同轴布喇格反射器的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率毫米亚毫米波源,在雷达、等离子体加热、高能加速器、通信等方面,有着重要的应用前景,一直以来受到各国的重视。而高功率毫米波器件是高功率微波技术的一个重要方向,布喇格反射器(Bragg reflector)是其中的一个重要分支,是目前国内外研究的热点。
     布喇格结构是一种一维光子晶体被广泛的应用于回旋自谐振脉塞(Cyclotron Autoresonance Maser,CARM),自由电子激光和微波领域。由于在高功率微波领域,它不仅可以提供很好的单模选择性,而且不影响相对论电子注的通过,因此被认为是最适合应用于毫米波、亚毫米波的微波器件。其中,近年来发展起来的同轴布喇格反射器(coaxial Bragg reflector)被公认优于普通的圆柱或者平面型布喇格反射器,受到专家学者的重视。
     本硕士学位论文利用数值模拟和软件仿真对同轴布喇格反射器进行了比较深入、全面的研究,取得了有价值的研究成果。
     首先研究了内外导体波纹槽相位差和槽深对同轴布喇格反射器性能的影响。我们分别运用了两种分析方法:一种是根据同轴布喇格反射器腔体内的电磁耦合方程编写仿真程序,来模拟反射器的性能;一种就是利用三维电磁仿真软件对反射器进行全面的仿真测试。
     为了改善布喇格反射器的性能,消除频率响应曲线的残余旁瓣,我们根据滤波器的原理,对布喇格反射器的波纹进行窗函数加权,分析了渐变同轴布喇格反射器的性能。结果显示,布喇格反射器的性能得到了明显提高,达到了我们预期的目标。
     在工程实施中,器件的安装调试不可能达到理想的要求,特别是同轴器件,偏心问题非常普遍,因此论文深入分析了同轴布喇格反射器内导体偏心的两种情况对反射器性能的影响,找出最优的解决方案,为工程提供有益的参考。
     本论文对同轴布拉格反射器的研究,其主要创新点是:
     1.利用三维电磁仿真软件CST研究了开余弦槽的同轴布喇格反射器内外波纹相位差和开槽深度对反射器的影响,得出当相位差为π时可获得反射系数接近1的最佳效果。
     2.用窗函数可以有效抑制同轴布喇格反射器的残余旁瓣,比较分析了加不同窗函数对同轴布喇格反射器性能的影响。
     3.首次考虑工程上的需要,研究了同轴布喇格反射器两种内导体偏心对反射器工作性能的影响,得出在内外波纹槽相位差等于π时,平行偏心和倾斜偏心都对同轴布喇格反射器的传输系数有很小的影响,甚至可以忽略不计,为工程实践提供了有益参考。
High-power radiation sources in millimeter and sub-millimeter waves have a great prospect of applications to radar, plasma heating, high-gradient linear colliders, and communications, and therefore, attract more and more attention in many countries. Microwave devices play an important role in high-power microwave technology. And as one of microwave devices, Bragg reflector is focused by researchers in the world.
     In the past years, Bragg structures have been widely applied as Electromagnetic Band-Gap periodic structures in cyclotron auto-resonance maser (CARM), free electron laser (FEL), and microwave field. Generally speaking, a Bragg reflector is regarded as the most suitable cavity structure in millimeter and sub-millimeter, because it can provide good mode selectivity and high quality factor for the selected mode.
     This dissertation designs a novel coaxial Bragg reflector, where both the outer wall and inner rod are corrugated with weak sinusoidal ripple, and makes the comprehensive study including numerical and software simulations. Several valuable academic achievements are obtained.
     Firstly, special simulations are done. Simulation results are compared with two ways. One way is that the reflection characteristics of the coaxial Bragg reflector are evaluated with the code we design according the coupled mode equations introduced in Chapter 2. Another is making use of CST software to analyze the characteristics. Compared to the first way, CST can provide us more comprehensive simulated results. The special simulation indicates that the corrugation phase and amplitude substantially affected the characteristics of the coaxial Bragg reflector.
     To optimize the characteristics, improved Bragg reflector with window distribution of the slot depth is present, based on a common technique in filter theory. The results in Chapter 5 show that the smooth of pass-band is improved effectively and the anticipative goal is achieved.
     Finally, two kinds of eccentricity between the outer-wall and inner-rod axes with the coaxial Bragg structure are studied in Chapter 6, because the two eccentricities always happen in practice. The results we obtain can offer the engineering references for the coaxial Bragg reflector.
