多介质环境下潜射导弹动力学及非线性控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜射导弹以其隐蔽发射、精确打击的优势在现代战争中占有重要地位,成为世界各国正在发展或寻求发展的武器。现代战争对潜射导弹提出了大水深或变水深的发射要求,这就要求潜射导弹具有良好的水下及出水航行弹道,具有稳定的航行姿态和出水后达到空中飞行段要求的初始条件的能力。潜射导弹所处介质的特殊性(海水)以及出水过程中跨介质航行的特点决定了其动力学及控制问题研究的复杂性和必要性,潜射导弹动力学具有严重的非线性,其控制必须要解决这种非线性问题。本文以潜射导弹水下及出水过程为研究对象,重点研究了潜艇速度、海流、海浪和海风对水下及出水弹道的影响,在此基础上研究了潜射导弹弹道以及姿态的非线性控制问题。
     潜射导弹由于潜艇速度的干扰,使得垂直发射的潜射导弹产生入水攻角,形成俯仰力矩造成导弹姿态发生变化。讨论了不同发射深度下潜艇速度对潜射导弹姿态的影响,随着发射深度的增加,潜艇速度对导弹姿态的影响程度增大。潜射导弹航行过程中受到海流的影响,通过CFD(Computational Fluid Dynamics)技术分析了不同海流梯度、海流速度以及对流对潜射导弹水动力特性的影响。
     潜射导弹出水航行过程中受到海浪和海风的影响。鉴于海浪影响的复杂性,本文采用CFD技术,基于二阶STOKES波对海浪进行二维和三维数值模拟,利用三维数值海浪研究了潜射导弹垂直发射出水受到的海浪力,通过数据拟合得到了海浪力的解析表达式。基于潜射导弹运动数学模型分析了海浪对潜射导弹的影响,通过蒙特卡洛方法统计出弹道参数极限偏差与海浪等级以及海浪主向之间的关系。在研究海风对潜射导弹影响时,将海风的影响考虑为风载荷,推导出潜射导弹出水过程中风载荷作用力和力矩的解析表达式,通过仿真分析得出导弹姿态与风速和风向之间的关系。
     潜射导弹浅水深发射一般采用无控模式,导弹弹射出筒,靠燃气-蒸汽推动航行出水。而在大水深或变水深发射时,导弹水下航行时间增长,在潜艇速度和海流的干扰下,导弹姿态发散严重,弹道偏离较大,无控发射难以保证发射成功。首先针对大潜深水下航行弹道跟踪控制问题进行了深入研究,提出了基于Backstepping纵向弹道跟踪自适应控制方法。对纵向弹道控制模型中的非线性项利用最佳逼近理论通过构造合适基函数进行逼近,并给出了修正的逼近模型,引入两个稳定函数,采用Backstepping技术设计了自适应控制器,并利用Lyapunov方法证明了控制系统的稳定性。针对水下航行三维弹道跟踪问题,利用微分几何理论将潜射导弹非线性运动模型进行全状态反馈线性化得到链式结构的控制模型,该方法实现了对非线性系统精确线性化。基于链式结构控制模型,采用动态反馈控制设计指数稳定的控制律,实现了对三维弹道的精确跟踪。
     潜射导弹完成出水后需要满足空中飞行段对导弹姿态的要求,而潜射导弹在水下及出水过程中受到外部环境的干扰使得姿态不断发散,尤其在大水深发射时姿态发散更加严重。为了解决潜射导弹姿态跟踪控制问题,本文推导了潜射导弹隐式增量动态逆姿态跟踪控制算法,该方法降低了控制器对导弹模型精确性的依赖程度,通过引入状态量变化率反馈提高了对结构模型误差(如参数摄动等)的鲁棒性,该算法在4级以下海况具有一定的应用价值。潜射导弹出水运动是跨介质航行过程,针对这个特点本文提出了基于LPV增益调度多介质区域融合控制方法。该方法将潜射导弹运动模型转化成LPV模型,将整个航行区域采用调度参数空间表示,将调度参数空间划分成有限个子空间,在每个子空间中基于潜射导弹LPV模型设计LPV控制器,利用融合函数将各个子空间控制器融合成全空间LPV控制器,利用参数依赖型Lyapunov函数证明了其闭环系统的稳定性。
Submarine-launched missile takes an important role in the modern warbecause of its advantages in secret launch and high precision. Therefore, most ofcountries in the world are developing or planning to develop submarine-launchedmissile. The modern war requires that submarine-launched missile can be launchedfrom large water depth or variable depth. So, submarine-launched missile needs tohave good underwater and water-exit ballistics, the stable sailing postures and thestarting conditions required by the air flight segment after water exiting. Theresearch on dynamic and control for submarine-launched missile is particularlycomplex and necessary, because of the medium (sea water) which thesubmarine-launched missile sails in and different medium that thesubmarine-launched missile sails across. The dynamic equation ofsubmarine-launched missile is strong nonlinear, which needs to be solved by thecontrol algorithm. This paper researches on the underwater and water-exit processof submarine-launched missile, particular on the factors which have effect on theunderwater and water-exit ballistic, such as the speed, current, wave and wind. Onthis basis, the nonlinear control problem of trajectory tracking control and attitudetracking control are studied.
