崔中利,何建,黄婷婷,李顺鹏.甲基对硫磷长期污染对土壤微生物的生态影响[J].农村生态环境,2004,20(4):48~50.
    [61]赵长山,何付丽.长残留性除草剂与黑龙江省农业的未来发展[J].东北农业大学学报,2007,38(1):136~139.
    [62]赵光,王宏燕.土壤微生物多样性的分子生态学研究方法[J].中国林福特产,2006,80(1):54~56.
    [63]赵爽,叶非.咪唑啉酮类除草剂的应用及降解[J].植物保护,2009,35(2):15~19.
    [64]赵云和,杨靖华,段玉玺.咪草烟在大豆田土壤中的残留动态[J].农药,2007,46(10): 696~698.
    [65]赵云和,张子丰,孙利.咪草烟土壤残留对后茬水稻的影响[J].农药,2006,45(3):189~190.
    [66]郑巍,刘维屏.除草剂普杀特在土壤-水两相中的吸附-脱附和光解[J].中国环境科学, 1998,18(5):476~480.
    [67]钟文辉,王薇,林先贵,尹睿,申卫收.核酸分析方法在土壤微生物多样性研究中的应用[J].土壤学报,2009,46(2):334~341.
    [68]周桔,雷霆.土壤微生物多样性影响因素及研究方向的现状与展望[J].生物多样性,2007,15(3):306~311.
    [69]周丽霞,丁明懋.土壤微生物学特性对土壤健康指标的指示作用[J].生物多样性,2007, 15(2):162~171.
    [70]朱鲁生,樊德方.辛硫磷、甲氰菊酷及其混剂对土壤微生物的影响研究[J].农业环境保护, 1999,18(1):25~27.
    [71]朱鲁生,王军.乙草胺和荞去津对土壤微生物的影响及安全性评价[J].土壤与环境,2000, 9(l):71~72.
    [72]朱鲁生,徐玉新,王玉军,李光德,张玉凤.马拉硫磷、氰戊菊酯及其混剂对土壤微生物影响研究[J].山东农业大学学报(自然科学版),2000,31(l):35~37.
    [73]朱南文,闵航,陈美慈,刘化忠.甲胺磷对土壤中磷酸酶和脱氢酶活性的影响[J].农村生态环境,1996,12(2):22~24.
    [74]朱鲁生,张玉凤,樊德方.辛硫磷、甲氰菊酯及其混剂对土壤微生物的影响研究[J].农业环境保护,1999,18(1):25~27.
    [75] Abdel-Fattah H.M., Abdel-Kader M.I., Hamida S. Selective effects of two systemic fungicides on soil fungi [J]. Mycopathologia, 1982, 79 (2): 93~99.
    [76] Abul K.M.A., Mohammed A., Norlida O., et al. Synthesis of dimethyl derivatives of imidazoline herbicides: their use in efficient gas chromatographic methods for the determination of these herbicides [J]. Journal of Agricultural and Food Chemistry, 2000, 48 (12): 5893~5902.
    [77] Frostegard A., Tunlid A., Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals [J]. Applied and Environmental Microbiology, 1993, 59: 3605~3617.
    [78] Alice W.R., Matt D.B., Carol J.S. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils [J]. Applied Soil Ecology, 2006, 34: 114~124.
    [79] Ana Z., Susana G., Luisa M.S., Luis A.R., Mercedes R. Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase [J]. Environmental Experimental Botany, 2007, 59: 150~159.
    [80] Anderson J. P. E., Armsirong R.A., Smith S. N. Methods to evaluate pesticide damage to the biomass of the soil microflora [J]. Soil Biology and Biochemistry, 1981, 13: 149~153.
    [81] Andrew J.G., Terry L.L., Edward E.G. Degradation and field persisitance of imazethapyr [J]. Applied and Environmental Microbiology, 2001, 67 (7): 3245~3257.
    [82] Artinez-Toledo M.V. Effect of an organophosphorus insecticides profenofos on agricultural soil microflora [J]. Chemosphere, 1992, 51 (1): 30~39.
    [83] Avila L.A., Massey J.H., Senseman S.A., et al. Imazethapyr aqueous photolysis, reaction quantum yield, and hydroxyl radical rate constant [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 2635~2639.
