道路边坡不同生态防护措施侵蚀特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路域系统侵蚀是区域土壤侵蚀的重要组成部分,其形成和发展是自然因素和人为因素共同作用的结果。山区道路建设对区域地形地貌有着非常显著的影响,从而导致道路系统土壤侵蚀类型发生转变、侵蚀强度和产流产沙增加,而道路边坡由于植被恢复困难、坡度陡,常常发生严重的水土流失现象,是流域中重要的侵蚀来源。因此,进行道路边坡的侵蚀过程特性和边坡防护试验研究,对进一步认识边坡防护机理、泥沙输移规律,及山区生态环境建设中的机耕道路及边坡防护设计与维护、道路网络合理规划有重要的实用价值。
     本研究以新建土质道路边坡为研究对象,通过野外降雨试验和土壤力学试验等方法,研究进行边坡生态防护措施之后,道路边坡的侵蚀稳定特性,获得如下主要研究结果:
     (1)通过对道路边坡土壤理化性质分析认为:道路边坡作为路域系统中一种特殊的土地利用方式,其土壤结构性质与其他土地利用相比,存在较大差异,土壤容重、饱和导水率和总孔隙度最为显著,自然情况下,路堑边坡由于土壤容重大、植被恢复比较困难、坡度陡,产流产沙效果要高于路堤边坡,侵蚀发生的频率和强度路堑都要比路堤高。在边坡小区的各项影响因子中,植被覆盖度、土壤容重、饱和导水率、总孔隙度等是影响边坡降雨侵蚀性的最主要因子。
     (2)边坡进行防护之后,模拟降雨试验的结果显示:45°路堑边坡,梯坎+草灌措施在防止边坡侵蚀的效果上显著优于草灌结合,虽然降雨后期产流增加,但是径流中含沙量非常低;30°路堑边坡,防护效果依次为草灌结合>草本>植生带>对照;30°路堤边坡,草本措施长势非常好,其防护效果与草灌结合效果差异不大,但是都显著优于植生带和对照处理,在15°的缓坡路堤上,同是坡耕地处理,有路肩草本缓冲带可有效减少坡面径流75.93%,产沙量减少81.62%,在人地矛盾激烈的山区,缓坡路堤的顶部配合1-2m的植物缓冲篱带,可有效地解决路堤边坡农业耕作带来的水土流失问题。
     (3)道路的形成一部分拦截道路上方坡面径流和壤中流,同时高度压实的路面本身也是流域重要的产流区,这些水流的去路,除沿路面和边沟渠排走之外,其余则是沿路肩溢流从路堤边坡排走,对路堤边坡形成严重的冲刷侵蚀。在对路堤边坡进行模拟路面来水冲刷试验,数据显示,在30°路堤边坡,路面来水的介入对植被覆盖良好的草本和草灌小区产流能力的增加高于产沙能力,但两者增幅都不大,而对于植生带和对照处理,有路面来水时径流系数峰值是无路面来水的1.9~7.1倍,产沙能力伴随着产流的增加显著增大。在15°路堤边坡,路肩草本缓冲带在无路面来水时表现出很强的滞流减沙效果,但是随着路面来水的加大,缓冲带对减少坡面产流的贡献基本上消失了,但是对于产沙的抑制作用还是比较理想,径流含沙量峰值为坡耕地的62.6%,平稳期为45.9%。
     (4)对道路边坡自修建开始进行天然降雨侵蚀的跟踪观测,观测结果显示:边坡的水土流失主要集中在道路修建之后的0-6个月内,且极端降雨的影响非常显著,侵蚀最严重的45°路堑对照小区,次降雨侵蚀模数高达12.22g.m-2.min-1,次降雨总产沙量为51937.2g,占全年总产沙量的46.73%,30°路堤草灌结合小区该次次降雨总产沙量为12606.2g,占全年总产沙量的78.90%。时间因子是边坡侵蚀中一个重要的影响因子,随着时间的推移,降雨在坡面上的产流能力和产沙能力都显著下降,降雨侵蚀力与观测天数呈指数下降。
     (5)自然降雨的观测结果与模拟降雨的结果还是存在差异,模拟试验的结果,路堤边坡几乎所有的处理,其产流产沙都要显著低于路堑边坡,但是自然观测的数据确与实验值有明显的差异,观测结果显示,路堤边坡各处理在产流产沙上与路堑边坡相差较小,且这种差异随降雨类型变化,在短历时、低雨强降雨条件下,路面的高含沙水流对下边坡的影响就越大,而对于降雨量大和降雨强度大的降雨类型,路面来水来沙对路堤的产流产沙贡献率就要小一些。
     (6)生物措施对边坡的防护作用,除地上部分的冠层、茎、叶及枯落物对降雨的拦截消能之外,地下根系也是一个不能忽视的部分,地下根系除能显著改变边坡土壤的物理化学性质之外,更重要的是能增加土壤的力学强度,增加表层土壤的抗冲性及边坡的浅层稳定性。
     本文采用野外十字板剪切仪,在雨前雨后分别测定边坡的土壤不排水剪切强度,数据显示,含水量的变化是影响抗剪强度的一个极为重要的因素,植被根系的存在能显著降低含水量的影响,对于根系含量比较高的草本和草灌结合处理,含水量的增加对抗剪强度的影响作用要显著低于植生带和对照处理。并且草本和草灌结合处理,由于表层土壤根系含量高,密度大,提高了表土抗冲性的同时还增加了降雨的入渗和地表粗糙度,导致这两个处理降雨产流产沙低于植生带、坡耕地和对照处理。径流系数与坡面土壤颗粒的剥蚀率都与抗剪强度呈负指数相关。
     综合以上的研究结果,在对山区土质道路边坡进行防护时,植物防护是首选,措施选择上,以乡土草本和草灌结合为主,低缓边坡则可以考虑坡耕地和植物篱带相结合的方式以缓解山区激烈的人地矛盾,人为因素的介入不仅能显著缩短边坡植被的自然恢复周期,降低道路的水土流失,还能对路域这一环境脆弱区进行合理的开发利用和保护,这对于降低道路建设对山区生态环境的影响是极为重要的。
Road system erosion is a very important component of the regional scale soil erosion, its formation and development are the combination consequences of the natural and human influence. Road building in mountain areas has a notable geomorphological impact. Several factors, such as breaking of the hillslope profile, lack of vegetation protection on road sides and alteration of hillslope hydrogeomorphological functioning, suggest an increase of soil erosion processes, both variety and intensity, and in sediment yield, particularly in those hill roads that were built