非均匀介质中低频近场的分析与探测应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电磁场的分析与探测应用中,非均匀介质中低频近场问题的分析一直是研究和应用中的重点和难点。一方面,该类问题的研究具有广阔的前景和应用价值,如电磁波测井与地球物理探测分析等;然而另一方面,该类问题的研究却一直是数值分析和计算方法中的难题,特别是大规模多尺度问题,更对现有的分析方法提出了严峻的挑战。针对上述挑战,本文首先从近场问题的物理本质出发,将其归类为极低频准静态位场问题和时变电磁场问题,针对不同的问题采用不同的建模策略和分析方法。然后,本文重点针对时变的低频近场问题,研发了结合树-叉树策略和高阶传输条件的有限元区域分解方法,并将其应用于电磁波测井前沿问题的分析。在该算法的基础上,本文还实现了低频近场探测前端的分析与设计,以获得多维度的地层信息。最后,为了实现低频近场问题中三维目标的探测与参数的快速反演,本文在对已有的反演算法进行研究总结的基础上,提出一种结合有限元区域分解框架的三维全波反演算法,以便在对复杂未知目标的低频近场探测问题中实现快速有效的反演。
     首先,本文首先针对低频准静态位场测井模型,以拉普拉斯方程作为控制方程,用标量有限元方法对低频准静态位场问题进行研究,提出了低频准静态位场理论建模的几个重要问题。根据准静态场的位场分布规律,本文首次提出,时变场中无限远边界条件并不适用于位场分析,并给出了更符合实际位场分布的截断边界条件。其次,为了减少测井仪器复杂激励模型导致的计算需求,本文提出了周期边界条件以及金属和绝缘材料边界条件。最后,以位场测量回路中引入取样电阻为例,本文提出了场与路一体化分析的建模思路,以精确模拟实际探测仪器对于匹配单元的高斯积分,唯一的区别就在于步骤(3),(4),(5)步中的坐标变换,而这些基于面的朗格朗日插值所花的时间很少,与整体建模求解时间比较起来,
     其次,本文针对时变电磁场问题,主要采用了矢量有限元及其区域分解算法进行分析。通过对矢量有限元方法的基础研究,本文比较、分析了有限元方法中基于不同单元的基函数,引入了一种基于任意六面体单元的高阶叠层插值基函数,该基函数能适用于复杂结构多尺度目标的建模,因此能很好地胜任复杂低频近场问题的分析。然而,在复杂大规模的问题分析中,特别是因扫描探测需要激励端不断移动时,传统有限元方法的一体化建模剖分仍将导致极大的工作量、计算量和计算资源的占用。另外在低频近场问题中,有限元等数值计算方法往往会出现低频崩溃问题,即数值误差过大甚至无法求解。为了解决上述问题,本文首先引入了区域分解算法,将待求问题区域分为若干子区域,并行计算,大大减少内存和计算时间,提高了计算效率。接着,本文在区域分解算法已有的传输条件的基础上,提出了一种改进的二阶传输条件,该传输条件相对以往传输条件,具有在本征值单位圆内更聚合于圆心的本征值分布,因此也具备在任意频率下更快的迭代收敛速度,从而进一步减少了问题的求解分析时间。为了解决低频问题,本文在非匹配区域分解算法中还引入了树-叉树分割(tree-cotree splitting)技术。树-叉树分割是一种高效快速的消除低频奇异性的方法,通过去除基函数中的冗余,并在基函数的展开中加入位势的梯度,从而使得低频近场的求解更加精确。由于引用了该技术,本文对在低至零频的任意频段内的问题分析都能保持很高的效率和精度。基于上述研究,本文通过一些典型的地球物理探测应用,如介电扫描成像测井,随钻方位电阻率测井,油基泥浆微电阻率扫描成像测井以及三分量感应测井等问题,对本文提出方法的应用效率和精度进行了验证。结果证明了上述方法和技术在分析低频近场问题时的高效性和正确性,同时也体现出了该算法在分析这类问题时的优势。
     在低频近场探测中,为了多维度地获取地层信息,需要对复杂的低频近场探测系统前端的激励-响应进行设计和分析。以上述算法作为分析工具,本文首先在三分量感应测井应用中设计了几种三分量线圈系结构。该设计方案因其在三个相互正交的极化方向的探测使得仪器可以探测倾斜地层和各向异性层等复杂地层。其中,三个正交方向的探测使得仪器可以探测薄互层和各向异性层等复杂地层,线圈系的共位缠绕大大缩短了仪器长度,而直耦对消则大大提高了仪器的信噪比。不仅如此,本文还进行了设计线圈系的加工,绕制,系统调试与实验井实验等,并最终推出了能用于工程生产的三分量感应测井仪器。其次,为了获取地层探测的方位向分辨力,本文首先推导出了倾斜磁偶极子在球坐标系下的解析表达,从中提取出其方位向因子。然后通过单个倾斜探头不同倾角和不同极化方向探头组合在水平面和垂直面的电场分布,本文提出了提高随钻电测井方位向分辨力的思路和策略,并在此基础上提出了新型随钻发射-接收组合设计。最终,采用有限元区域分解算法的仿真结果证明了新型设计在方位向分辨力上的优势,同时也表明随钻电测井的方位向分辨力仍有很大的提升空间。
     最后,在总结已有的近似反演方法的基础上,为了使得低频近场目标探测中三维复杂目标的反演更加快速和精确,本文在区域分解的框架下提出了一种新型的三维全波反演算法。该反演算法对求解区域的分解将使得区域分解框架下的反演算法所需内存更少,并行效率更高,计算时间更快。不仅如此,与基于FEM的其它反演算法相比,该算法在每次反演迭代中只用重新计算需要反演的目标区域,而不用重复计算整个区域。因此,当本文将该反演算法应用到磁感应成像,地下目标探测等问题的反演分析中时,收到了很好的效果。证明了该算法确为一种快速和稳健的三维全波反演算法。
In the analysis of electromagnetic field and its application in detection, the research of low-frequency near field is always challenging and very important in real-life applications. On the one hand, it has broad future and pratical value, such as the application of electromagnetic well-logging problems and investigation of the geophysical structures which have been put into much research effort. On the other hand, the analysis of low-frequency near field has always been a hard zone in numerical computation and analysis. The existing methods have been seriously chanllenged especially when one has to face the large-and multi-scale problems. To deal with these challenges, in this dessertation, these problems are first classified into quasi-static potential field problems and time harmonic field problems based on the physic principle of the near field. And then each kind of problem is handled with different modeling strategy and analysis method. To deal with the time harmonic low-frequency near field problems, this dessertation developed the finite element domain decomposition method combined with tree-cotree splitting strategy and higher order transmission conditions, and then implemented it into the analysis of the forward electromagnetic well-logging problems. Based on the method, the