     The submarine-launched missile is influenced by the velocity of submarine.As a result, the attack angle is generated and the attitude of missile which islaunched vertically is changed by the pitching torque. The effect on the attitude ofmissile launched from different depth by the velocity of submarine is discussed.During increasing the launch depth, the influence degree on the attitude by thevelocity becomes more and more great. The sailing process is influenced by thecurrent. The effect on the water dynamic is analyzed by the different currentgradient, velocity and convection using the CFD(Computational Fluid Dynamics)technique.
     The water-exit process of submarine-launched missile is influenced by oceanwaves and sea breeze. The2-d and3-d sea wave are simulated by the second orderSTOKES wave based on the CFD technique. The3-d simulated sea wave isutilized to investigate the wave forces during the process of water-exit for themissile. The analytical expression of wave forces is obtained by the data fitting.The effect by the sea wave is analyzed based on the kinematic model of missile.The relation between the limit deviation of ballistic parameters and the classes anddirection of sea wave can be calculated by the Monte Carlo method. During theresearch on the effect of sea wind on the missile, the sea wind will be considered as the wind load. The analytical expression of load force and moment is derivedduring the water-exit process. The relation between attitude and velocity anddirection of wind will be found by simulation.
     The submarine-missile is generally launched without control for the shallowdepth circumstance. The missile is ejected, and powered out of water by gas-steam.However, when the missile is launched from large water depth or variable depth,the time of under-water sailing will increase. The attitude of missile divergesseriously, because of the effect by the velocity of marine and the sea current. In themean time, the derivation of ballistic becomes large. Therefore, the success oflaunch without control can not be guaranteed. The underwater ballistic trackingcontrol problem is investigated in this paper, and the adaptive longitudinaltrajectory tracking control method based on Backstepping is presented. The theoryof optimal approximation is used to approximate nonlinear term in longitudinaltrajectory control model by constructing a suitable basis function, and themodified approximation model can be obtained. Then two stable functions areintroduced to designed adaptive controller using the Backstepping technique, andthe stability of control system is proved with Lyapunov method. For thethree-dimensional trajectory tracking problem, the theory of differential geometryis used to carry out the full state feedback linearization to the nonlinear motionmodel of submarine-launched missiles and get the control model of the chain-formstructure. This method leads to the accurate linearization in nonlinear system.Based on chain structure model, the stable control law of dynamic feedbackcontrol index is designed to track the three-dimensional ballistic accurately.
     The attitude of missile has to satisfy the requirement by the air flight segmentafter the water-exiting process. However, the attitude diverges seriously as thedisturbance by environment during the under water and water-exit process,especially when the missile is launched from deep water. In order to solve theattitude tracking control problem of submarine-launched missiles, the implicitincremental dynamic inversion control attitude tracking control algorithm isderived, which reduces the rate of dependency the controller to the accuracy of themissile model. Making use of introducing the state variable rate feedback, therobustness of the structure error (such as parameter perturbation) of model isimproved. The algorithm can be applied directly in the condition of4class seawave and below. As the water-exit process is a cross medium movement, the LPVgain scheduling multiple medium regional integration control method is proposedin this paper which changes the motion model into LPV model, and takes thescheduling parameter space divided into limited height space as the whole sailingarea. In each subspace, LPV controller is designed based on submarine-launchedmissile LPV model, using fusion function to fuse each subspace controller into the whole space LPV controller. The stability of the closed-loop system is proved bythe parameter dependent Lyapunov function.
引文
[1]杨晓光.潜射导弹水下发射及出水过程三维数值研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [2]葛晖,张宇文,周秦英.潜射导弹运载器分离体下沉弹道散布影响因素仿真分析[J].兵工学报,2006,27(3):571-576.
    [3]王瑞臣.美国潜射弹道导弹的发展历程[J].四川兵工学报,2009,30(11):138-140.
    [4]马溢清,李欣.潜射导弹水下垂直发射方式综述[J].战术导弹技术,2010(3):124-128.
    [5]杨玉堃.俄罗斯潜射战略弹道导弹的发展与前景[J].导弹与航天运载技术,2009(2):57-61.
    [6]夏薇.俄罗斯弹道导弹发展现状及未来预测[J].航天制造技术,2010(6):12-14.
    [7]宗瑞良.火箭航行器水中运动数学模型[J].西北工业大学学报,2000,18(2):254-257.
    [8]殷崇一.潜射导弹发射与出水载荷研究[D].西安:西北工业大学硕士学位论文,2004.
    [9]仲维国,张嘉钟.潜射航行器的水下弹道模拟.弹道学报.2005,17(1):8-12.
    [10]刘耀,马震宇.导弹水下垂直发射的弹道研究[J].战术导弹技术,2006(2):21-25.
