生产井瞬变电磁探测理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,由于石油价格不断飘升并持续高位振荡,使得能源供需问题引起了全世界的普遍关注。鉴于老油田与正开采油田中现有套管井的庞大数量,开展有关套管外地层电阻率特性识别技术的研究具有相当重要的意义。长期以来,电阻率测井多采用谐变电磁场,但这种方法存在一些固有缺陷。如感应测井混叠在二次场中的直耦信号,需要采取多项措施加以消除,从而增加了仪器设计的难度与复杂性。过套管电阻率测井中由于电极系与套管壁接触不良而造成信噪比偏低,使得仪器分辨率不佳、工作效率不高。频域电磁测井中由于金属套管对电磁波强烈的屏蔽作用,造成接收线圈难以获取来自地层的响应信号,限制了该方法在生产井测井领域中的进一步应用。
     瞬变电磁法利用阶跃波或脉冲电流场源作为激励,在一次场的间歇期,测量响应信号随时间的变化规律。该方法具有对电阻率敏感、不存在直接耦合、探测距离与时间特性相对应等优点,因而对目标体的分辨率明显优于频域电磁法。另外,瞬变电磁信号中的低频成分还能够有效提高信号对套管的穿透能力。因而可以较好解决传统电阻率测井中的诸多问题。目前,国内外关于瞬变电磁法的研究成果主要集中于地热与地壳结构调查、物探与工程勘察等领域。这些应用中的发射装置通常采用沿地面布设的大回线框,有效探测范围为地下半空间。与此不同,油气生产井测井仪器的响应受到井眼周围有效探测范围内所有地层导电性的综合影响,因而是全空间地球物理场问题。本文针对油气生产井的实际工作环境与特点,提出了基于瞬变电磁法的生产井电阻率测井方法。研究了油气生产井瞬变电磁探测基础理论、方法及关键技术。在国家863计划项目的支撑下,对生产井瞬变电磁探测装置实施了室内、外实验研究。取得的主要研究成果如下:
     1.电磁波在非均匀介质中传播时,在导电媒质的交界面处会产生传播效应。针对传统分析方法缺乏对其直观描述这一问题,本文深入研究了电磁波在非均匀介质中传播时产生的传播效应,并给出了其形象化表述,为进一步揭示生产井中电磁波的传播特性提供了理论依据。采用几何因子理论、趋肤效应几何因子理论以及电磁波传播理论,计算了纵向分层导电介质的视电导率曲线。结果表明,电磁波传播理论既考虑电磁波的幅度衰减和相位移动,又考虑电磁波在媒质交界面发生的反射与折射,因而是分析非均匀介质问题时精度最高的一种方法。该方法为油气生产井中电磁响应的理论计算提供了方法和依据。
     2.基于电磁感应原理,提出了生产井瞬变电磁电阻率测井方法,避免了过套管电阻率仪器由于电极系与套管壁接触不良,而造成信噪比偏低、分辨率不佳等问题。该方法采用非接触方式实现生产井测井,以瞬态信号作为激励源,接收信号不仅对电阻率敏感,而且信号的时间延迟特性与探测深度相对应。详细分析了井中电偶源的频域电磁响应特征,结果表明,芯棒内的涡流损耗与发射信号频率和芯棒电导率均成正比。只有低频电磁波甚至超低频电磁波才能有效穿透套管进入地层。为使电磁波信号穿透套管进入地层,应根据套管厚度,及时调整发射信号频率。这些结论为进一步研究生产井瞬变电磁响应特征奠定了良好基础。
     3.针对典型油气生产井的实际工作环境与特点,建立了生产井瞬变电磁测井计算模型。目前,国内外有关生产井瞬变电磁法数值模拟方面的报道仍接近空白。为此,本文推导了包含井液、套管、水泥环和地层的径向非均匀介质中,瞬态磁偶源的时域电磁响应表达式,研究了各介质层的瞬变电磁响应特征。结果表明,在套管厚度变化端点处,瞬变电磁响应存在明显异常,由此可以识别套管接箍与套管厚度变化。套管内径越小,瞬变电磁响应幅度越高,衰减时间越长。套管相对磁导率的瞬变电磁响应特征与此正好相反。对于低导地层,低阻水泥环会产生较大的测量误差;而对高导地层,水泥环厚度的影响则可忽略不计。井中瞬变电磁响应信号幅度比过套管电阻率仪器的nV级信号高出3~4个数量级。从而为井中瞬变电磁探测装置参数设计及测井信号解释提供了理论依据。
     4.根据理论研究结果,构建了井中瞬变电磁探测装置实验系统,对其关键技术进行了仿真研究,确定了井中探测装置发射参数设计原则,并给出了取值范围。明确了生产井中最佳观测装置形式与发射信号波形。理论分析了发射线圈导线、发射线圈匝数以及发射电流幅度对激励信号关断时间的影响。通过对接收线圈等效电路的理论分析,详细讨论了斜阶跃波激励下接收线圈上全程感应电动势的过渡过程。为缩短线圈的固有过渡过程,确定应采用接入匹配电阻并增大阻尼系数的方法,使接收线圈工作于临界阻尼状态。给出了匹配电阻和接收线圈分布电容的估算方法。为井中瞬变电磁探测装置参数研究与井下实验奠定了基础。
     5.研制了生产井瞬变电磁探测装置原理样机,开展了大量室内、外实验研究。室内实验结果显示,该方法对金属套管外不同电导率介质具有较好的探测效果。人工异常体探测实验表明,探测装置对套管外不同人工异常体的响应存在明显差异,表明该装置能够有效探测低阻异常体。室内水池实验结果说明,当套管外液体电导率改变时,响应信号具有较强的判断能力。通过模拟井实验,进一步对比研究了生产井瞬变电磁探测装置对套管外介质的探测性能。通过理论建模、数值模拟以及室内、外探测实验,验证了瞬变电磁法线圈参数设计的合理性以及正演模型与计算方法的正确性。
     本文的研究成果为瞬变电磁法在我国油气生产井资源勘探领域中的应用奠定了理论基础,为油气井瞬变电磁探测仪器的设计与研究提供了方法和依据。
Recent years witness the ever soaring international oil prices, which draws a lot ofattention of oil supply and demand worldwide. Considering the huge amount of thecased holes of the old oilfields and oilfields that are being explored, conducting theresearch of identification technology for formation resistivity is the top priority ofpetroleum researchers and workers. For a long time, the frequency domainelectromagnetic method is often used in the field of electromagnetic logging. However,this approach has some inherent defects. For example, the direct coupled signal thataliasing in the secondary field in induction logging, which need to take a number ofmeasures to eliminate, thus increasing the difficulty and complexity of the instrumentdesign. In the through casing resistivity logging, the poor contact between electrodesand the casing wall caused the signal to noise ratio is low, which makes the instrumentresolution is poor and the working efficiency is not high. Furthermore, due to the strongshielding effect of the metal casing on the electromagnetic wave signal infrequency domain electromagnetic logging, which is limits the further application ofthis method.