modeling, design and realization of the low-frequency near-field detecting sensors are accomplished easily to gain multi-dimensional information of the earth. Finally, to have a fast inversion of the parameters of3D objects in complex problems, this dessertation proposed a fast3D full-wave inverse method combined with domain decomposition framework based on the research of the existing inverse methods. The inverse method proposed in this dessertation can perform fast inversion of the unknown objects in the low-frequency near-field detection problems.
     First of all, to model the quasi-static potential field well-logging problems, this dessertation uses scalar finite element method to analysis the quasi-static potential field problems using Laplace equation as the constraint equation, and put forward several important issues in the modeling of quasi-static potential field problems. This dessertation finds out that the traditional far-field truncating boundary condition is no longer suitable for the potential field analysis for the first time and thus put forward a new far-field truncating boundary condition for the real application. Additionally, this dessertation implements another two boundary conditions to optimize the electromagnetic model which are the periodic boundary condition and equal potential field condition. Finally this dessertation build up a unified model both containing the field parameters and circuit parameters and get the numerical result of the slight and important changes of the response for the tools. The numerical results have proved the accuracy and advantage of our proposed quasi-static potential field modeling techniques.
     At the second part, the vector finite element method and its non-conformal domain decomposition method (NC-FEM-DDM) are developed and optimized for the analysis of the time harmonic field problems. Based on the research of the vector FEM and comparison of basis functions based on different element types, this dessertation introduces a hexahedral hierarchical basis function, which can be very adaptive to the modeling of a complex multi-scale problem and consequently capable of modeling complex low-freqeuncy near field problems. However, in the application of a large-scale problem, the traditional FEM will suffer from large amounts of work load, memory cost and computational time because of its unified modeling strategy, especially when the excitation sources has to move in the need of scanning detection. Additionaly, numerical methods such as FEM will suffer from low-frequency break down and accurarcy loss. To solve the above problems, domain decomposition method is first developed to divide the original problems into several subdomains so that one can compute each subdomain independently and improve parallel efficiency. Then, based on the existing transmission conditions, an improved transmission condition is used to couple fields from different subdomains efficiently. This transmission condition has a more clustered eigenvalue distribution compared with the existing ones and thus it has faster convergence in both high-frequency band and low-frequency band. To solve the low-frequency break down problem, a tree-cotree splitting (TCS) strategy is then applied to eliminate the low-frequency breakdown at very low frequencies. Numerical results of the advanced well-logging problems such as the dielectric scanning tool, directional resistivity logging-while-drilling (LWD) tool, the micro-resistivity scanning tool and the three induction array tool all show an excellent convergence and accuracy obtained with the DDM with TCS at any frequencies.