    [11]龚红良,王瑞臣,张笑.导弹水中弹道的有限元数值计算[J].四川兵工学报,2009,30(11):42-44.
    [12]张月华.海流对水弹道的影响数值分析[J].2009,30(3):8-10.
    [13]赵志敏,冯会全,冯旭.导弹水中阻力特性分析[J].战术导弹技术,2009(1):17-20.
    [14]杨晓光,陈焕龙,刘华坪,赵成佳,陈浮.导弹水下运动及出水过程的三维流场仿真[J].弹道学报,2010,22(1):107-110.
    [15]方宁,宋召青.潜载垂直发射导弹水下弹道建模与仿真[J].海军航空工程学院学报,2010,25(3):311-314.
    [16]葛晖,张宇文,卜广志,胡德斌.基于MATLAB/Simulink的潜射导弹运载器水弹道仿真[J].弹箭与制导学报,2003,23(3):53-55.
    [17]张永,刘曜,胡德斌.基于MATLAB的潜空导弹运载器的水弹道研究[J].战术导弹技术,2007,(5):7-10.
    [18]李体方,张志峰.海浪作用下的水下弹道数学模型[J].弹道学报,1999,11(3):47-51.
    [19]田兵,徐新,肖鹏飞.波浪对潜地弹道导弹出水运动的影响[J].舰船科学技术,2009,31(4):81-84.
    [20]方国强.波浪和海流条件下潜射飞行器出水姿态参数研究[J].导弹与航天运载技术,2011,(3):13-15.
    [21]张军,李英浩,金鹏寿.垂直及斜出水流场的二维及三维TR-PIV试验[J].船舶力学,2005,9(2):9-17.
    [22]刘乐华,张宇文.哀绪龙潜射导弹垂直出水流场数值研究[J].弹箭与制导学报,2003,24(2):183-185.
    [23]王志东,汪德堆. VOF方法中自由液面重构的方法研究[J].水动力学研究与进展,2003.18(l):52-56.
    [24]姜涛.波浪模拟及其对航行体出水过程的影响研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [25]李平金,牟秀军.波浪在导弹出水过程中影响效果数值分析[J].船舶电子工程,2010,30(8):159-161.
    [26]权晓波,孔德才,李岩.波浪模拟及其对水下航行体出水过程影响[J].哈尔滨工业大学学报,2011,43(3):140-144.
    [27]黄岳,崔奇伟,马暄,刘丙杰.横浪对潜射导弹出水姿态的影响[J].四川兵工学报,2010,31(8):39-41.
    [28]李国勇.最优控制理论与应用[M].北京:国防工业出版社,2008.
    [29]崔乃刚,曹春泉,韦常柱.潜射导弹水下运动过程仿真分析[J].弹道学报,2009,21(2):95-99.
    [30]丁彦超,王宝寿.垂直潜射导弹推力矢量控制弹道仿真研究[J].船舶力学,2011,15(1-2):87-94.
    [31]荣建德.水下运载器性能的分析与设计[M].北京:国防工业出版社,2008.
    [32]宋锦.潜射导弹水下运动主动控制方法[J].导弹与航天运载技术,2012,(3):26-28.
    [33]李延军,郭凤美,董利强.水下飞行器的弹道仿真[J].导弹与航天运载技术,2009(6):1-4.
    [34]王宝寿,许晟,易淑群,王元虎,朱小敏.水下推力矢量特性试验研究[J].船舶力学,2000,4(5):9-15.
    [35]单雪雄,杨荣国,叶取源.具有推力矢量控制系统的导弹流体动力[J].上海交通大学学报,2001,35(4):625-629.
    [36] Z. P. Jiang. Global Tracking Control of Underactuated Ships by Lyapunov'sDirect Method. Automatica.2002,38(2):301-309.
    [37] A. Behal, D. M. Dawson, W. E. Dixon, et al. Tracking and RegulationControl of an Underactuated Surface Vessel with Nonintegrable Dynamics.IEEE Transactions on Automatic Control.2002,47(3):495-500.
    [38] K. D. Do, Z. P. Jiang, J. Pan. Underactuated Ship Global Tracking underRelaxed Conditions. IEEE Transactions on Automatic Control.2002,47(9):1529-1536.
    [39] A.P. Aguiar, J. P. Hespanha. Trajectory-Tracking and Path-Following ofUnderactuated Autonomous Vehicles with Parametric Modeling Uncertainty.IEEE Transactions on Automatic Control.2007,52(8):1362-1379.
    [40] F. Repoulias, E. Papadopoulos. Planar Trajectory Planning and TrackingControl Design for Underactuated AUVs. Ocean Engineering.2007,34:1650-1667.
    [41] Li J.W., Song B.W., Shao C. Tracking Control of Autonomous UnderwaterVehicles with Internal Moving Mass. Acta Automatica Sinica,2008,34(10):1319-1323.