     The transient electromagnetic method use step wave or pulsed current field sourcesas an excitation, and measure the response signal in the interim period of the primaryfield. The method has some advantages such as sensitive to resistivity, has no directcoupling, the detection range is corresponding to time, and so on. Thus the resolution tothe target body is significantly superior to the frequency domain electromagneticmethod. In addition, the low frequency components of the transient electromagneticsignals can also improve the ability of the signal penetrate the casing. These advantagescan be better way to solve many problems in the traditional resistivity logging. Atpresent, the domestic and foreign researchs on the transient electromagnetic method aremainly focused in geothermal and crustal structure survey, geophysical and engineeringinvestigations areas. The transmitting frame in these applications is laid on the ground,and its effective detection range is the half space underground. But the distribution oftransient electromagnetic logging response is synthetically affected by the groundconductivity within the effective detection area around the borehole, which is a wholespace geophysical field problem. In view of this, for the actual work environment andcharacteristics of the oil and gas production wells, the dissertation proposed theproduction wells resistivity logging method based on the transient electromagnetictheory. And mainly surveys basic theory, methods and key technologies for oil and gas production wells transient electromagnetic detection. With the support of national863plan, the author conducts an experimental research of various media of differentresistivity characteristics outside the casing based on transient electromagnetic method.The main research results obtained are as follows:
     1. When electromagnetic wave spread in inhomogeneous media, it will produce thepropagation effects at the interface of the conductive medium. Traditional analyticalmethods lack the intuitive description for this phenomenon. This dissertation in depthstudies the propagation effects produced in the spreading process of electromagneticwave in inhomogeneous medium, and gives the its figurative representation. Which isprovides a basis for further reveals the propagation characteristics of electromagneticwave in production wells. In this dissertation, three methods, which are geometric factor,geometric factor theory of skin effect, theory of electromagnetic wave propagation,have been used to calculate the apparent conductivity curve of vertical layeredconductive media. The research results show that in the analysis of electromagneticfield distribution in inhomogeneous medium, the theory of electromagnetic wavepropagation not only allows for amplitude attenuation and phase shift produced byelectromagnetic wave, but also considers the reflection and refraction which take placein media cross interface, therefore it is the most accurate method in analyzinginhomogeneous medium, thus providing some ideas and methodologies for thetheoretical calculation of transient electromagnetic method.