    [84] Baath E., Anderson T.H. Comparison of soil fungi/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology and Biochemistry, 2003, 35: 955~963.
    [85] Baath E., Diaz-Ravina M., Frostegard A. et al. Effect of metal-rich sludge amendments on the soil microbial community [J]. Applied and Environmental Microbiology, 1998, 64: 238~245.
    [86] Banerjee A., Banerjee A.K. Effect of the fungicides tridemorph and vinclozolin on soil microorganisms and nitrogen metabolism [J]. Folia Microbial (Praha), 1991, 36 (6): 567~571.
    [87] Bardgett, R.D., Hobbs, P.J., Frostegard, A. Changes in soil fungal: bacterial ratios following reductions in the intensity of management of an upland grassland [J]. Biology and Fertility of Soils, 1996, 22: 261~264.
    [88] Baruah M, Mishra R.R. Effect of herbicides butachlor, 2,4-D and oxyfluorfen on enzyme activities and CO2 evolution in submerged paddy field soil [J]. Plant and Soil, 1986, 96: 287~291.
    [89] Battaglin, W.A., Furlong, E.T., Burkhardt M.R., Peter, C.J. Occurrence of sulfonylurea, sulphonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States [J]. Science of the Total Environment, 1998, 248: 123~133.
    [90] Bending G.D., Rodriguez-Cruz M.S., Lincoln S.D. Fungicide impacts on microbial communities in soils with contrasting management histories [J]. Chemosphere, 2007, 69: 82~88.
    [91] Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review [J]. Biology and Fertility of Soils, 2008, 45 (2): 115~131.
    [92] Blakely J.K., Neher D.A., Spongberg A.L. Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination [J]. Applied Soil Ecology, 2002, 21: 71~88.
    [93] Bohme L., Langer U., Bohme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments [J]. Agriculture Ecosystems and Environment, 2005, 109: 141~152.
    [94] Bossio, D.A., Scow, K.M., Gunapala, N., Graham, K.J. Determinants of soil microbial communities: Effect of agricultural management, season, and soil type on phospholipid fatty acid profiles [J]. Microbial Ecology, 1998, 36: 1~12.
    [95] Carney K.M., Matson P.A. The influence of tropical plant diversity and composition on soil microbial communities [J]. Microbial Ecology. 2006, 52: 226~238.
    [96] Chinalia, F.A., Killham, K.S. 2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE) [J]. Chemosphere, 2006, 64: 1675~1683.
    [97] Cuadrado V., Merini L.J., Flocco C.G., Giulietti A.M. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content [J]. Applied Microbiology and Biotechnology, 2008, 77: 1371~1378.
    [98] Das P., Pal R., Chowdhury A. Effect of novaluron on microbial biomass, respiration, and fluorescein diacetate-hydrolyzing activity in tropical soils [J]. Biology and Fertility of Soils. 2007, 44: 387~391.
    [99] Donald R.Z., George W.K. Microbial community composition and function across an arctic tundra landscape [J]. Ecology, 2006, 87: 1659~1670.
    [100] Drijber R.A., Doran J.W., Parkhurst A.M., et al. Changes in soil microbial community structure with tillage under long-term wheat-fallow management [J]. Soil Biology and Biochemistry, 2000, 32: 1419~1430.
    [101] El Fantroussi S., Verchuere L., Verstraete W., Top E.M. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and communities-level physiological profiles [J]. Applied and Environmental Microbiology, 1999, 65 (3): 982~988.
    [102] Flint J.L., Witt W.W. Microbial degradation of imazaquin and imazethapyr [J]. Weed Science, 1997, 45: 586~591.
    [103] Frostegard ?, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil [J]. Biology and Fertility of Soils, 1996, 22: 59~65.
    [104] Frostegard ?, Baath E, Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis [J]. Soil Biology and Biochemistry, 1993, 25: 723~730.
    [105] Funderburk H.H., Bozarth G.A. Review of the metabolism and decomposition of diquat and paraquat [J]. Journal of Agricultural and Food Chemistry, 1967, 15 (4): 563~567.
    [106] Gans J., Wolinsky M., Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil [J]. Science, 2005, 309: 1387~1390.