with low budgets, carry heavy traffic and do not include even minimal conservation techniques. Road sides slope are the most important sources of the watershed soil erosion. Thence, the research of road side slope of soil erosion processes and vegetation protection give a further approach to recognize the mechanism of road side slope protection and pattern of sediment transport, and have its significant practical value on road building, side slope protection patterns designing and maintaining, road web reasonable programming.
     This paper focused on a fresh built rural road side slopes, combination with the methods of rainfall simulation and soil shear strength test to study the erosive and stability characteristics of the road slope after ecological protection. The main results as followed:
     (1)The test results of the physical and chemical properties showed that:as one of the particular land utilization systems of the road system, road slope soil has its special soil structure and difference compared with others, especially on the bulk density, saturated hydraulic conductivity and total porosity. The cut slope for the bigger bulk density, more difficult revegetation and higher slope degree, its sediment and runoff yield values are superior to the fill slope, its frequency and intensity are also higher than the fill slope. During the soil erosion impacted factors of road side slope, the vegetation coverage, soil bulk density, saturated hydraulic conductivity and total porosity are the most important.
     (2)The rainfall simulation results suggested that:on the cut slope of 45 degree, the erosion track efficiency(TE) of stone dike terrace with vegetation are higher than the grass and bush combination, through the runoff volume increase in the later, but the sediment concentration is still very low. On the cut slope of 30 degree, the TE is grass and bush combination> herbaceous>sodded strip>control. On the fill slope of 30 degree, the herbaceous treatment for a good vegetation coverage, its erosion track efficiency is close to the grass and bush combination, and both significant higher than sodded strip and control treatment. During all the vegetation patterns, the pattern of combination of grass and bush has the best protecting effect for dense vegetation coverage and high total porosity and saturated hydraulic conductivity. This phenomenon reflected especially on the plot of fill slope of 30 degree, it got a start in runoff yield after 10 min of rainfall simulation, and had a maximum accumulated rainfall of 19.13 mm before runoff generation. The herbaceous pattern also has a good effect on reducing runoff and sediment. On a moderate degree of fill slope, sloping farmland combinated with a appropriate width herbaceous buffer strip can significant reduce the soil erosion.