     2. Based on the principle of electromagnetic induction, this dissertation put forwarda transient electromagnetic resistivity logging method for production wells. It can avoidthe problem of the low signal to noise ratio and the poor resolution in through casingresistivity instrument. This method uses non contact manner to achieve production welllogging and applys transient signal as the excitation. The received signal is not onlysensitive to the resistivity, and the time delay characteristics of it is corresponds to thedetection depth. According to the basic theory of frequency domain electromagneticfield, this dissertation analyzed the electromagnetic response characteristics of electricdipole source in detail. The simulation results show that the eddy current loss insidemandrel is proportional to the transmit signal frequency and the mandrel conductivity.Only low frequency electromagnetic waves and even ultra low frequencyelectromagnetic waves can effectively penetrate the casing into the formation. In orderto make electromagnetic wave penetrate the casing into formation, one should adjust thetransmission frequency in time according to casing thickness. But the changes of casingradius have no similar problems. These conclusions have laid a solid foundation for further study the transient electromagnetic response characteristics in production wells.
     3. For the actual characteristics of the oil and gas production wells,this dissertationestablished the calculated model for transient electromagnetic method in borehole. Atpresent, the reports on the numerical simulation of transient electromagnetic method inproducing wells in domestic or foreign are close to the blank. In view of this, the authordeduces the electromagnetic response expression of transient magnetic dipole source inaxisymmetric layered medium including borehole mud, metal casing, cement sheath andformation. In addition, the also author calculates the transient electromagnetic responsecharacteristics of the layered midium. The research shows that, at the point wherecasing thickness varies in some sections of the well, transient electromagnetic responsesare abnormal, in this way, the thickness of casing and casing collar can be identified.The higher the relative permeability, the more difficult the electromagnetic signals cango through the case, the lower the amplitude of the response signal. And the transientelectromagnetic response characteristics of the casing diameter are opposite to it. Withregard to low conductivity formation, low resistivity cement sheath can result in greaterinaccuracy, and as for the high conductivity formation, the influence of cement sheaththickness on response signals can be neglected. The transient electromagnetic responsesignal amplitude in borehole is higher than the through casing resistivity instrumentsignal for three to four orders. This has provided theoretical base for the parameterdesign of transient electromagnetic detection devices and logging signal interpretation.
     4. In according to the above theoretical results, this dissertation builded a transientelectromagnetic detection devices experimental system in borehole, and carried out asimulation study for key technologies. The parameters design principles of transientelectromagnetic devices are proposed and the range of emission parameters is also given.Moreover, the author has designated the optimum observatory devices in oil and gaswells. The transmitted signal waveform is determined. And the impact of transmit coilwire, coil turns and the emission current amplitude on the excitation signal off time arealso analyzed. What’s more, the author, by analyzing receiving coil equivalent circuit,also discusses in detail the transitory process of full induced electromotive force byramp wave excitation. In order to shorten the intrinsic transitory process of coil, theauthor believes that adding matching resistor and increasing damping should be utilizedto make the receiving coil in critical damping. In addition, the estimating methods ofmatching resistor and distributed capacitance have already been given, thus paving theway for parameter research of transient electromagnetic detection devices andunderground experiments.
     5. A prototype of transient electromagnetic detection device in production wells isdeveloped in this dissertation. And the author also conducts indoor and outdoor researchfor through casing resistivity transient electromagnetic detection. Indoor simulationexperiment proves the effectiveness of the ring current source around the mandrel ondifferent conductivity media. Artificial abnormal body detection experiment shows thatthere is a greater difference of detection devices on outside casing artificial abnormalbody, illustrating that this device can effectively detect low resistance abnormal body.Indoor pool detection experiments shows that when adjusting outside casing liquidconductivity, the response signals of detection devices possess greater judging ability.By simulated well experiment, the author further compares and researches theperformance of oil and gas wells transient electromagnetic detection devices on outsidecasing medium. In this way, and the rationality of the transient electromagnetic methodcoil design, and the correctness of forward model and calculation for it have alreadybeen proven.