    [42] J. R. Azinheira, A. Moutinho. E. C. de Paiva. A Backstepping Controller forPath-tracking of an Underactuated Autonomous Airship. Internation Journalof Robust and Nonlinear Control.2009,19(4):418-441.
    [43] J. Ghommam, F. Mnif. Coordinated Path-Following Control for a Group ofUnderactuated Surface Vessels. IEEE Transactions on Industrial Electronics.2009,56(10):3951-3963.
    [44] K. D. Do, J. Pan. Robust Path-following of Underactuated Ships: Theory andExperiments on a Model Ship. Ocean Engineering.2006,33(10):1354-1372.
    [45]杨波,方华京.基于LQG/LTR的水下航行器多变量鲁棒控制[J].船海工程,2008,37(2):142-144.
    [46] M. J. Zhang, T. J. Tarn. A Hybrid Switching Control Strategy for Nonlinearand Underactuated Mechanical Systems. IEEE Transactions on AutomaticControl.2003,48(10):1777-1782.
    [47] Ma Baoli. Global κ-exponential Asymptotic Stabilization of UnderactuatedSurface Vessels. Systems and Control Letters.2009,58(3):194-201.
    [48]张少伟,俞建成,张艾群.水下滑翔机垂直面运动优化控制[J].控制理论与应用,2012,29(1):19-26.
    [49] K. Pathak, J. Franch, S. K. Agrawal. Velocity and Position Control of aWheeled Inverted Pendulum by Partial Feedback Linearization. IEEETransactions on Robotics.2005,21(3):505-513.
    [50] A. De Luca, R. Mattone, G. Oriolo. Stabilization of an Underactuated Planar2R Manipulator. International Journal of Robust and Nonlinear Control.2000,10(4):181-198.
    [51] TIAN Y P, LI S H. Time-varying control of a class of nonholonomicsystems[A]. Preceedings of the2001IEEE International Conference onControl Applications[C], Mexico, September2007:972-977.
    [52] C. Silvestre, A. Pascoal, I. Kaminer. On the Design of Gain-scheduledTrajectory Tracking Controllers. International Journal of Robust andNonlinear Control.2002,12(9):797-839.
    [53] I. Kaminer, A. Pascoal, E. Hallberg, et al. Trajectory Tracking forAutonomous Vehicles: An Integrated Approach to Guidance and Control.Journal of Guidance, Control, and Dynamics.1998,21(1):29-38.
    [54] W. J. Rugh, J. S. Shamma. Research on Gain-Scheduling. Automatica.2000,36(10):1401-1425.
    [55] S. AI-Hiddabi, N. Mcclamroach. Tracking and Maneuver Regulation Controlfor Nonlinear Nonminimum Phase Systems: Application to Flight Control.IEEE Transactions on Control Systems Technology.2002,10(6):780-792.
    [56] T. Dierks, S. Jaganathan. Output Feedback Control of a Quadrotor UAVUsing Neural Networks. IEEE Transactions on Neural Networks.2010,21(1):50-66.
    [57] A. Saeed, E. M. Attia, A. A. Helmy, et al. Control of Underactuated-shipManeuvers Using Neural Gain Compensators. Proc. of the ASME DynamicSystems and Control,2005, Orlando:849-854.
    [58] A. A. G. Siqueira, M. H. Terra. Neural Network-based H-infinity Control forFully actuated and Underactuated Cooperative Manipulators. ControlEngineering Practice.2009,17(3):418-425.
    [59] M. I. EI-Hawwary, A. L. Elshafei, H. M. Emara, et al. Adaptive FuzzyControl of the Inverted Pendulum Problem. IEEE Transactions on ControlSystems Technology.2006,14(6):1135-1144.
    [60] C. L. Hwang, H. M. Wu, C. L. Shin. Fuzzy Sliding-Mode UnderactuatedControl for Autonomous Dynamic Balance of an Electrical Bicycle. IEEETransactions on Control Systems Technology.2009,17(3):658-670.
    [61] O. Begovich, E. N. Sanchez, M. Maldonado. Takagi-Sugeno Fuzzy Schemefor Real-time Trajectory Tracking of an Underactuated Robot. IEEETransactions on Control Systems Technology.2002,10(1):14-20.
    [62] V. Sankaranarayanan, A. D. Mahindrakar. Control of a Class ofUnderactuated Mechanical Systems Using Sliding Modes. IEEETransactions on Robotics.2009,25(2):459-467.
    [63] D. Schoerling, C. V. Kleeck, F. Fahimi, et al. Experimental Test of a RobustFormation Controller for Marine Unmanned Surface Vessels. AutonomousRobots.2010,28(2):213-230.
    [64] R. Martinez, J. Alvarez, Y. Orlov. Hybrid Sliding-Mode-Based Control ofUnderactuated Systems with Dry Friction. IEEE Transactions on IndustrialElectronics.2008,55(11):3998-4003.
    [65]桑恩方,庞永杰,卞红雨.水下机器人技术[J].机器人技术与应用,2003(3):8-13.