    [107] Goetz, A.J., Lavy, T.L., Gbur E.E. Degradation and field persistence of imazethapyr [J]. Weed Science, 1990, 38: 421~428.
    [108] Goetz A.J., Wehtje G., Walker R.H., Hajek B. Soil solution and mobility characteristics of imazaquin [J]. Weed Science, 1986, 34: 788~793.
    [109] Grayston S.J., Griffth G.S., Mawdsley J.L., et al. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems [J]. Soil Biology and Biochemistry, 2001, 33: 533~551.
    [110] Grogan D.W., Cronan J.E. Cyclopropane ring formation in membrane lipids of bacteria [J]. Microbiol. Mol Biol R, 1997, 61: 429~41.
    [111] Grossbard E. March J.A.P. The effect of seven substituted urea herbicides on the soil microflora [J]. Pesticide Science, 1974, 5 (5): 609~623.
    [112] Hammesfahr U., Heuer H., Manzke B., Smalla K., Bruhn S.T. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils [J]. Soil Biology and Biochemistry, 2008, 40: 1583~1591.
    [113] Hollaway K.L., Kookana R.S., Noy D.M., Smith J.G., Wilhelm N. Persistence and leaching of imazethapyr and flumetsulam herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia [J]. Australian Journal of Experimental Agriculture, 2006, 46: 669~674.
    [114] Huang H.L., Zhang S.Z., Wu N.Y., Luo L., Christie P. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure [J]. Soil Biology and Biochemistry, 2009, 41: 726~734.
    [115] Hund-Rinke K., Simon M., Lukow T. Effects of tetracycline on the soil microflora: function, diversity, resistance [J]. J. Soil Sediment, 2004, 4: 11~16.
    [116] Ibekwe A.M., Kennedy A.C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions [J]. FEMS Microbial Ecology, 1998, 26: 151~163.
    [117] Ibekwe A.M., Papiernik S.K., Gan J.Y., Yates S.R., Yang C.H., Crowley D.E. Impact of fumigants on soil microbial communities [J]. Applied and Environmental Microbiology, 2001, 67 (7): 3245~3257.
    [118] Ismail B.S., Yapp K.F., Omar O. Effects of metsulfuron-methyl on amylase, urease, and protease activities in two soils [J]. Australian Journal of Soil Research, 1998, 36: 449~456.
    [119] Jangid K., Williams M.A., Franzluebbers A.J., Sanderlin J.S., Reeves J.H., Jenkins M.B., Endale D.M., Coleman D.C., Whitman W.B. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems [J]. Soil Biology and Biochemistry, 2008, 40: 2843~2853.
    [120] Jia L. Issues and some strategies of sustainable development of black soil resources in black soil zone in northeast China [J]. Chinese Agricultural Science, 2005, 21: 351~354.
    [121] Kale S.P., Raghu K. Effect of carbofuran and its degradation products on microbial numbers and respiration in soils [J]. Chemosphere, 1989, 18 (11/12): 2345~2351.
    [122] Kelly J.J., Haggblom M., Tate R.L. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study [J]. Soil Biology and Biochemistry, 1999, 31 (10): 1455~1465.
    [123] Kourtev P.S., Ehrenfeld J.G., Haggblom M. Exotic plant species alter the microbial community structure and function in the soil [J]. Ecology, 2002, 83: 3152~3166.
    [124] Ley R.E., Schmidt S.K. Fungal and bacterial responses to phenolic compounds and amino acids in high altitude barren soils. Soil Biology and Biochemistry [J]. 2002, 34 (7): 989~995.
    [125] Loux, M.M., Reese, K.D. Effect of soil type and pH on persistence and carryover of imidazolinone herbicides [J]. Weed Technology. 1993, 7: 452~458.
    [126] Lupwayi N.Z., Harker K.N., Clayton G.W., Turkington T.K., Rice W.A., O’Donovan J.T. Soil microbial biomass and diversity after herbicide application [J]. Canadian Journal of Plant Science, 2004, 84: 677~685.
    [127] Marius A., Dana E., Jan T., Petr B. Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study [J]. Chemosphere, 2008, 73: 1518~1523.