     The research findings lay a theoretical foundation for the application of transientelectromagnetic method in exploration and detection of oil and gas production wells.Furthermore, this dissertation also provides the way and basis for the research anddesign of transient electromagnetic detection devices in oil and gas wells.
引文
[1] Ron Hinkie and Matt Howell, Halliburton. Multizone Completion With AccuratelyPlaced Stimulation Through Casing Wall. SPE Production and OperationsSymposium, Oklahoma, U.S.A,2007.
    [2]刘宝珺,谢俊,张金亮.我国剩余油技术研究现状与进展.西北地质,2004,37(4):1~6.
    [3]陈四平,李木元,仲艳华.剩余油饱和度测井技术进展.2004,28(1):7~10.
    [4] Dhruba J Dutta, Abdallah B Badr. Resistivity Through Casing MeasurementSuccessfully Applied To Improve Oil Recovery And Water Shut Off: A Case StudyFrom Western Desert, Egypt. SPE Asia Pacific Oil and Gas Conference andExhibition, Perth, Australia,2008.
    [5]张胜业,潘玉玲.应用地球物理学原理.北京:中国地质人学出版社,2004.
    [6] Benin P, ET. Al. Recent Progress on Formation Resistivity Measuremen ThroughCasing. In The41st SPWLA Annual Logging Symposium,2000.
    [7]蒋邦远.实用近区磁源瞬变电磁法勘探.北京:地质出版社,1998.
    [8]牛之琏.时间域电磁法原理.长沙:中南工业大学出版社,1992.
    [9] Aulia K, Poernomo B, Richmond W, et al. Resistivity behind casing. Oil FieldReview,2001,13(1):1~24.
    [10]吴畏.剩余油饱和度的确定.重庆科技学院学报(自然科学版).2007,9(1):9~12.
    [11]汪光照,张兆京,杨建.矿产地质学院学报.中国有色工业总公司矿产地质研究院,1984,(3):69~89.
    [12]沈建国,熊艳,蔡朝鹏.套管井阵列声波测井仪器与油气层识别技术.石油仪器.2007,21(3):37~40.
    [13]姜文达.油气田开发测井技术与应用.北京:石油工业出版社,1995.
    [14] C.H.Neuman,Logging Measurement of Residual Oil,rangely field,Journal ofPetroleum Technology,stptember,1983:1735~1743.
    [15]牛之琏.电法勘探文集.北京:地质出版社.1986,290~313.
    [16]蒋邦远,吴凤翔,雷振英.物探化研究报道.地矿部物化探研究所.1981(8):1~60.
    [17] O.Desport,Schlumberger and J.Crowe,Cheveron,Pulsed Neutron LoggingThrough Multiple Casing,SPE110501.
    [18]冯太少,常士奘.国外剩余油饱和度的测量技术.1994,1(1):58~66.
    [19]张向林,刘新茹.套管井测井新技术进展.2008,20(3):95~103.
    [20] Askry S, Farag S. Cased Hole Resistively Measure ments Optimize Managementof Mature Waterflood in Indonesia. Transactions of the SPWLA43rd AnnualLogging Symposium. Houston,2002,June25,paper W.
    [21] Albertin I,Daring H,Mahdavi M,Plasek R. The Many Facets of Pulsed NeutronCased Hole Logging. Oilfield Review.1996,8(2):28~41.
    [22] Tchambaz M. Reservoir Monitoring with the CHFRPLUS in Water InjectionOilfields, Libya Examples[A]. Transactions of the SPWLA44th Annual LoggingSymposium. Texas,2003,June22~25,paper V.
    [23]程希,余坤,翟芳芳.过套管地层电阻率测井方法研究.国外测井技术.2007,22(3):26~31.
    [24] Singer B S, et al. Measurement of Formation Resistivity Through Casing.SPE88467.
    [25]徐涛,刘翠海,黄青斌.水平定向钻进随钻测量系统研究与设计.仪器仪表学报,2009,30(9):19761980.
    [26] PAVLOV D A, ZHDANOV M S. Analysis and interpretation of anomalousconductivity and magnetic permeability effects in time domain electromagneticdata. Journal of Applied Geophysics,2001,46(4):235248.
    [27]方文藻,李予国,李貅.瞬变电磁测深法原理.西安:西北工业大学出版社,1993.