     Main innovation points in the dissertation are as follows:
     1. The influence of corrugation phase and ripple depth on the bandwidth of coaxial Bragg reflector is studied by making use of the CST software. Specific simulation indicates the reflectivity of operating mode is close to 1 with a phase difference ofπ..
     2. The smoothness of pass band is well improved by introducing window techniques. The situations of Hamming window, Blackman window, Gauss window are studied employing CST.
     3. The effects of eccentricity between the outer-wall and inner-rod axes on the transmission band gap in a coaxial Bragg structure are analyzed. The influence of the eccentricity is minimized and becomes negligible when the phase difference is equal toπ.
引文
[1]贝克等编,高功率微波源于技术,《高功率微波源与技术》翻组,清华大学出版社,2005年
    [2]吴诗信,莫伯锦,高功率微波,电子科技大学出版社,1996年
    [3]张辉波,同轴波导CARM放大器的非线性研究,西南交通大学硕士学位论文,2004年
    [4]温熙森,光子/声子晶体理论与技术,科学出版社,2006年
    [5]李彦,金属EBG结构与波导模式分析,东南大学工程硕士论文,2006年
    [6]张永明,电磁带隙周期结构的电磁特性解析分析,哈尔滨工业大学工程硕士论文,2006年
    [7]顾茂章,微波技术,第二版,清华大学出版社,1989年
    [8]吴鸿适,微波电子学原理,科学出版社,1987年
    [9]黄宏嘉,微波原理,科学出版社,1963年
    [10]刘盛纲,微波电子学导论,国防工业出版社,1985年
    [11]张克潜,李德杰,微波与光电子学中的电磁理论,第二版,电子工业出版社,2001年
    [12]墙棘,李宏福,杨仕文.布喇格谐振腔的分析和计算,电子学报,23(6),46-49,1995年
    [13]J.J.Barroso and J.P.Leite Neto,"Design of coaxial Bragg reflectors," IEEE Trans.On Plasma Sci.,34,666-672,Jun.(2006).
    [14]V.L.Bratman,N.S.Ginzburg,G.S.Nusinovich,M.L.Petlin,and P.S.Strelkov,"Relativistic gyrotrons and cyclotron autoresonace masers," Int.J.Electronics,51,541-567,(1981)
    [15]A.Yariv and M.Nakamura,"Periodic Structures for Integrated Optics," IEEE J.Quantum Electronics,QE-13,233-253,Apr.(1977).
    [16]S.Alberti et al.,"Experimental Study of 28 GHz High-Power Long-Pluse Cyclotron Autoresonance Maser Oscillator," Phys.Rev.Lett.71,2018-2021,Sept.(1993).
    [17] I. V. Konoplev, P. McGran, A. D. R. Phelps, A. W. Cross, and K. Ronald, "Observation of photonic band-gap control in one-dimensional Bragg structures," Appl. Phys. Lett. 87, 121104(2005).
    [18] H. Kogelnik, and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Laser," J. Appl. Phys.43, 2327-2335, May (1972).
    [19] C. K. Chong et al., "Bragg reflectors," IEEE Trans. On Plasma Sci., 20, 393-402, Jun. (1992).
    [20] S. Albert et al., "Experimental Study of a 28 GHz High-Power Long-Pule Cyclotron Autoresonance Maser Oscillator," Phys. Rev. Lett. 71, 2018-2021, Sept. (1993).
    [21] R. B. McCowan, A. W. Filflet, S. H. Gold,V. L. Granatstein, and M. C.Wang, "Design of a waveguide resonator with rippled wall reflectors for a 100 GHz CARM oscillator experiment," Int. J. Electronics, 65, 463-475,(1988).
    [22] A. J. Palmer, "Coupled-mode theory of overmoded cylindrical metal Bragg-reflectors," IEEE J. Quantum Electron. QE-23, 65-70, Jan. (1987).
    [23] Y. X. Lai and S.C. Zhang, "Experimental Examination of Multi-Mode Coupling Theory of a Coaxial Bragg reflector," China Sciencepaper Online, A200707-235, (2007).
    [24] Y. X. Lai, S. C. Zhang, H. B. Zhang, C.R. Qiu, Q.Xin, B. Chai, and Y. Y. Kong, "Design of a Coaxial Bragg Resonator for a 250 GHz Cyclotron Autoresonance Maser Oscillator," The Joint 32th International Conference on Infrared and Millimeter Waves & 15th International Conference on Terahertz Electronics Proceeding, (IEEE, Cardiff, 2007), pp.722-723.