     In the low-frequency near-field problems, the analysis and design of the detecting sensors are very important because one need to get multi-dimensional information of the earth. Based on the development and improvement of the NC-FEM-DDM with TCS, series of3D induction sensor arrays have been designed at first. These designs have three orthometric polarized components so that the dip formation and the anisotropic bed can be interpreted. In these designs, the compact wind of the coils greatly shortened the length of the tool and the easy-implementing cancellation of the direct coupling largely improved the signal noise ratio (SNR). Based on the designings, this dessertation accomplished the fabrication, coil winding, system debugging and experiments in the experimental well and finally put out the3D induction array tool. Besides, to gain azimuthal resolution in the investigation, the analytical expression for the electric field of the tilted sensor as magnetic dipole is first derived. The directional component of the dipole was extracted. Then, through the field distribution of single transmitter with different tilt angles and the field distribution of combination of transmitters with different polarizations, clear strategies are illustrated on improving the azimuthal resolution of directional sensors. Based on it, novel transmitter-receiver designs are put forward and modeled using an efficient and accurate finite-element-based domain decomposition method. The results not only testify the designing strategies with better azimuthal resolution, but also indicate that there is still great potential in optimizing the azimuthal resolution of the directional propagation tools.
     Finally, this dessertation has taken an over view of the existing inverse method to deal with the low-frequency and near-field inverse problems. A fast full-wave inverse scheme is developed combined with a domain decomposition method (DDM) so that the3D objects in complex real-life applications can be easily inversed as well. The division of the solution domain will bring huge advantage in the memory cost, parallel efficiency and computation time. Besides that, the object domain, whose parameters are unknown, is separated from the peripheral devices and outer boundaries so that only the object domain has to be recalculated, which will cut down the redundant computational burden in the inversion compared with other methods based on FEM. This nonlinear inverse scheme is implemented successfully for3-D full-wave problems such as the magnetic induction tomography (MIT) and ground penetrating radar, showing that this method is a robust and efficient3-D full-wave inverse method.
引文
[1]H. G. Doll. Introduction to induction logging and application to logging of wells drilled with oil-based mud[J]. J. Petrol. Technol.,1949,1:148-162
    [2]李大潜.有限元素法在电法测井中的应用[M].北京:石油工业出版社,1984.125-132
    [3]张庚骥.电法测井[M].北京:石油工业出版社,1986,1-56
    [4]汪宏年,杨善德,常明澈.水平层状各向异性介质中侧向电阻率测井的快速模拟与应用[J].测井技术,1998,22(1):28-31
    [5]汪宏年,杨善德,王艳.各向异性地层中的电阻率测井的响应特性[J].石油地球物理勘探,1999,36(6):649-657
    [6]高杰,谢然红.大斜度井侧向测井三维正演数值模拟及曲线快速校正方法研究[J].石油勘探与开发,2000,27(2):69-71
    [7]M. Rabinovich, L. Tabarovsk. Enhanced anisotropy from joint processing of multi-component and multi-array induction tools[C]. SPWLA,2001,17-20
    [8]G. N. Minerbo. Method and Apparatus for Producing a Conductivity Log Unaffected by Shoulder Effect and Dip from Data Developed by a Well Tool[P]. U.S, Patent No.6216089, 2001
    [9]D. Barber, G. N. Minerbo. Analytic method for producing multiarray induction logs that are free of dip effect[C]. SPE annual technical conference and exhibition,2002
    [10]M. Soleimani, R. B. L. William, et al. Three-Dimensional Inverse Finite-Element Method Applied to Experimental Eddy-Current Imaging Data[J]. IEEE Transactions on Magnetics, 2006,42(5):1560-1567