     (3) The scouring test of simulated the runoff of the road surface impacted on the fill slope suggested:when the rainfall intensity is 90 mm/h, all of the fill slope plots have a very low sediment and runoff yield for the dense vegetation coverage, except the plots of control and sloping farmland. While the road surface runoff's interfering enhance the slope runoff generation capability, at the poor vegetation recover plot, the peak runoff coefficient is 1.9 to 7.1 times higher when there is no road runoff exist, the sediment generation capability significant increased accompany with the increased runoff. When there is no road runoff, the herbaceous buffer strip of the verges has a remarkable effect on soil erosion delay, however, when the road surface runoff entered into the fill slope increased, the buffer effect of runoff vanished away, but for sediment, there is still a preferable value for the peak intercept efficiency of 62.6 percent, and stationary phase value of 45.9 percent.
     (4)There is a following observation on the road side slope when the road construction finished, and the observation results showed that:the slope soil erosion concentrated on the first half year after the construction. Extreme rainfall has a very significant impact on the road side slope erosion, for the severest plot of 45 degree control plot, individual storm event erosion modulus come to 12.22 g.m-2.min-1, and individual storm event total sediment is 51937.2 gram, occupied 46.73 percent of the yearly total sediment yield. During the extreme rainfall observated, the combination of grass and bush plot of 30 degree fill slope, individual storm event sediment yield is 12606.2 gram, takes a proportion of 78.90 percent of yearly. Time factor is a very important influence factor of road side slope soil erosion, in process of time, the rainfall contribution to side slope runoff and sediment generation sharply decreased, and the rainfall erosivity showed a exponential decline with the observated days.
     (5)When it comes to the comparison of natural rainfall and simulated rainfall, the results showed that:there is no significant difference of the runoff, but the sediment yield of the observated is higher than the simulated, and the vegetation factors does not show a remarkable effect on the erosion interception. During the natural rainfall, sediment generation stem from the sediment transported by the road surface runoff, when it deposited on the slope, with the dual function of natural rainfall and road surface runoff, it becomes the rejuvenated erosion again.
     (6)The vegetation can protect the slope against erosion, the canopy, leaves and stems above the ground intercept the rainfall and dissipat the energy, and the roots below the ground is also a very important part to reduce the soil erosion, except for the improvement of the soil structure, more for the inhance of mechanics intensity and stability of the surface soil.
     This paper tested the undrained shear strength before and after the simulated rainfall by a portable vane tester. The results show that:the soil water content is a very important factor to influence the soil shear strength, but the existence of vegetation roots can significant reduce the impact of soil water caontent on shear strength. The treatments of grass and bush combination and herbage for a dense root density, its impact of water on shear strength are lower than the sodded strip and control treatment. The dense root density not only improve the strength, infiltration and rougthness of the surface soil, so the runoff and sediment of grass and bush combination and herbage treatments are lower than sodded strip, slope farmland and control. The runoff coefficient and soil detachment rate show exponential decline with the shear strength.
     Integrated the results above, when we come to the protection of the side slope of mountain rural road. Plant measurements of the native species are still the priority choises. When the degree is moderate, it can consider as slopeing land combination with vegetation buffer strip. The intervence of human activity not only can cut down the period time of vegetation rehabilitation, but also can rational exploit and protect the road system zone as a ecotone. That are very important to reduce the impact of road construction on ecological environment.
引文
1.蔡强国,朱远达,王石英.几种土壤的细沟侵蚀过程及其影响因素.水科学进展.2004.15(1):12-18.
    2.曹世雄,陈莉,高旺盛.在黄土丘陵区土质路面种草.生态学报,2005,25(7):1754-1763.
    3.查小春,唐克丽.黄土丘陵地土壤侵蚀与土壤性质变化.地理学报.2003.58(3):464-469.
    4.陈昌富,刘怀星,李亚平.草根加筋土的室内三轴试验研究.岩土力学,2007.28(10):2041-2045.
    5. 陈浩,蔡强国.坡度影响坡面产流产沙过程的试验研究.黄河粗泥沙来源及侵蚀产沙机理研究文集,气象出版社,1988.
    6. 陈红星,李法虎,郝仕玲,张心平.土壤含水率与土壤碱度对土壤抗剪强度的影响.农业工程学报.2007.23(2):21-25.
    7.陈建宇.杉木林下植被生物量与土壤容重关系的研究.福建林业科技.2000.27(4):56-60.