    [28] Zhdanov MS, Pavlov D A, Ellis R G. Localized S inversion of time domainelectromagnetic data. Geophysics,2002,67:1115~1125.
    [29]石显新,闫述,陈明生.井中瞬变电磁法在煤矿独头巷道超前探测中的应用研究.煤田地质与勘探,2004,31(4):98~100.
    [30]张保祥,刘春华.瞬变电磁法在地下水勘查中的应用综述.地球物理学进展,2004,19(3):537~542.
    [31]严良俊,徐世浙,胡文宝等.中心回线瞬变电磁测深全区视纵向电导解释方法.浙江大学学报,2003,30(2):239~243.
    [32]汤井田,何继善.可控源音频大地电磁法及其应用.长沙:中南大学出版社,2005.
    [33]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展.地球物理学进展,2007,22(4):1195~1200.
    [34] A.A.Kaufman,G..V. Keller.频率域和时间域电磁测深.北京,地质出版社,1987.
    [35]李金铭,罗延钟.电法勘探新进展.北京:地质出版社,1996.
    [36]罗延钟,史保连,朴化荣.勘查地球物理勘查地球化学文集第20集.北京:地质出版社,1998.
    [37] Kamenetsky F. Oelsner Chr. Distortions of EM transients in coincident loops atshort time delays. Exploration Geophysics,2000,48:983~993.
    [38] Nabihian M N, et al. Electromagnetic methods in applied geophysics TheoryVolume Ⅰ. Socicty of Exploration Geophysicists,1988,313~503.
    [39] Kaufman A A, Keller G V. Inductive mining Prospecting Part: Theory. Elsever,1985,11~138.
    [40] Anderson W L. Nonlinear least squares inversion of transient sounding for a centralinduction loop system, U. S. G. S Open File Report,82~112.
    [41] Nabighian M N. Quasi Static transient response of a conducting half space Anapproximate representation. Geophysics,1979(10):1700~1705.
    [42] McNeil J D, Applications of transient electromagnetic techniques. Geonics LimitedTechnical Note TN7,1980.
    [43] Buselli G. Transient electromagnetic response of the Tectonic Bore orebody.Geophysics,1986.51(4):957~963.
    [44] West R C, Wrad S H. The borehole transient electromagnetic response of athree dimensional fracture zone in a conductive half space. Geophysics,1988,53(11):1469~1487.
    [45] Buselli G, Mcracken K G, Rutter H.瞬变场法野外工作方法和数据解释手册.蒋邦远译.北京:地质出版社,1992.
    [46]豆会平,魏启.脉冲瞬变电磁仪的发展状况及对策.石油仪器,2000,14(4):26~28.
    [47] Danielsen J E, Auken E, Jorgensen F, Sondergaard V, Sorensen KI. The applicationof the transient electromagnetic method in hydrogeophysical surveys. JOURNALOF APPLIED GEOPHYSICS,2003,53(4):181~198.
    [48] Xie G,Li J,Majer E L,and ZuoD.3D electromagnetic modeling and nonlinearinversion. Geophysics,2000,65(3):804~822.
    [49] Baumgartner F. A new method of geological investigations underwater.Geophysical Prospecting,1996,4(l):71~98.
    [50]何继善.电法勘探的发展与展望.地球物理学报,1997,40(增刊):308~316.
    [51]薛国强,宋建平,李貅.水平层状介质下瞬变电磁成像方法.西安交通大学学报,2003,37(2):215~218.
    [52]孙天才.发射电流波形对瞬变电磁测量结果影响及校正的研究.重庆:重庆大学硕士学位论文,2005.
    [53] M. A. Meju. Joint inversion of TEM and distorted MT soundings:Some effectivepractical considerations. Geophysics,1996,61(1):56~65.
    [54]蒋邦远.磁源TEM测深一维反演经验式及应用效果.物探与化探.2000,24(2):99~104.
    [55]陈亮,许荣科,鲁胜章等.瞬变电磁法原理、现状及在矿产勘查中的应用浅析.地质与资源,2009,18(1).
    [56]周平,施俊法.瞬变电磁法(TEM)新进展及其在寻找深部隐伏矿中的应用.2007,43(6).
    [57] Beguin P, et al. Recent Progress on Formation Resistivity Measurement ThroughCasing. In The41st SPWLA Annual Logging Symposium,2000.
    [58]吴银川,张家田,严正国.过套管地层电阻率测井技术综述.石油仪器.2006,20(5):1~5.