    [66]马伟锋,胡震. AUV的研究现状与发展趋势[J].火力与指挥控制,2008,33(6):10-13.
    [67]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000.
    [68]徐玉如,庞永杰,甘永等.智能水下机器人技术展望[J].智能系统学报,2006,11(1):9-16.
    [69] Thor I, Fossen. Guidance and control of ocean vehicles[M]. Chichester: JohnWiley and Sons,1994.
    [70] D.A. Jones, D.B. Clarke, I.B. Brayshaw, J.L. Barillon, and B. Anderso. Thecalculation of hydrodynamic coefficients for underwater vehicles[M].Defense Science and Technology,2002.
    [71] Y. H. Wang, S. X. Wang. Dynamic modeling and three-dimensional motionanalysis of underwater gliders[J]. China Ocean Engineering.2009,23(3):489-504.
    [72]王延辉.水下滑翔器动力学行为和鲁棒控制策略研究[D].天津:天津大学博士学位论文,2007.
    [73] Yu Zhang, Liang Zhang, and Tiejun Zhao. Discrete decentralized supervisorycontrol for underwater glider[J]. Intelligent Systems Design andApplications,2006,103-106.
    [74] J. G Graver. Underwater gliders: dynamics, control and design[D]. USA:Princeton University,2003.
    [75] Slotine, J., Li, W. Applied Nonlinear Control[M]. Prentice-Hall, NJ, USA.1991.
    [76] Salgado-Jimenez, T., Spiewak, J.M., Fraisse, P., Jouvencel, B.. A robustcontrol algorithm for AUV: based on a high order sliding mode[C].//In theProceedings of the MTS/IEEE International Conference, OCEANS’04, Kobe,Japan, November9-12,2004,276-281.
    [77] Song, F., Smith, S.. Design of sliding mode fuzzy controllers for anautonomous underwater vehicle without system model[C].//In: Proceedingsof the MTS/IEEE Conference OCEANS’2000MTS/IEEE,2000,835-840.
    [78] Prestero. T. Verification of a Six-Degree of Freedom Simulation Model forthe REMUS Autonomous Underwater Vehicle[D]. MS Thesis, MassachusettsInstitute of Technology, Joint Program in Applied Ocean Science andEngineering,2001.
    [79] Josserand. T. M.. Optimally-Robust Nonlinear Control of a Class of RoboticUnderwater Vehicles[D]. PhD Thesis, The University of Texas at Austin,2006.
    [80] D. R. Yoerger, J. G. Cooke, and J. J. E. Slotine. Robust Trajectory Control ofUnderwater Vehicles[J]. IEEE Journal of Oceanic Engineering,1985(10):462-470.
    [81] T.I. Fossen and S.I.Sagatun Adaptive Control of Nonlinear Systems[J]. ACase Study of Underwater Robotic Systems Journal of Robotic Systems,1991,8(3):393-412.
    [82] Healey A. J and Leonard D Multivariable sliding mode control forautonomous diving and steering of unmanned underwater vehicles[J]. IEEEJournal of Ocean Engineering,1993,18(3):327-339.
    [83] Roberto Cristl. FotisA. Papoulias, and Anthony J. Healey. Adaptive SlidingMode Control of Autonomous Underwater Vehicles in the Dive Plane[J].IEEE Journal of Oceanic Engineering,1990,15(3):152-160.
    [84] A. P. Aguiar, A. M. Pascoal. Regulation of a Nonholonomic AutonomousUnderwater Vehicle with Parametric Modeling Uncertainty Using LyapunovFunctions[C]//Proc. of the IEEE Conference on Decision and Control,2001,Orlando:4178-4183.
    [85] A. P. Aguiar, A. M. Pascoal. Global Stabilization of an UnderactuatedAutonomous Underwater Vehicle via Logic-based Switching[C]//Proc. of theIEEE Conference on Decision and Control,2002, Las Vegas:3267-3272.
    [86] K. D. Do, Z. P. Jiang, J. Pan, et al. A Global Output-feedback Controller forStabilization and Tracking of Underactuated ODIN: A Spherical UnderwaterVehicle[J]. Automatica.2004,40:117-124.
    [87] V. Sankaranarayanan, A.D. Mahindrakar, R.N. Banavar. A SwitchedController for an Underactuated Underwater Vehicle[J]. Communications inNonlinear Science and Numerical Simulation.2008,13(10):2266-2278.
    [88] A. P. Aguiar, J. P. Hespanha, A. M. Pascoal. Switched Seesaw Control for theStabilization of Underactuated Vehicles[J]. Automatica.2007,43:1997-2008.
    [89] Lee Chen Hui, Wang Sheng De. A self-organizing adaptive fuzzycontroller[J]. Fuzzy Sets and Systems,1996,80:295-311.
    [90] Feng. Z. and R. Allen. Reduced order H∞control of an autonomousunderwater vehicle[J]. Control Engineering Practice,2004,15(12):1511-1520.