    8.陈永宗.黄河泥沙来源及侵蚀产沙时间变化.中国水土保持,1988,1:23-28.
    9.代全厚,张力.嫩江大堤植物根系固土护堤功能研究.中国水土保持,1998.12:36-38.
    10.郭高贵.加筋土体的应力分布于稳定性分析.大连理工大学硕士研究生论文.2000.
    11.郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究.西北林学院学报.1989.4(1):80-86.
    12.郝彤琦,谢小妍.滩涂土壤与植物根系复合体抗剪强度的试验研究.华南农业大学学报,2000.21(4):78-80.
    13.侯喜禄,曹清玉.陕北黄土丘陵沟壑区植被减沙效益研究.水土保持通报.1990.10(2):33-44.
    14.胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究.地理学报.1999.54(4):347-356.
    15.江忠善,李秀英.坡面流速的试验研究.中国科学院西北水土保持研究所集刊.1985,7:46-52.
    16.江忠善.坡面流速研究.中国科学院西北水土保持研究所集刊第7集.杨凌:西北水土保持研究所.1988.46-52.
    17.江忠善,刘志,贾志伟.降雨因素和坡度对溅蚀影响的研究.水土保持学报.1989.3(2):29~35.
    18.巨任,赵满礼,郭扶国.固原试验区径流观测及综合治理减沙效益的研究.中国科学院、水利部西北水土保持研究所集刊第12集,1990.
    19.雷阿林,唐克丽,王文龙.土壤侵蚀链概念的科学意义极其特征.水土保持学报.2000.14(3):79~83.
    20.李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究进展.地球科学进展.2005,20(1):74-80.
    21.李汝莘,高焕文,苏元升.土壤容重和含水量对耕作阻力的影响.农业工程学报.1998.14(1):81-85.
    22.李勇,吴钦孝.黄土高原植物根系提高土壤抗冲性能的研究:Ⅰ.油松人工林根系对土壤抗冲性的增强效应.水土保持学报,1990.4(1):1-5,10.
    23.李勇,武淑霞.紫色土区刺槐林极系对土壤结构的稳定作用.土壤侵蚀与水土保持学报,1998.4(2):1-7.
    24.李勇,朱显漠,田积莹.黄土高原植物根系提高土壤抗冲性的有效性.科学通报.1991.12:935-938.
    25.李勇,朱显漠.植物根系与土壤抗冲性.水土保持学报,1993.7(3):11-18.
    26.李忠武,蔡强国,吴淑安等.内昆铁路施工期不同下垫面土壤侵蚀模拟研究.水土保持学报.2001,15(2):5-8.
    27.刘秀萍,鲁少波,鲁绍伟等.林木根系形态分布及其影响因素.林业调查规划,2006.31(3):105-108.
    28.刘洋,王国强,周健.增湿条件下合肥膨胀土的强度特性.勘察科学技术.2004.6:17-19.
    29.缪林昌,钟晓晨,殷宗泽.膨胀土的强度与含水量的关系.岩土力学.1999.20(2):71-75.
    30.鲁如坤主编.土壤农业化学分析方法.中国农业科技出版社.2000.
    31.沙际德等.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报.1995.9(4):29-35.
    32.山寺喜成,安保昭,吉田宽.恢复自然环境绿化工程概论.1997.罗晶,张学培 等编译.北京:中国科学技术出版社.
    33.史志华,陈利顶,杨长春,闫峰凌等.三峡库区土质道路侵蚀产沙过程的模拟降雨试验.生态学报.2009.29(12):6787-6792.
    34.史志华,方怒放,李璐等.应用KINEROS2模型对土质道路侵蚀过程的模拟.地理研究.2010.29(3):408-415.
    35.田光进,张增祥,赵晓丽等.中国耕地土壤侵蚀空间分布特征及生态背景.生态学报.2002.1:10-16.
    36.王库.植物根系对土壤侵蚀能力的影响.土壤与环境,2001.10(3):250-252.
    37.王为,李小昱,王转卫.农业土壤抗剪强度的实验研究.干旱地区农业研究.2002.20(1):125-127.
    38.王文生,杨晓华,谢永利.公路边坡植物的护坡机理.长安大学学报(自然科学版),2005.25(4):26-30.
    39.汪有科,吴钦孝,赵鸿雁等.林地枯落物抗冲机理研究.水土保持学报.1993.7(1):75-80.