    [11]E. A. Attardo, G. Vecchi. Microwave tomography via domain decomposition for finite element methods[C]. Antennas and Propagation Society International Symposium (APSURSI),2012 IEEE, pp.1-2,8-14, July 2012
    [12]史晓锋.随钻测电磁波测井的电阻率测量方法研究[D].北京:航空航天大学,2001
    [13]陈爱新.钻电磁波测井环境影响分析[J].地球物理勘探,2006,41(5):601-605
    [14]夏宏泉,吴宝玉.房军方等.随钻电阻率测井的各向异性影响及校正方法研究[J].国外测井技术,2007,22(1):12-14
    [15]M. Sato, H. Niitsuma, J. Fuziwara, M. Miyairi, Apparatus and method for determining parameters of formations surrounding a borehole in pre-selected direction[P]. U.S. Pat. No. 5508616,1996
    [16]J. Moran, S. Gianzero. Effects of formation anisotropy on resistivity-logging measurements[J]. Geophysics,1979,44:1266
    [17]M. Bittar. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations[P]. United State, Patent 6163155,2000
    [18]Q. Li, D. Omeragic, L. Chou, et al. New directional eletromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[C]. SPWLA 46th Annual Logging Symposium, June 26-29,2005
    [19]C. Bell, J. Hampson, et.al. Navigating and Imaging in Complex Geology with Azimuthal Propagation Resistivity While Drilling[C]. The 2006 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, September24-27,2006
    [20]M. Bittar. Electromagnetic wave resistivity tool having a tilted antenna for geosteering within a desired payzone[P]. United States, Patent 6476609, November 5,2002
    [21]M. Bittar, J. Klein, et.al. A New Azimuthal Deep-Reading Resistivity Tool for Geosteering and Advanced Formation Evaluation[C]. The 2007 SPE Annual Technical Conference and Exhibition, Anaheim, California, November 11-14,2007
    [22]T. Barber, B. Anderson, et.al. Determining Formation Resistivity Anisotropy in the Presence of Invasion[C]. The 2004 SPE Annual Technical Conference and Exhibition, Houston, Texas, September 26-29,2004
    [23]T. Barber, B. Anderson, A. Abubakar. Determining formation resistivity anisotropy in the presence of invasion. SPE annual technical conference and exhibition,2004
    [24]陈爱新.复杂激励条件下三维非均匀介质中位场的数值分析和阵列成像[D].成都:电子科技大学,1999,2-20
    [25]聂在平,W. C. Chew, Q. H. Liu.电磁波对轴对称二维层状介质的散射[J].地球物理学报,1992,35(4):479-489
    [26]聂在平,W. C. Chew, Q. H. Liu.多区域柱面分层介质中的电磁散射—电磁波测井分析[J].电子学报,1992,20(9):12-21
    [27]A. Q. Howard, W. C. Chew. Electromagnetic borehole fields in a layered dipping bed environment with invasion[J]. Geophysics,1992,57(3):451-465
    [28]Q. H. Liu. electromagnetic field generated by an off-axis source in a cylindrically layered medium with an arbitrary number of horizontal discontinuities[J]. Geophysics,1993,58(5): 616-625
    [29]潘锦,聂在平.二维平面分层介质中的数值模式匹配—算子矩阵理论及计算方法的应用 [J].电子科学学刊,1994,16(4):388-394
    [30]聂在平,陈思渊.二维完全非均匀介质中位场格林函数的数值解[J].地球物理学报,1994,37(5):688-697
    [31]聂在平,陈思渊.复杂介质环境中双侧向测井响应的高效数值分析[J].电子学报,1994,22(6):30-38
    [32]汪功礼,张庚骥.三维感应测井响应计算的交错网格有限差分法[J].地球物理学报,2003,46(4):561-567
    [33]沈金松.用有限差分法计算各向异性介质中多分量感应测井的响应[J].地球物理学进展2004,19(1):101-107
    [34]Y. K. Hue, F. L. Teixeira, L. E. San, et al. Modeling of EM logging tools in arbitrary 3-D borehole geometries using PML-FDTD[J]. IEEE Geosci. Remote Sens. Lett.,2005,2(1):78-81
    [35]Y. K. Hue and F. L. Teixeira. Analysis of tilted-coil eccentric borehole antennas in cylindrical multilayered formations for well-logging applications[J]. IEEE Trans. Antennas and Propagation,2006,54(4):1058-1064
    [36]H. O. Lee and F. L. Teixeira. Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered earth media[J]. IEEE Trans. Geosci. Remote Sens.,2007,45(2):383-388
    [37]D. Wu, J. Chen, C. R. Liu. An efficient FDTD method for axially symmetric LWD environments[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(6):652-656
    [38]D. Pardo, L. Demkowicz, C. Torres-Verdin, et al. PML enhanced with a self-adaptive goal-Oriented hp finite-element method:simulation of through-casing borehole resistivity measurements[J]. SIAM J. Sci. Comput.,2008,30(6):2948-2964