    [91] Y. S. Kim, J. Lee, S. K. Park, et al. Path Tracking Control for UnderactuatedAUVs Based on Resolved Motion Acceleration Control[C].//Proc. the FourthInternational Conference on Autonomous Robots and Agents,2009,Wellington:511-515.
    [92] T. Salgado-Jimenez, B. Jouvencel. Using a High Order Sliding Modes forDiving Control a Torpedo Autonomous Underwater Vehicle[C]//MTS/IEEEConference on Celebration the Past-Teaming Toward the Future,2003, SanDiego:934-939.
    [93] M.S. Naik, S.N. Singh. State-dependent Riccati Equation-based Robust DivePlane Control of AUV with Control Constraints[J]. Ocean Engineering.2007,34(11-12):1711-1723.
    [94] L. Lapierre, D. Soetanto. Nonlinear Path-following Control of an AUV[J].Ocean Engineering.2007,34(11-12):1734-1744.
    [95] J. H. Li, P. M. Lee. Asymptotic Diving Control Method for Torpedo-typeUnderactuated AUVs. Ocean2008, Quebec, Canada.
    [96] P. Batista, C. Silvestre, P. Oliveira. A Sensor-Based Controller for Homing ofUnderactuated AUVs[J]. IEEE Transactions on Robotics.2009,25(3):701-716.
    [97] P. Batista, C. Silvestre, P. Oliveira. A Quaternion Sensor Based Controllerfor Homing of Underactuated AUVs[C]//Proc. of the45thIEEE ConferenceonDecision and Control,2006, San Diego:51-56.
    [98] C. A. Woolsey. Directional Control of a Slender, Underactuated AUV UsingPotential Shaping[C]//Proc. of the45th IEEE Conference on Decision andControl,2006, San Diego:6826-6831.
    [99] C. A. Woolsey, L. Techy. Cross-track Control of a Slender, UnderactuatedAUV Using Potential Shaping[J]. Ocean Engineering.2009,36(1):82-91.
    [100] J. E. Refsnes, K. Y. Pettersen, A. J. Srensen. Control of Slender BodyUnderactuated AUVs with Current Estimation[C]//Proc. of the45thIEEEConference on Decision and Control,2006, San Diego:43-50.
    [101] J. E. Refsnes, A. J. Srensen, K. Y. Pettersen. Model-Based Output FeedbackControl of Slender-Body Underactuated AUVs: Theory and Experiments[J].IEEE Transactions on Control Systems Technoloy.2008,16(5):930-946.
    [102] L. Lapierre, B. Jouvencel. Robust Nonlinear Path-Following Control of anAUV[J]. IEEE Journal of Oceanic Engineering.2009,33(2):89-102.
    [103] Borenstein J., Koren Y. Real-time Obstacle Avoidance for Fast MobileRobot[J]. IEEE Trans. System and Man Syber,1989,19(5):1179-1187.
    [104] Takeuchi T, Nagai Y, Enomoto N. Fuzzy Control of a Mobile Robot forObstacle Avoidance[J]. Information Science,1988,43:231-248.
    [105]曹辉进.自主式水下航行器建模与运动控制仿真研究[D].天津:天津大学硕士论文,2004.
    [106]马岭,崔维成.基于模糊混合控制的自治水下机器人路径跟踪控制[J].控制理论与应用.2006,23(3):341-346.
    [107]夏庆锋,刘健.模糊滑模控制在AUV控制中的应用[J].微计算机信息,2010,26(4-1):26-28.
    [108]周焕银,刘开周,封锡盛.基于神经网络补偿的滑模控制在AUV运动中的应用[J].计算机应用研究,2011,28(9):3384-3386.
    [109]李春文,冯元馄.多变量非线性控制的逆系统方法[M].北京:清华大学出版社.1991.
    [110]杨志峰,雷虎民,李庆良,李炯.基于RBF神经网络的导弹鲁棒动态逆控制[J].宇航学报,2010,31(10):2295-2301.
    [111] Chen W H. Nonlinear disturbance observer-enhanced dynamic inversioncontrol of missile[J]. Journal of Guidance Control and Dynamics,2003,26(1):161-166.
    [112] Jacob Reiner, Cary J Balas and William L Garrard. Flight control designusing robust dynamic inversion and time-scale separation[J]. Automatic,1996,32(11):1493-1504.
    [113] Shamma J S. Analysis and design of gain-scheduled control systems[D].Cambridge: Massachusetts Institute of Technology,1988.
    [114] Shamma J S, Athans M. Analysis of gain scheduled control for nonlinearplants[J]. IEEE Trans. On Automatic Control,1990,35:898-907.
    [115] S. H. Lee. Fast Gain Scheduling on Tracking Problems Using DerivativeInformation[J]. Automatica.1997,33(12):2265-2268.
    [116] D. J. Leith, W. E. Leithead. Gain-Scheduled&Nonlinear Design: DynamicAnalysis by Velocity Based Linearisation Families[C]//International Journalof Control,1998b,70(2):249-269.