    [128] Mccurdy E.V., and Molberg E.S. Effects of continues use of 2,4-D and MCPA on spring wheat production and weed populations [J]. Canadian Journal of Plant Science, 1974, 54 (2): 241~245.
    [129] Morgan, John C.F. Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination [J]. Journal of Microbiological Methods, 2001, 45: 171~185.
    [130] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion in Microbiology, 1999, 2 (3): 317~322.
    [131] OECD Chemicals Testing-Guidelines 106: Absorption-Desorption Using a Batch Equilibrium Method (Updated Guideline, adopted 21st January 2000).
    [132] Olsson S, Alstrom S. Characterization of bacteria in soils under barley monoculture and crop rotation [J]. Soil Biology and Biochemistry, 2000, 32: 1443~1451.
    [133] Perucci P., Dumontet S., Bufo, S.A., Mazzatura A., Casucci C. Effects of organic amendment and herbicide treatment on soil microbial biomass [J]. Biology and Fertility of Soils, 2000, 32: 17~23.
    [134] Perucci P., Scarponi L. Effects of the herbicide imazethapyr on soil microbial biomass and various soil enzyme activities [J]. Biology and Fertility of Soils, 1994, 17: 237~240.
    [135] Piotrowska-Seget Z., Engel R., Nowak E., Kozdroj J. Successive soil treatment with captan or oxytetracycline affects non-target microorganisms [J]. World Journal of Microbiology and Biotechnology, 2008, 24: 2843~2848.
    [136] Powell S.N., Singleton D.R., Aitken M.D. Effects of enrichment with salicylate on bacterial selection and PAH mineralization in a microbial community from a bioreactor treating contaminated soil [J]. Environmental Science & Technology, 2008, 42 (11): 4099~4105.
    [137] Ratcliff A.W., Busse M.D., Shestak C.J. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils [J]. Applied Soil Ecology, 2006, 34: 114~124.
    [138] Renner K.A., meggitt W.F., Penner D. Effect of soil pH Imazaquin and Imazethapyr adsorption to soil and phototoxicity to corn (Zea mays) [J]. Weed Science, 1998, 36: 78~83.
    [139] Richard J. Ellis, Barry Neish, Marcus W., Trett, J., George Best, Andrew J., Weightman, Philip Riffalch R., Filippelli M., Levi-Minzi R., Savioza A. The influence of metarn sodium on soil respiration [J]. Journal of Environmental Science and Health, Part B, 2000, 35 (4): 455~465.
    [140] Schuster Evi, Schroder. Side-effeets of sequentially-applied pesticides on nontarget soil microorganisms field experiments [J]. Soil Biology and Biochemistry, 1990, 22(3): 367~373.
    [141] Schutter M.E., Fuhrmann J.J. Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates [J]. Soil Biology and Biochemistry, 2001, 33: 1947~1958.
    [142] Seghers D., Verthe K., Reheul D., Bulcke R., Siciliano S.D., Verstraete W. Top E.M. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil [J]. FEMS Microbiology Ecology, 2003, 46 (2): 139~146.
    [143] Shaner D.L., O'Connor S.L. The imidazolinone herbicides [M]. Boca Raton Ann Arbor Boston London: CRC Press, 1991.
    [144] Sigler W.V., Turco R.F. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis [J]. Applied Soil Ecology, 2002, 21 (2): 107~118.
    [145] Staddon W.J., Trevors J.T., Duchesns L.C., Colombo C.A. Soil microbial diversity and community structure across a climatic gradient in western Canada [J]. Biodiversity and Conservation, 1998, 7 (8): 1081~1092.
    [146] Stougaard, R.N., Shwa, P.J., Martin, A.R., Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr [J]. Weed Science, 1990, 38: 67~73.
    [147] Stout J.S., Nejad H, Cavalier T.C., et al. Multiresidue determination and confirmation of imidazolinone herbicides in soil by High-performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry [J]. Journal of AOAC International, 1999, 82: 956~962.
    [148] Taiwo E.L.B., Oso B.A. The influence of some pesticides on soi1 microbia1 flora in relation to changes in nutrient level, rock phosphate solubilization and P release under laboratory conditions [J]. Agriculture Ecosystems and Environment, 1997, 65: 59~68.