    40.吴普特,周佩华.坡面薄层水流流动形态与侵蚀搬运方式的研究.水土保持学报.1992.6(1):16-24,39.
    41.肖培青,郑粉莉.上方来水来沙对细沟侵蚀产沙过程的影响.水土保持通报.2001.21(1):23-25,38.
    42.肖培青,郑粉莉.上方来水来沙对细沟水流水力学参数的影响.泥沙研究.2002.4:69-74.
    43.肖培青,郑粉莉.上方汇水汇沙对坡面侵蚀过程的影响.水土保持学报.2003.17(3):61-62,72,14.
    44.解明曙.林囊根系固坡土力学机制研究.水土保持学报,1990.4(3):7-14,50.
    45.姚文艺.坡面流流速计算的研究.中国水土保持.1993,3:21-25.
    46.姚文艺,汤立群.水力侵蚀产沙过程及模拟.郑州:黄河水利出版社.2001.63-67.
    47.张光辉,梁一民.植被覆盖度对水土保持功效影响的研究综述.水土保持研究.1996.3(2):104-110.
    48.张汉银.浅谈水土流失与土壤侵蚀.水土保持通报.1992.12(4):53-55.
    49.张金池,康立新.苏北海堤林带树木根系固土功能研究.水土保持学报,2001.8(2):43-47,55.
    50.张科利,钟德饪.黄土坡面沟蚀发生机理的动力学试验研究.泥沙研究.1998. 3:74-88
    51.张科利.黄土坡面发育的细沟水动力学特征的研究.泥沙研究.1999.(1):56~61.
    52.郑粉莉.坡耕地细沟侵蚀影响因素的研究.土壤学报.1989.26(2):109~116.
    53.郑粉莉.黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究.土壤学报.1998.35(1):95~103.
    54.郑世清,周保林,赵克信.长武王东沟试验区沟坡道路侵蚀及其防蚀措施.水土保持学报.1994,8(3):29-35.
    55.周锡九,赵晓峰.坡面植草防护的浅层加固作用.北方交通大学学报,1995.19(2):143-146.
    56.周跃.植被与侵蚀控制:坡面生态工程基本原理探索.应用生态学报,2000.11(2):297-300.
    57. Abu-Zreig M. Factors affecting sediment trapping in vegetated filter strips: simulation study using VFSMOD. Hydrological Processes.2001,15:1477-1488.
    58. Arnaez J, Larrea V. Erosion processes and rates on road-sides of hillroads (Iberian System La Rioja, Spain). Physics and Chemistry of the Earth.1995,20:395-401.
    59. Arnaez J, Larrea V, Ortigosa L. Surface runoff and soil erosion on unpaved forest roads from rainfall simulated tests in Northeastern Spain. Catena.2004,57:1-14.
    60. Barker DH. Vegetation and Slopes Stabilization. Protection and Ecology. London: Thomas Telford.1995.
    61. Bochet E, Garcia P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restoration Ecology.2004,12:166-174.
    62. Bryan RB. The influence of slope angle on soil entrainment by sheetwash and rainsplash. Earth surface processes.1973.4:43-58.
    63. Casermeiro MA, Molina JA. et al. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. Catena.2004.57:91-107.
    64. Cerda A. Soil water erosion on road embankments in eastern Spain. Science of the Total Environment.2007.378:151-155.
    65. Cline R, Cole G, Megahan W, et al. Guide for predicting sediment yields from forested watersheds. USDA Forest Service, Northern and Intermountain Region: Ogden, UT,1981.
    66. Croke J, Mockler S. Gully initiation and road to stream linkage in a forested catchment, southeastern Australia. Earth Surface Process and Landforms,2001, 26:205-217.
    67. De BS, Poesen J, Gyssels G, Knapen A. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology.2006.76:54-67.
    68. Descroix L, Viramontes D, Vauclin M, et al. Influence of soil surface features and vegetation on runoff and erosion in the Western Sierra Madre (Durango, Northwest Mexico). Catena.2001,43:115-135.
    69. Diseker EG, Sheridan JM. Predicting sediment yield from roadbanks. Transactions of the American Society of Agricultural Engineer.1971.14(1):102-105.
    70. Dunne T, Dietich W. Sediment sources in tropical drainage basins. Soil Erosion and Conservation in the Tropical. ASA Special Publication No.43, American Society of Agronomy, Soil Science Society of America, Madison, WI,1982.