    [59]刘长胜,林君.海底表面磁源瞬变响应建模及海水影响分析.地球物理学报,2006,49(6):1891~1898.
    [60]郑仁淑.海底油藏模型的瞬变电磁响应正演模拟研究.石油天然气学报(江汉石油学院学报).2005,27(4):190~194.
    [61]薛国强,李貅,郭文波等.从瞬变电磁测深数据到平面电磁波场数据的等效转换.地球物理学报,2006,49(5):1539~1545.
    [62]李貅,薛国强,宋建平等.从瞬变电磁场到波场的优化算法.地球物理学报,2005,48(5):1185~1190.
    [63]杨文采.地球物理反演的理论与方法.北京:地质出版社.1997.
    [64]郭文波,李貅,薛国强等.瞬变电磁快速成像解释系统研究.地球物理学报.2005,48(6):1400~1405.
    [65]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析.地球物理学报,2002,45(2):275~284.
    [66]熊彬,阮百尧.电位双二次变化二维地电断面电阻率测深有限元数值模拟.地球物理学报.2002,45(3):285~294.
    [67] Haber E, Oldenburg D. Inversion of3D time domain electromagnetic data using anall at once approach: Expanded Abstracts, Soc. Expl. Geophys.72nd AnnualMeeting, Salt Lake City, Utah.2002.
    [68] Christensen N B. A generic1D imaging method for transient electromagnetic data.Geophysics.2002,67(2):438~447.
    [69] Efthimios T, Michael S Z, Kazushige W, Akira S. Fast imaging of TDEM databased on S inversion. Journal of applied geophysics,2000,43,15~32.
    [70] Markku P, Saurabh KV, Sven Erik Hjelt Inversion of transient electromagneticprofile data using conductive finite plate model. Journal of applied Geophysics,1998,38:181~194.
    [71] Tae J l, Jung H S, Hee J K, Yoonh S, Ki H L. Electromagnetic travaltimetomograph using probability wavefield transform. Geophysics,2002,67(3):67~69.
    [72] Sharma S P, Kaikkonenz P. Global nonlinear inversion of transient EM data fromconducting surroundings using a free space plate model. Geophysics.2000,65(3):783~790.
    [73]孟永良,罗延钟,昌彦君.时间谱电阻率法的二维正演算法.地球科学,2000,25(6):656~662.
    [74]胡文宝,徐振平,王军民.过金属套管电磁响应的频率特征研究.石油天然气学报(江汉石油学院学报).2007,29(4):71~75.
    [75]沈金松,孙文博.金属套管井中电磁测井响应的数值计算.地球物理学进展.2007,22(6):1781~1790.
    [76]王艳,刘长胜,林君等.浅海底瞬变电磁探测技术研究新进展.吉林大学学报(地球科学版).2005.35(7):23~26.
    [77]刘长胜,林君,嵇艳鞠等.瞬变电磁法偶极装置模型实验研究.物探与化探.2006,30(5):430~434.
    [78]嵇艳鞠,林君,于生宝等. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究.地球物理学报,2006,49(6):1884~1890.
    [79]李实,李创社.高性能瞬变电磁仪的研制及应用.物探与化探,2000,24(l):76~80.
    [80]胡启,仵杰.感应测井理论.西安:陕西人民教育出版社,1990.
    [81]田子立,孙以睿,刘桂兰.感应测井理论及其应用.北京:石油工业出版社,1984.
    [82]张建华,刘振华,仵杰.电法测井原理与应用.西安:西北大学出版社,2002.
    [83] D.M.Pozar, et al. Optimization of the Transient Radiation from a Dipole Array,IEEE Trans.1985, AP33:69~75.
    [84] C.L. Bennett, G.F.Ross. Time Domain Electromagnetics and Its Application.P IEEE.1978,66:299~318.
    [85] A.M.Nicolson. Application of the Time Domain Metrology to the Automation ofthe Broad Band Microwave Measurements, IEEE Trans.1972, MTT20:3~9.
    [86] T.K.Bose. Development of a Dipole Probe for the Study of Dielectric Properties ofthe Biological Substances in Radio frequency and Microwave Region with T DReflectometry, IEEE Trans.1986, IM35:56~60.
    [87]米萨克.纳比吉安N.勘察地球物理电磁法(第一卷).北京:地质出版社,1992.120~240.
    [88]李貅.瞬变电磁测深的理论与应用.西安:陕西科学技术出版社,2002.