    [39]R. W. Clough. The finite element method of structral analysis[M]. Proc.2nd Conf. Electronic Computation. ASCE, Pittsburgh, pa., Sept.,1960
    [40]P. P. Silvester, R. L. Ferrari著,简柏敦,倪光正译.有限元法在电气工程中的应用[M].浙江:浙江大学出版社,1996
    [41]李大潜.有限元素法在电法测井中的应用[M].北京:石油工业出版社,1984.125-132
    [42]X. Yuan. Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method[J]. IEEE Trans. Microwave Theory Tech.,1990, 38(8):1053-1058
    [43]X. Yuan, D. R. Lynch, J. W. Strohbehn. Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous[J]. IEEE Trans. Antennas Propagat,1992, 38(3):386-393
    [44]T. Cwik, C. Zuffada, V. Jamnejad. Modeling three-dimensional Scatterers using a Coupled finite element-integral equation formulation[J]. IEEE Trans. Antennas Propagat.,1996,44(4): 453-459
    [45]B. Anderson, S. K. Chang. Synthetic induction logs by the finite element method[J]. Log Anal., 1982,23:17-29
    [46]陈爱新.复杂激励条件下三维非均匀介质中位场的数值分析和阵列成像[D].成都:电子科技大学,1999,2-20
    [47]E. E. Mark, A. Eugene, et al.3-D Finite Element Analysis of Induction Logging in a Dipi-ng Formation[J]. IEEE Tran.on Geoscience and remote sensing,2001,39(7):2244-2252
    [48]沈金松.用边有限元方法计算磁偶极子的三维电磁响应[J].计算物理,2002,19(6):537-543
    [49]沈金松.用边有限元法计算各向异性介质的电磁响应[J].测井技术,2004,28(1):11-15
    [50]X. Sun, Z. Nie. Vector finite element analysis of multicomponent induction response in anisotropic formations[J]. Progress In Electromagnetics Research,2008,81:21-39
    [51]X. Sun, Z. Nie, Y. Zhao. The electromagnetic modeling of logging-while-drilling tool in tilted anisotropic formations using vector finite element method[J]. Chinese J. Geophys (in Chinese),2008,51(5):1600-1607
    [52]X. Sun, Z. Nie, A. Li, et.al. Analysis and correction of borehole effect on the responses of multicomponent induction logging tools[J]. Progress in Electromagnetics Research, PIER 2008, 85:211-226
    [53]孙向阳,聂在平,赵延文等.用矢量有限元方法模拟随钻测井仪在倾斜各向异性地层中的电磁响应[J].地球物理学报,2008,51(5)
    [54]孙向阳,聂在平,李爱勇等.用于电磁感应建模的一种快速有效计算方法[J].电波科学学报,2008,5
    [55]孙向阳,聂在平,李爱勇等.用高阶叠层矢量有限元法计算随钻测井的三维电磁响应[J].电波科学学报,2010
    [56]X. Sun, Z. Nie. Application of Higher Order Hierarchical Vector Finite Element Method in Multicomponent Electromagnetic Induction Problem[C]. Loughborough Antennas & Propagation Conference,2008,413-416
    [57]X. Sun and Z. Nie.3-D Electromagnetic Anisotropy Modeling Using Finite Element Method[C]. IEEE Antennas Propagat. Int. symp.,2008
    [58]E. L. Lindman. Free-space boundary condition for the time dependent wave equation. Journal of Computational Physics,1975,18:67-78.
    [59]C. Rappaport, L. Baharmasel. An absorbing boundary condition based on anechoic absorber for EM scattering computation[J]. Journal of Electromagnetic Waves and Application,1992, 6(12):1621-1634
    [60]J. P. Berengeer. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1994,114:185-200
    [61]R. D. Graglia, D. R. Wilton, A. F. Peterson. Higher order interpolatory vector bases for computational electromagnetic[J]. IEEE Trans. Antennas Propagat.,1997,45(3):329-342
    [62]J. P. Webb. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements[J]. IEEE Trans. Antennas Propagat.,1999,47(8):1244-1253
    [63]M. M. Ilic'. and B. M. Notaro's. Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling[J]. IEEE Trans. Microwave Theory Tech.,2003, 51(3):1026-1033
    [64]B. Stupfel. A fast-domain decomposition method for the solution of electromagnetic scattering by large objects[J]. IEEE Trans. Antennas Propag.,1995,44(10):1375-1385
    [65]A. Piacentini, N. Rosa. An improved domain decomposition method for the 3D Helniholtz equation[J]. Comput. Methods Appl. Mech. Engrg.,1997,162:113-124
    [66]J. D. Benamou, B. Despres. A domain decomposition method for the Helmholtz equation and related optimal control problems[J]. J. Comput. Phys.,1997,136:68-82