    [149] Thirup L., Johnsen K., Torsvik V., Splid N.H., Jacobsen C.S. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots [J]. Soil Biology and Biochemistry, 2001, 33 (11): 1517~1524.
    [150] Thompson I.P., Bailey M.J., Boyd E.M., Maguire N., Meharg A.A., Ellis R.J. Concentration effects of 1,2-dichlorobenzen on soil microbiology [J]. Environmental Toxicology and Chemistry, 1999, 18: 1891~1898.
    [151] Tu C.M. Effect of some herbicides on activities of microorganisms and enzymes in soil [J]. Journal of Environmental Science and Health, Part B, 1992, 27 (6): 695~709.
    [152] Vestal J.R., White D.C. Lipid analysis in microbial ecology [J]. Bioscience, 1989, 39: 535~541.
    [153] Vischetti C., Casucci C., Perucci P. Relationship between changes of soil microbial biomass contentand imazamox and benfluralin degradation [J]. Biology and Fertility of Soils, 2002, 35: 13~17.
    [154] Vischetti C., Perucci P., Scarponi L. Relationship between rimsulfuron degradation and microbial biomass content in a clay loam soil [J]. Biology and Fertility of Soils, 2000, 31: 310~314.
    [155] Waldrop M.P., Balser T.C., Firestone M.K. Linking microbial community composition to function in a tropical soil [J]. Soil Biology and Biochemistry, 2000, 32: 1837~1846.
    [156] Wang M.C., Li Y.H., Wang Q., Gong M., Hua X.M., Pang Y.J., Hu S., Yang Y.H. Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities [J]. Soil Biology and Biochemistry. 2008, 40: 778~788.
    [157] Wang Y.P., Li Q.B., Hui W., Shi J.Y., Lin Q., Chen X.C., Chen Y.X. Effect of sulphur on soil Cu/Zn availability and microbial community composition [J]. Journal of Hazardous Materials, 2008, 159 (2-3): 385~389.
    [158] Wang Y.P., Shi J.Y., Wang H., Qi L., Chen X.C., Chen Y.X. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter [J]. Ecotoxicology and Environmental Safety, 2007, 67: 75~81.
    [159] Wardle D.A., Parkinson D. Effect of three herbicides on soil microbial biomass and activity [J]. Plant and Soil, 1990, 122: 21~28.
    [160] White D.C., Findlay R.H. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms [J]. Hydrobioligia, 1998, 159: 119~132.
    [161] Widenfalk A., Bertilsson S., Sundh I., Goedkoop W. Effects of pesticides on community composition and activity of sediment microbes-responses at various levels of microbial community organization [J]. Environmental Pollution, 2008, 152: 576~584.
    [162] Wilkinson S.G. Gram-negative bacteria [M]. Ratledge C., Wilkinson S.G., Microbial Lipids. London: Academic Press, 1988: 299~408.
    [163] Wu T., Chellemi D.O., Graham J.H., Martin K.J., Rosskopf E.N. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices [J]. Microbial Ecology, 2008, 55: 293~310.
    [164] Yang Y.H., Yao J., Hu S., Qi Y. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: A study with RAPD marker [J]. Microbial Ecology, 2000, 39 (1): 72~79.
    [165] Yao H., He Z., Wilson M.J., Campbell C.D. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use [J]. Microbial Ecology, 2000, 40: 223~237.
    [166] Zelles L. Fatty acid patterns of phospholipids and lipopolisaccharides in the characterisation of microbial communities: A review [J]. Biol Fertil Soils, 1999, 29: 111~129.
    [167] Zilli J.E., Botelho G.R., Neves M.C.P., Rumjanek N.G. Effect of glyphosate and imazaquin on the soybean rhizoplane bacterial community and microbiological soil characteristics [J]. Revista Brasileira Ciencia do Solo, 2008, 32: 633~642.
    [168] Zilli J.E., Smiderle O.J., Neves M.C.P., Rumjanek N.G. Microbial population in soil cultivated with soybean and treated with different herbicides in cerrado area of Roraima [J]. Acta Amazonica, 37: 201~212.