    [89]李实,李创社,张彦鹏等.工程勘探瞬变电磁仪关键技术研究.煤田地质与勘探,2001.2,29(1):55~58.
    [90]静恩杰,李志聃.瞬变电磁法基本原理.中国煤田地质,1995.6,7(2):83~87.
    [91]陈贵生.瞬变电磁法在金属矿产勘查上的应用效果及存在问题探讨.矿产与地质.2006,20(4):543~547.
    [92] K. Lau, J. H. Braslavsky and G. C. Goodwin. Proceedings of the46th IEEEConference on Decision and Control New Orleans, LA, USA, Dec.1214,2007.
    [93] Tatsuoki Nagaishi, Hajime ota, Eiichi Arai,et al. High Tcscquid System fortransient Electromagnetic Geophysical Exploration. IEEE Transations on AppliedSuper Conductivity,2005,15(2):749~753.
    [94] P.L.Jiang, E.Michielssen. Multilevel Plane Wave Time Domain Enhanced MotSolver for Analyzing Electromagnetic Scattering from Objects Residing in LossyMedia. IEEE,2005,447~450.
    [95] Peter Bohm, Gerhard Wachutka. Modelling and Simulation of the TransientElectromagnetic Behavior of High Power Bus Bars under Switching Conditions.IEEE,2000,303~307.
    [96] Ghada M.Sami. Influence of a Magnetically Permeable Surface Layer on TransientElectromagnetic Field of a Vertical Magnetic Dipole on a Two Layer ConductingEarth. IEEE,2003,809~814.
    [97] Petre Marian Nicolae. Modeling The Influence of External Residual Harmonic overthe Three Phase Short Circuit Transient Electromagnetic Processes In A CylindricalRotor Synchronous Generators. IEEE,1999,311~313.
    [98]徐建华.层状媒质中的电磁场与电磁波.北京:石油工业出版社,1997.
    [99] G. N. Tsandoulas. Scattering of a dipole field by finitely conducting and dieletriccircular cylinder. IEEE,1968, AP16(3):324~368.
    [100] T. T. Wu, L. C. Shen. The diople antenna with eccentric coating in arelativelydense medium. IEEE,1975, AP23(1):57~62.
    [101] J. R. Wait. On the electromagnetic response of a conducting sphere to a dipolefield. Geophysics.1960,25(3):649~658.
    [102] Y. Miyazaki. Scattering and diffraction of electromagnetic waves byinhomogeneous dielectric cylinder. Radio science.1981,16(6):1009~1014.
    [103] W. C. Chew. The singularities of a fourier–type integral in a multicylindricallayer problem. IEEE,1983,AP31(4):653~655.
    [104] W. C. Chew. Response of a current loop antenna in a invaded borehole.Geophysics.1984,9(1):81~91.
    [105] J. E. Lovell, W. C. Chew. Response of a point source in a multicylin dricallylayered medium. IEEE,1987,GE25(6):850~858.
    [106] M. Huang, L. C. Shen. Computation of induction logs in multiple layer dippingformation. IEEE,1989,GE27(3):259~267.
    [107]彭仲秋.瞬变电磁场的应用、分析方法和研究课题.电子科技大学学报,1990,19(1):81~86.
    [108]陈向斌,胡社荣,张超.瞬变电磁场响应计算的频时域转换方法综述.工程地球物理学报,2008,5(2):242~246.
    [109]何继善.电法勘探的发展和展望.地球物理学报,1997,40:308~316.
    [110]许振奎,张胜业.天然气水合物模型的瞬变电磁响应.地球物理学进展,2008,23(5):1568~1574.
    [111]管致中,夏恭恪,孟桥.信号与线性系统(第4版).高等教育出版社,2004.
    [112] Kozhevnikov N O, Antonov E Y. Fast decaying IP in frozen unconsolidated rocksand potentialities for its use in permafrost related TEM studies. GeophysicalProspecting.2006,54:383~397.
    [113]罗延钟,昌彦君. G S变换的快速算法.地球物理学报,2000,43(5):684~690.
    [114] B Davies, B L Martin.Numerical inversion of Laplace transform: asurvey andcomparison of method. J.compt.Phys,1979,33(1):1~32.
    [115]朴化荣,殷长春.利用G S逆拉氏变换法计算瞬变测深正演问题.物化探计算技术,1987,9(4):297~302.