    [117] D. J. Leith, W. E. Leithead. Comments on Gain Scheduling Dynamic LinearControllers for a Nonlinear Plant. Automatica,1998d,34(6):1041-1043.
    [118] W. J. Rugh, J. S. Shamma. Research on Gain Scheduling[J]. Automatica.2000,36(10):1401-1425
    [119] D. J. Leith, W. E. Leithead. Survey of Gain-Scheduling Analysis&Design.Intenational Journal of Control,2000,73(11):1001-1025
    [120]曹春泉.可重复使用助推飞行器控制技术研究.哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [121] J. S. Shamma, M. Athans. Guaranteed Properties of Nonlinear GainScheduled Control Systems[C]//Proc.27th IEEE Conf. on Decision andControl,1988:2202-2208.
    [122] J. S. Shamma,M. Athans. Gain Scheduling:Potential Hazards and PossibleRemedies[J]. IEEE Control Systems Magazine,1991,12(3):101-107.
    [123] J. S. Shamma,M. Athans. Guaranteed Properties of Gain Scheduled Controlfor Linear Parameter Varying Plants[J]. Automatica,1991,27(3):559-564.
    [124] A. H. Rick. Analysing the Stability of NDI-based Flight Controllers withLPV Methods, Gerorge Papageorgiou[C]//2001AIAA2001-4039,1-11.
    [125] F. Blanchini, S. Mianib, C. Savorgnanb. Stability Results for LinearParameter Varying and Switching Systems[J]. Automatica.2007,43(4):1817-1823.
    [126] M. Sato. Inverse System Design for LPV Systems Using ParameterDependent Lyapunov Functions[J]. Automatica.2008,44(4):1072-1077.
    [127] E. Prempain, I. Postlethwaite. L2and H2Performance Analysis and GainScheduling Synthesis for Parameter Dependent Systems[J]. Automatica,2008,44(8):2081-2089.
    [128] L. Bruyee, A. Tsourdos, B. A. White. Quasilinear Parameter-VaryingAutopilot Design Using Polynomial Eigenstructure Assignment withActuator Constraints[J]. Journal of Guidance, Control, and Dynamics,2006,29(6):1282-1294.
    [129] Sigthorsson, D., Jankovsky, P. Serrani, A. Yurkovich, et.al. Robust LinearOutput Feedback Control of an Airbreathing Hypersonic Vehicle[J]. Journalof Guidance, Control, and Dynamics,2008,31(4):1052-1066.
    [130] F. Wu, Ke Dong, Gain-Scheduling Control of LFT Systems Using ParameterDependent Lyapunov Functions[J]. Automatica2006,42(3):39-50.
    [131] M. David, B. C. Chang. Stability Controller Design for Linear ParameterVarying System Using Parameter Feedback[J]. Journal of Guidance Control,and Dynamics,1998,21(6):891-898.
    [132] Gianluca Antonelli. On the use of adaptive/integral actions forsix-degrees-of-freedom control of autonomous underwater vehicles[J],Ocean Engineering,2007,32(2):300-312.
    [133] Poorya Haghi, Mahyar Naraghi, and Seyyed Ali Sadough Vanini. Adaptiveposition and attitude tracking of an AUV in the presence of ocean currentdisturbances[C]//CCA,2007:741-746.
    [134] M. Narasimhan and S.N. Singh, Adaptive input-output feedback linearizingyaw plane control of BAUV using dorsal fins[J], Oceanic Engineering,33(2006):1413-1430.
    [135] Poorya Haghi, Mahyar Naraghi, and Seyyed Ali Sadough Vanini. AdaptivePosition and Attitude Tracking of an AUV in the Presence of Ocean CurrentDisturbances[C]//16th IEEE International Conference on ControlApplications Part of IEEE Multi-conference on Systems and Control.2007:741-746.
    [136] G. Antonelli, Underwater robots, motion and force control ofvehicle-manipulator systems[M]. Springer-Verlag, Berlin,2003.
    [137] Santhakumar M., T Asokan. Attitude control of flatfish shaped autonomousunderwater vehicle[C]//ICIIS,2008,1-6.
    [138]夏国清,汤莉.基于动态神经网络的AUV航向自适应控制[J].船舶工程.2009,31(2):46-49.
    [139]赵新华.水下超高速航行体动力学建模与控制研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2008.
    [140]王茂励.超空泡航行体的数学建模与控制方法研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2008.
    [141]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策.2002,12(增刊):641-647.
    [142] I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Systematic Design ofAdaptive Controllers for Feedback Linearizable Systems[J]. IEEETransactions on Automatic Control,1991,36(11):1241-1253/
    [143] I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Adaptive Output-feedbackControl of a Class of Nonlinear Systems[C]//Proc. the30th Conference onDecision and Control,1991:1082-1087.
    [144] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic. Nonlinear and AdaptiveControl Design[M]. New York: John Wiley&Sons,1995.
    [145]胡跃明.非线性控制系统理论与应用.国防工业出版社,2001.