    71. Dyrness CT. Stabilization of newly constructed road backslopes by mulch and grass-legume treatments. USDA Forest service research Note PNW-123. Pacific northwest forest and range experimental station:Portland, Oregon.1970.
    72. Ellison WD. Studies of raindrop erosion. Aric Eng.1944.25:131-136.
    73. Ellison WD. Soil Erosion Study (Part Ⅰ). Aric Eng.1947.28:145-146.
    74. Ellison WD. Soil Erosion Study(Part Ⅱ). Soil detachment hazard by raindrop splash. Aric Eng.1947.28:197-201.
    75. Foltz RB, Copeland NS, Elliot WJ. Reopening abandoned forest roads in northern Idaho, USA:Quantification of runoff, sediment concentration, infiltration, and interrill erosion parameters. Journal of Environmental Management.2009,90: 2542-2550.
    76. Forman RTT, Lexander LE. Roads and their major ecological effects. A annual Review of Ecology and Systematics.1998c,29:207-231.
    77. Foster GR. Modeling the erosion process in C THuan et al. Hydrologic Modeling of Small Watershed ASAE.1982.5.
    78. Forsyth AR, Bubb KA, Cox ME. Runoff, sediment loss and water quality from forest roads in a southeast Queensland coastal plain pinus plantation. Forest Ecology and Management.2006.221:194-206.
    79. Grace Ⅲ JM. Forest road sideslopes and soil conservation techniques. Journal of Soil and Water Conservation.2000,55:96-101.
    80. Gray DH, and Sotir BR. Biotechnical and soil bioengineering slope stabilization:a practical guide for erosion control. John Wiley and Sons. Toronto.
    81. Gyssels G, Poesen J. The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth surface processes and landform.2008. 28:371-384.
    82. Gyssels G, Poesen J, Bochet E, Li Y. Impact of plant roots on the resistance of soils to erosion by water:a review. Prog Phys Geogr.2005.29:189-217.
    83. Horton RE, Leach HR, Van VR. Laminar sheet flow. Transactions of American Geophysical Union.1934.15(2):393-404.
    84. Hudson NW.(窦葆璋译).土壤保持,科学出版社,1971.
    85. Jones JA, Grant GE. Peak flow responses to clear-cutting and roads in small and large basins, Western Cascades, Oregon. Water Resources Research.1996,32:959-974.
    86. Jones JA, Swanson FJ. Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conservation Biology.2000,14(1):76-85.
    87. Jordan A, Martinez L. Soil loss and runoff rates on unpaved forest roads in Southern Spain after simulated rainfall. Forest Ecology and Management.2008,255:913-919.
    88. Jordan A, Martinez L, Bellinfante N. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the Total Environment.2009,407:937-944.
    89. Kinnell P I A. Raindrop-impact-induced erosion processes and prediction:a review. Hydrological processes.2005,19:2815-2844.
    90. Kolka RK, Smidt MF. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth. Forest Ecology and Management.2004,202:313-323.
    91. Laws JO, Parson DA. The relationship of raindrop size to intensity. Trans. Am. Geophysical Union.1943.24:452-459.
    92. Lopez-Bermudez F, Romero-Diaz A. Martinez-Fernandez J. Vegetation and soil erosion under a semi-arid Mediterranean climate:a case study from Murcia(Spain). Geomorphology.1998.24:51-58.
    93. Luce CH. Hydro logical processes and pathways affected by forest roads:what do we still need to learn? Hydrological Processes.2002,16 (14):2901-2904.
    94. Luce CH, Black TA. Sediment production from forest roads in western Oregon. Water Resources Research.1999,35:2561-2570.
    95. Magette WL, Brinsfield RB, Palmer RE, et al. Nutrient and sediment removal by vegetated filter strips. Transactions of the American Society of Agricultural Engineers.1989,32:663-667.
    96. Martinez L, Jordan A, Bellinfante N. Seasonal variability of runoff and soil loss on forest road backslopes under simulated rainfall. Catena.2008,74:73-79.
    97. Megahan WE Effects of clearcutting and wildfire on the hydrological function of steep granitic slopes in Idaho. Water Resources Research.1983.19:811-819.
    98. Meyer LD, Wischmeier WH. Mathematical simulation of the process of soil erosion by water. Trans. ASAE.1969.12:754-758,762.
    99. Mickelson SK, Baker JL. Buffer strips for controlling herbicide runoff losses. American Society of Agricultural Engineers.1993,93-2084.