    [116]钱伟长.格林函数和变分法在电磁场和电磁波计算中的应用.上海:上海科学技术出版社,1989.
    [117]聂在平,陈思渊.二维完全非均匀介质中位场格林函数的数值解.地球物理学报.1994,36:688~697.
    [118]徐建华.对层介质中偶极子场的系数递推关系.石油地球物理勘探.1994,29(1):69~74.
    [119] Egon Marx. Neighboring Patch Integrals in Transient Electromagnetic Scattering.IEEE Transactions on Antennas And Propagation,1985, AP33(7):768~773.
    [120] E.Cardelli, M.Gimignani, M.Raugi. Integral Equation Approach for the Analysisof Three Dimensional Transient Electromagnetic Heating Effects. IEEETransactions on Magnetics,1993,29(6):2440~2442.
    [121] John D. Norgard, Ronald M.Sega, Michael G.Harrison,et al. Infrared Mapping ofTransient Electromagnetic Fields Rediated by High Power Microwave PulsedSources. IEEE Transactions on Nuclear Science,1992,39(6):1912~1920.
    [122]姜志海,岳建华,刘树才.多匝重叠小回线装置的矿井瞬变电磁观测系统[J].煤炭学报,2007,32(11).
    [123]王忠.高速、大动态范围瞬变电磁接收机的研制.仪器仪表学报.2006,27(4):416~419.
    [124]李实,李创社,张彦鹏.工程勘探瞬变电磁仪关键技术研究.煤田地质与勘探.2001,29(1):55~58.
    [125]曾庆勇.微弱信号检测.杭州:浙江大学出版社.1986,88~140.
    [126] Derek N.Dyck, Geoff Gilbert, Behzad Forghani, and Jon P.Webb.An NDT PulseShape Study With TEAM Problem27[J].IEEE Transactions on magnetics.2004,40(2):1406~1409.
    [127]鲁建国.发射波形对瞬变电磁信号观测结果的影响.河南教育学院学报,1999,8(3):23~24.
    [128]周逢道.浅海底瞬变电磁探测系统关断沿影响因素研究.电波科学学报,2006,21(4):532~535.
    [129]杨云见,王绪本,何展翔.瞬变电磁法中斜阶跃波效应及常规的几种校正方法分析.物探化探计算技术.2006,28(2):129~132.
    [130]白登海,Maxwell Meju.瞬变电磁法中两种关断电流对响应函数的影响及应对策略.地震地质.2001,23(2):245~251.
    [131] Guimin liu. Effect of transmitter current waveform on airborne TEM responseExploration Geophysics1998,29:35~41.
    [132] D P Gaver. Observing Stochastic Process and approximate transform inverse.Oper, Rws.1996;14(3):444~459.
    [133] Christiansen A V, Christiansen N B. A quantitative appraisal of airborne andground based transient electromagnetic(TEM) measurements in Denmark.Geophysics,2003,68:523~534.
    [134]吕英华.计算电磁的数值方法.北京:清华大学出版社,2006.
    [135]李桐林,林君,王东坡.海陆电磁噪声与滩海大地电磁测深研究.地质出版社,2001.4:3~5.
    [136]钟士模,郑大钟.过渡过程分析.北京:清华大学出版社.1986,236~246.
    [137]王晰,王宗欣,袁晓军.圆形螺旋线圈自感和分布电容的计算.固体电子学研究与进展,2000,20(4):424~431.
    [138]袁义生.电感器分布电容的建模.华东交通大学学报,2006,23(5),90~93.
    [139]林君,嵇艳菊,于生宝. ATEM Ⅱ型瞬变电磁系统的实际应用.物探与化探.2004,28(6):496~498.
    [140]嵇艳菊,林君,程德福等.瞬变电磁法中数据取样处理方法研究.物探与化探.2003,27(2):142~145.
    [141] Fondyga A, Ecuador Q, Sherba G, et al. Cased hole density, neutron, sonic andresistivity logging in South America, case histories, lessons learned, and amethodology for including the technology in formation evaluation programs.SPWLA45th Annual Logging Symposiunm, June6~9,2004.
    [142] Askey S, Farag S, Logan J, et al. Cased hole resistivity measurements optimizemanagement of mature waterflood in Indonesis. SPWLA43th Annual LoggingSymposium, June2~5,2002.
    [143] Eaton. P.A, Hohmann. G.W. An eveluation of electromagnetic methods in thepresence of geologic noise. Geophysics.1987,52(8):11061126.