    [146] P. V. Kokotovic. The Joy of Feedback: Nonlinear and Adaptive[J]. IEEEControl System Magazine.1992,12(3):7-17.
    [147] H.K. Khalil著,Nonlinear Systems.朱义胜,董辉,李作洲等译.非线性系统.第三版.电子工业出版社.2005
    [148] A. Bateman, J. Hull, Zongli Lin. A Backstepping-based Low-and-high GainDesign for Marine Vehicles[J]. International Journal of Robust andNonlinear Control.2009,19(4):480-493.
    [149]张海鹏.鲁棒滑模反步控制法及其在减摇鳍中的应用.哈尔滨:哈尔滨工程大学博士论文,2004.
    [150] Z. Li, J. Sun, S. Oh. Design, Analysis and Experimental Validation of aRobust Nonlinear Path Following Controller for Marine Surface Vessels[J].Automatica.2009,45(7):1649-1658.
    [151] Wang Yufei, Jiang Changsheng, Wu Qingxian. Attitude tracking control forvariable structure near space vehicles based on switched nonlinearsystems[J]. Chinese Journal of Aeronautics,2013,2013,26(1):186-193.
    [152] Zhaoxu YU, Jianxu LUO, Ji LIU. Adaptive neural control for pure-feedbacknonlinear time-delay systems with unknown dead-zone: aLyapunov-Razumikhin method[J]. Journal of Control Theory andApplications,2013,11(1):18-26.
    [153]舒燕军,唐硕.轨控式复合控制导弹制导与控制一体化反步设计[J].宇航学报,2013,34(1):79-85
    [154]于瑞亭.欠驱动水面船舶的全局镇定控制方法研究[D].哈尔滨:哈尔滨工程大学博士论文,2012.
    [155] Yu yali, Jiang changhong, Wu haiwei. Backstepping Control of EachChannel for a Quadrotor Aerial Robot[C]//2010International Conference onComputer, Mechatronics, Control and Electronic Engineering (CMCE),Changchun, China:2010.
    [156] CAO Zhengcai1, ZHAO Yingtao, WU Qidi. Adaptive Trajectory TrackingControl for a Nonholonomic Mobile Robot[J]. Chinese Journal ofMechanical Engineering,2011,24(4):546-552.
    [157]姚绍福等.世界导弹大全(修订版)[M].北京:军事科学出版社,1998.
    [158]齐艳丽.美、俄战略弹道导弹的装备现状[J].导弹与航天运载技术,2003(1):53-58.
    [159]王德.世界现役潜射导弹的现状与动向[J].飞航导弹,2003(5):14-18.
    [160]严卫生.鱼雷航行力学[M].西安:西北工业大学出版社,2005.
    [161] J.D. Anderson, Computational Fluid Dynamics: The Basics withApplications. McGraw-Hill.1995,清华大学出版社,2002.
    [162]王福军,计算流体动力学分析[M].清华大学出版社,2004.
    [163] Ji-Hong Li, Pan-Mook Lee, Design of an Adaptive Nonlinear Controller forDepth Control of an Autonomous Underwater Vehicle[J]. Ocean Engineering,2005,32(2005):2165–2181.
    [164] F. Girosi and T.Poggio, Networks and the BestApproximation Property[J].Biological Cybernetics,1990,63(1990):169-176.
    [165] Murray RM, Sastry SS. Noholonomic motion planning: steering usingsinusoids[J]. IEEE Transactions on Automatic Control,1993,38(5):700-716.
    [166]曹科才.基于线性矩阵不等式的链式系统跟踪控制律设计[J].电子学报,2009,37(4):778-803.
    [167] Sabiha Wadoo, Pushkin Kachroo. Autonomous Underwater Vehicles:Modeling Control Design And Simulation[M]. New York:0CRC Press Inc,2011.
    [168] G. Oriolo, A. D. Luca, M. Vendittelli. WMR control via dynamic feedbacklinearization: Design, implementation and experimental validation[J]. IEEETransactions on Control Systems Technology,2002,10(6):835-852.
    [169] Bugajski D, Enns D. A dynamic inversion based control law with applicationto high angle of attack research vehicle [C]∥Proceeding of AIAA Guidance,Navigation, and Control Conference. Portland: AIAA,1990:826-839.
    [170]陈海兵,张曙光,方振平.加速度反馈的隐式动态逆鲁棒非线性控制律设计[J].航空学报,2009,30(4):597-603.
    [171]雷延花,陈士橹.非线性动态逆在大攻角导弹控制系统设计中的应用[J].弹箭与制导学报.2002,23(1):109-112.
    [172] F. Wu. Control of Linear Parameter Varying Systwms thesis[D]. Departmentof Mechanical Engineering. University of California. Berkeley,1995.
    [173]许江涛.可重复使用助推飞行器姿态控制和控制分配研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010.
    [174] Lee. L. Identification and Roburst Control of Linear Parameter VaryingSystems[D]. Department of Mechnical Engineering, University of California,Berkeley,1997.