    100.Moore DC, Singer MJ, Sadler M.S. Crust formation effects on soil erosion processes. SSSAJ.1990.54:1117-1123.
    101.Morgan RPC. Splash detachment under plant covers:results and implication of a field study. Trans. Of the ASAE.1982.25(4):987-991.
    102.Nordin AR. Bioengineering to eco-engineering, part one:the many name. International Group of Bioengineers newsletter.1993.3:15-18.
    103.Poesen J, De-Luna E, Franca A, et al. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content. Catena.1999,36(4):315-329.
    104.Poesen J, Wesemael BV, Govers G, et al. Patterns of rock fragment cover generated by tillage erosion. Geomorphology.1997,18:183-197.
    105.Quansah C. The effect of soil type, slope, rain intensity and their interactions on splash detachment and transport. Journal of soil science.1981,32(2):215-224.
    106.Ramos-Scharron CE, MacDonald LH. Measurement and prediction of sediment production from unpaved roads, St John, US Virgin Islands. Earth Surface Processes and Landforms.2005,30:1283-1304.
    107.Rijsdijk A, Bruijnzeel LA, Sutoto C. Runoff and sediment yield from rural roads, trails and settlements in the upper Konto catchment, East Java, Indonesia. GEOMORPHOLOGY.2007.87:28-37.
    108.Riley SJ. Soil loss from road batters in the Karuah State Forest, eastern Australia. Soil Technology.1988.1:313-332.
    109.Sheridan GJ, Noske PJ,. et al. Using rainfall simulation and site measurements to predict annual interrill erodibility and phosphorus generation rates from unsealed forest roads:Validation against in-situ erosion measurements. CATENA.2008. 73:49-62.
    110.Sidle RC, Sasaki S, Otsuki M, et al. Sediment pathways in a tropical forest:effects of logging roads and skid trails. Hydrological Processes,2004,18:703-720.
    111.Snelder DJ, Bryan RB. The use of rainfall simulated tests to assess the influence of vegetation density on soil loss on degraded rangelands in the Baringo District, Kenya. Catena.1995,25:105-116.
    112.Swift LW. Gravel and grass surface reduces soil loss from mountain roads. Forest Science.1984,30:657-670.
    113.Swift LW. Jr. Soil losses from roadbeds and cut and fill slopes in the southern Appalachian Mountains. Southern Journal of Applied Forestry.1984.8(4):209-215.
    114.Tague C, Band L. Simulating the impact of road construction and forest harvesting on hydrological response. Earth Surface Processes and Landforms.2001,26: 131-152.
    115.Walsh RPD, Coelho C, Elmes A, et al.1998. Rainfall simulation plot experiments as a tool in overland flow an soil erosion assessment, North-Central Portugal. GEOOKOD YNAMIK.1998,19(3/4):139-152.
    116.Wemple B C, Jones J A, Grant G E. Channel network extension by logging roads in two basins, western Cascades, Oregon. Water Resources Bulletin,1996,32: 1195-1207.
    117.Wemple BC, Swanson FJ, Jones JA. Forest roads and geomorphic process interactions, Cascade Range, Oregon. Earth Surface Processes and Landforms.2001, 26:191-204.
    118.Wischmeier WH, Smith DD. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union.1958.39:285-291.
    119.Woolhiser DA, Smith RE, Giraldez J-V. Effects of spatial variability of saturated hydraulic connectivity on hortonian overland flow. Water Resources Research.1996, 32(3):671-678.
    120.Xu Xian-Li, Liu Wen, Kong Ya-Ping, et al. runoff and water erosion on road side-slopes:Effects of rainfall characteristics and slope length. Transportation Research Part D.2009,14:497-501.
    121.Xu Xian-Li, Zhang Ke-Li, Kong Ya-Ping, et al. Effectiveness of erosion control measures along the Qinghai-Tibet highway, Tibetan plateau, China. Transportation Research Part D.2006,11:302-309.
    122. Young A, Wiersma JL. The role of rainfall impact in the detachment and transport. Water Resources Research.1973.9(6):2629-1639.
    123.Ziegler AD, Giambelluca TW. Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand. Journal of Hydrology.1997,196:204-229.
    124.Ziegler AD, Sutherland RA, Giambelluca TW. Runoff generation and sediment production on unpaved roads, footpaths and agricultural land surfaces in Northern Thailand. Earth Surface Processes and Landforms.2000,25:519-534.