    [67]B. Stupfel, M. Mognot. A domain decomposition method for the vector wave equation[J]. IEEE Trans. Antennas Propag.,2000,48(5):653-660
    [68]S.-C. Lee, M. N. Vouvakis, J.-F. Lee. A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays[J]. J. Comput. Phys.,2005,203: 1-21
    [69]M. N. Vouvakis, Z. Cendes, J.-F. Lee. A FEM domain decomposition method for photonic and electromagnetic band gap structures[J]. IEEE Trans. Antennas Propag.,2006,54(2):721-733
    [70]A. Alonso-Rodriguez, L. Gerardo-Giorda. New non-overlapping domain decomposition methods for the harmonic Maxwell system[J]. SIAM J. Sci. Comput.,2006,28(1):102-122
    [71]Y. Li, J.-M. Jin. A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems[J]. IEEE Trans. Antennas Propag.,2006, 54(10):3000-3009
    [72]K. Zhao, V. Rawat, S.-C. Lee, et al. A domain decomposition method with nonconformal meshes for finite periodic and semi-periodic structures[J]. IEEE Trans. Antennas Propag., 2007.55(9):2559-2570
    [73]M. N. Vouvakis, K. Zhao, S. M. Seo, et al. A domain decomposition approach for nonconformal couplings between finite and boundary elements for unbounded electromagnetic problems in R3[J]. J. Comput. Phys.,2007,225(1):975-994
    [74]Y.-J. Li, J.-M. Jin. A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems[J]. IEEE Trans. Antennas Propag., 2007,55(10):2803-2810
    [75]K. Zhao, V. Rawat, S.-C. Lee, et al. A domain decomposition method with nonconformal meshes for finite periodic and semi-periodic structures[J]. IEEE Trans. Antennas Propag., 2007,55(9):2559-2570
    [76]Z. Peng, V. Rawat, J. F. Lee. One way domain decomposition method with second-order transmission conditions for solving electromagnetic wave problems[J]. J. Comput. Phys., 2010,229(4):1181-1197
    [77]Z. Peng, J. F. Lee. Nonconformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetic[J]. J. Comput. Phys.,2010,229: 5615-5629
    [78]J. B. Manges, Z. J. Cendes. A generalized tree-cotree gauge for magnetic field computation[J]. IEEE Trans. Magne.,1995,31(3):1342-1347
    [79]S. H. Lee, J. M. Jin. Application of the tree-cotree splitting for improving matrix conditioning in the full-wave finite-element analysis of high-speed circuits[J].2008, Microw. Opt. Tech. Lett.,50(6):1476-1481
    [80]R. Wang, J. M. Jin. Application of tree-cotree splitting to the time-domain finite-element analysis of electromagnetic problems[J]. IEEE Trans. Antennas Propag.,2010,58(5): 1590-1600
    [81]M. Z. Nashed. Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory[J]. IEEE Trans. Antennas and Propag.,1981,29(2):220-231
    [82]N. Joachimowicz, C. Pichot, J. P. Hugonin. Inverse scattering:An iterative numerical method for electromagnetic imaging[J]. IEEE Trans. Antenna and Propaga.,1991,39(12):1742-1752
    [83]M. Moghaddam, W. C. Chew. Nonlinear two-dimensional velocity profile inversion using time-domain data[J]. IEEE Trans. Geosci. Remote Sens.,1992,30(1):147-156
    [84]D. L. Alumbaugh, H. F. Morrison. Electromagnetic conductivity imaging with an iterative Born inversion[J]. IEEE Trans. Geosci. Remote Sens.,1993,31(4):758-763
    [85]Q. H. Liu. Reconstruction of two-dimensional axisymmetric inhomogeneous media[J]. IEEE Trans. Geosci. Remote Sens.,1993,31(3):587-594
    [86]Q. H. Liu. Nonlinear inversion of electrode-type resistivity measurements[J]. IEEE Trans. Geosci. Remote Sens.,1994,32(3):499-507
    [87]W. C. Chew, Q. H. Liu. Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT[J]. IEEE Trans. Geosci. Remote Sens.,1994,32:878-884
    [88]P. M. van den Berg, R. E. Kleinman. A contrast source inversion method[J]. Inverse Problems, 1997,13(6):1607-1620
    [89]P. M. van den Berg, A. L. van Broekhoven, A. Abubakar. Extended contrast source inversion[J]. Inverse Problems,1999,15(5):1325-1344
    [90]赵延文,聂在平,卢涛等.基于变形玻恩迭代法的多重网格反演方法[J].电子科技大学学报,2002,31(4):340-344
    [91]T. J. Cui, W. C. Chew, A. A. Aydiner, et al. Fast forward solvers for the low-frequency detection of buried dielectric objects[J]. IEEE Trans. Geosci. Remote Sensing,2003,41
    [92]T. M. Habashy, A. Abubakar. A general framework for constraint minimization for the inversion of electromagnetic measurements[J]. Progress In Electromagnetics Research,2004,46: 265-312
    [93]L. P. Song, Q. H. Liu. Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation[J]. Inverse problems.,2004,20:171-194
    [94]S. Manuchehr, R. B. L. William, et al. Three-Dimensional Inverse Finite-Element Method Applied to Experimental Eddy-Current Imaging Data[J]. IEEE Transactions on Magnetics, 2006,42(5):1560-1567
    [95]M. R. Hestenes, E. Stiefel. Method of conjugate gradients for solving linear systems[J]. J.Res.Nat.Bur. Standards,1952,49:409-436
    [96]B. Anderson, T. Barber, V. Druskin, et al. The response of multiarray induction tools in highly dipping formations with invasion and in arbitrary 3D geometries[J]. The Log Analyst,1999, 40(5):327-344
    [97]B. O. Kriegshauser, S. Fanini, G. Forgang, et al. A new multi-component induction logging tool to resolve anisotropic formations.40th Annual Symposium[C]. SPWLA 40th Ann. Log. Symp., 1999
    [98]B. F. Kriegsh, O. N. Fanini, S. Forgang, et al. Increased oil in place in low resistivity reservoirs from multicomponent induction log data[C]. SPWLA 41st Ann. Log. Symp.,2000
    [99]M. S. Zhdanov, D. Kennedy. Principles of tensor induction well logging in a deviated well in an anisotropic medium[C]. SPWLA 42th Ann. Log. Symp.,2001
    [100]M. S. Zhdanov, D. Kennedy, E. Peksen. Foundation of the tensor induction well logging[J]. Perophysics,2001,42(6):588-610
    [101]T. Wang, L. Yu and F. Otto. Multicomponent induction response in a borehole environment[J]. Geophysics,2003,68(5):1510-1518
    [102]党瑞荣,秦瑶,谢雁,王洪淼.三分量感应测井系统研究[J].石油地球物理勘探,2006,41(4):484-488
    [103]J. Hou, L. Sanmartin, D. Wu, et al. A new multi-frequency trixial array induction tool for enhanced evaluation of anisotropic formations and its field testing[C]. SPWLA 54th Ann. Log. Symp.,2013
    [104]H. Wang, P. Yang, W. Hoefer. Numerical modeling of multicomponent induction well-logging tools in the cylindrically stratified anisotropic media[J]. IEEE Trans. Geoscience and Remote Sensing.,2008,46(4):1134-1147
    [105]J. W. H. Liu. The role of elimination trees in sparse factorization[J]. SIAM J. Matrix Anal. Appl.,1990,11:134-172
    [106]W. C. Chew, Y. M. Wang. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method[J]. IEEE Trans. Med. Imag.,1990,9(2):218-225
    [107]M. Hizem, H. Budan, B. Deville, et al. Dielectric Dispersion_A New Wireline Petrophysical Measurement[C]. Society of Petroleum Engineers 116130,2008
    [108]W. C. Chew, S. Barone, B. Anderson, et al. Diffraction of axisymmetric waves in a borehole by bed boundary discontinuities [J]. Geophysics,1984,49(10):1586-1595
    [109]W. C. Chew, B. Anderson. Propagation of electromagnetic waves through geological beds in a geophysical probing environment[J]. Radio Sci.,1985,20(3):611-621
    [110]Q. H. Liu, W. C. Chew, M. R. Taherian, et al. A modeling study of electromagnetic propagation tool in complicated borehole environments [J]. The Log Analyst,1989,30: 424-436
    [111]W. C. Chew, Z. Nie, Q. H. Liu. An efficient solution for the response of electrical well logging tools in a complex environment[J]. IEEE Trans. Geosci. Remote Sens.,1991,29(2):308-313
    [112]B. Anderson, S. Bonnet, R. Rosthai, et al. Response of 2-MHz LWD resistivity and wireline induction tools in dipping beds and laminated formations[J]. J. Log Analyst,1992,33(5): 461-475
    [113]聂在平.非均匀介质中的场与波:理论及其在电测井中的应用[J].电子学报,1995,23(10):19-24
    [114]S. Davydycheva, V. Druskin. Staggered grid for Maxwell's equations in arbitrary 3D inhomogeneous media[C]. In Proceedings of the International Symposium on Three-Dimensional Electromagnetics,1995
    [115]M. Horst, V. Druskin, L. Knizhnerman. Modeling the response of induction logging tools in 3D geometries with the spectral Lanczos decomposition method[C]. In Proceedings of the International Symposium on Three-Dimensional Electromagnetics,1995
    [116]肖加奇,张庚骥.水平井和大斜度井中的感应测井响应计算[J].地球物理学报,1995,38(3):396-403
    [117]陈晓光.高维复杂非均匀问题中位场的数值分析[D].成都:电子科技大学,1997
    [118]赵延文.二维非均匀介质中准静态位场的反演方法及应用研究[D].成都:电子科技大学,1997
    [119]杨峰.复杂非均匀介质中电磁逆散射方法和应用分析[D].成都:电子科技大学,1997
    [120]K. A. Michalski, J. R. Mosing. Multilayered media Green's functions in integral formulations[J].IEEE Trans.on Antennas and propagation,1997,45(3):508-519
    [121]S. Graciet e, L. C. Shen. Theory and numerical simulation of induction and MWD resistivity tools in anisotropic dipping beds[J], J. Log Analyst,1998,39(1):24-37
    [122]X. Chen, Y. Jin, Z. Nie. An approach of transcient electromagnetic responses in two-dimensional inhomogeneous media using an efficient finite element time domain method[J]. Chinese J. Geophys,1999,42(2):263-273
    [123]C. Yin, H. M. Maurer. Electromagnetic induction in a layered earth with arbitrary anisotropy[J]. Geophysics,2001,66(5):1405-1416
    [124]T. Wang, S. Fang.3-D Electromagnetic Anisotropy Modeling Using Finite Differences[J]. Geophysics,2001,66(6):386-1398
    [125]朱秀芹,耿友林,吴信宝.三维各向异性介质目标电磁散射的MOM-CGM-FFT方法[J].电波科学学报,2002,17(3):209-215
    [126]Z. Q. Zhang, Q. H. Liu. Applications of the BCGS-FFT method to 3-D induction well logging problems[J]. IEEE Trans. Geosci. Remote Sens.,2003,41(5):998-1004
    [127]徐利明.分层介质中三维目标电磁散射的积分方程方法及其关键技术[D].成都:电子科技大学,2005
    [128]Y.-K. Hue, F. L. Teixeira, L. San Martin, et al. Three dimensional simulation of eccentric LWD tool response in boreholes through dipping formations[J]. IEEE Trans. Geosci. Remote Sens., 2005,43(2):257-268
    [129]Y. Ren, Z. Nie, Y. Zhao, et al. Sparsification of impedance Matrix in solution of integral equation by using the maximally orthogonalized basis functions[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(7):1975-1981
    [130]G L. Wang, C. Torres-Verdin, S. Gianzero. Fast simulation of triaxial borehole induction measurements acquired in axially symmetrical and transversely isotropic media[J]. Geophysics,2009,74(6):e233-e249
    [131]哈林登著,王尔杰,肖良勇,林炽森等译.计算电磁场的矩量法[M].北京:国防工业出版社,1981
    [132]W. C. Chew. Waves and fields in inhomogeneous media[M] New York:Van Nostrand Reinhold, 1990
    [133]周永祖著,聂在平,柳清伙译.非均匀介质中的场与波[M].北京:电了工业出版社,1992
    [134]T. F. Eibert, H. Volkert.3-D FEM/BEM-Hybrid approach based on general formulation of Huygen's principle for planar layered media[J]. IEEE Trans.on Microwave Theory and Techniques,1997,45(7):1105-1112
    [135]W. C. Chew, J. M. Jin, Michielssen E, et al. Fast and efficient algorithms in computational electromagnetic[M]. MA:Artech House,1999
    [136]Z. Q. Zhang, Q. H. Liu. Applications of the BCGS-FFT method to 3-D induction well logging problem[J]. IEEE Trans. Geoscience and remote sensing,2003,41(5):998-1004
    [137]曾余庚,徐国华,宋国乡.电磁场有限元方法[M].北京:科学出版社,1982.265-333
    [138]金建铭著,王建国译,葛德彪校.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998
    [139]J. M. Jin, The Finite Element Method in Electromagnetics[M],2nd ed. Hoboken, NJ:Wiley, 2002
    [140]J. M. Jin and D. J. Riley, Finite Element Analysis of Antennas and Arrays[M]. Hoboken, NJ: Wiley,2009
    [141]C. Lanczos. Solution of systems of linear equations by minimized iterations[J]. J. Res. Nat. Bur. Standards,1952,49:33-53
    [142]J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, et al. A supernodal approach to sparse partial pivoting[J]. SIAM J. Matrix Anal. Appl.,1999,20:720-755
    [143]H. P. William, A. T. Saul, T. V. William. Numerical Recipes in C[M], The art of science computing (second edition). Briton:Cambridge University Press 1992,71-80.