    [25] Y. X. Lai and S.C. Zhang, "Multi-mode Coupling in a Coaxial Bragg Reflector," China Sciencepaper Online, A200706-1942, (2007)
    [26] I. V. Konoplev, P. McGran, K. Ronald A. W. Cross, and A. D. R. Phelps,"Wave interference and band control in multiconductor one-dimensional Bragg reflectors," J.Appl.Phys.97,073101-1-073101-7,Mar.(2005).
    [27]R.B.Mc.Cowan et al.,"The Design of a 100-GHz CARM oscillator experiment," IEEE Trans.Electron Devices.36,1968-1975,Sept.(1989).
    [28]Y.X.Lai,S.C.Zhang,and H.B.Zhang,"A coaxial Bragg reflector for cyclotron autoresonance maser," IEEE Microwave and Wireless Components Lett.,vol.17,no.5,pp.328-330(2007).
    [29]Y.X.Lai and S.C.Zhang,"Multi-wave interaction formulation of a coaxial Bragg structure and its experimental verification,"Physics of Plasmas,vol.14,no.11,pp.113301.(2007)
    [30]周小侠,电大尺寸电磁结构的时域仿真实践,电子科技大学工程硕士论文,2005年
    [31]Computer Simulation Technology(CST),"User's Manual 5,in CST-Microwave Studio",(2003).
    [32]T.Weiland."Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modeling,Vol.9,pp.295-319,(1996).
    [33]张敏,CST微波工作室~(?)用户全书(卷一/卷二),电子科技大学出版社,2004.
    [34]陈晓辉,赖颖昕,张世昌,同轴布喇格反射器数值模拟的比较研究,全国微波毫米波会议论文集,1388-1390(2007)
    [35]X.H Chen,Y.X.Lai,and S.C.Zhang,"Comparative Study of a 15GHz Coaxial Bragg Reflector",The 2008 Global Symposium on Millimeter Waves Proceeding.
    [36]P.McGrane,I.V.Konoplev,K.Ronal,A.W.Cross and A.D.R.Phelps,"Experimental and theoretical study of constructive and destructive wave interference in a coaxial 1D Bragg reflectors," in Joint 29th Int,Conf.Infrared Millimeter Waves and 12th Int.Conf.on Terahertz Electronics Dig.,Karlsruhe,177-178(2004).
    [37]Tae-Yeoul Yun and Kai Chang,"Uniplanar One-Dimensional Photonic-Bandgap Structures and Resonators," IEEE Trans.On Microwave Theory and Techniques,49,549-553,March(2001)
    [38]Fredric J.Harris,"On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," Proceedings of The IEEE,vol.66,no.1,51-83 Jan.(1978)
    [39]刘广臣,张惠安,贾爱宾,数字信号处理中的加窗问题研究,长沙大学学报,第17卷,第4期,59-62,2003年
    [40]樊平毅,冯重熙,窗函数在成形滤波器设计中的应用,通信学报,第17卷,第2期,75-80,1996年
    [41]闫敦豹,高强,付云起,袁乃昌,加窗技术在微带EBG结构中的应用,微波学报,第20卷,第4期,60-63,2004年
    [42]安士全,曹锐,张立军,光子带隙加窗技术在功率放大器中的应用,中国电子科学研究院学报,第2卷,第1期,70-72,2007年
    [43]程佩青,数字信号处理教程,第二版,清华大学出版社,2001年
    [44]胡广书,数字信号处理理论、算法与实现,第二版,清华大学出版社,2003年
    [45]Charles S.Williams,Designing Digital Filters,Prenice-Hall,Inc.,Englewood Cliffs,New Jersey,(1986)
    [46]X.H.Chen,S.C.Zhang,and Y.X.Lai,"Suppression of residual side-lobes in a coaxial Bragg reflector",Int.J.Infrared and Millimeter Waves,(accepted for publication in 2008)
    [47]Clemens M.Zierhofer,"Data Window With Tunable Side Lobe Ripple Decay," IEEE Signal Processing Lett.,vol.14,no.11,824-827 Nov.(2007)
    [48]Y.X.Lai and S.C.Zhang,"Separation of band-gap overlap in a coaxial Bragg structure operating in higher-order mode at Terahertz frequency," Physics of Plasmas,vol.15,no.3,033301,(2008)
    [49]Y.X.Lai and S.C.Zhang,"Band Gap and Frequency Response in an Overmoded Coaxial Bragg Reflector," The 2008 Global Symposium on Millimeter Waves Proceeding.
    [50]J.Pretterebmer and M.Thumm,"Design of Improved Bragg Reflectors for Resonators In Overmoded High-Power Microwave Oscillators," in Dig. Infrared and Millimeter Wave Conf. SPIE 1514,298-300(1990).
    [51] Q. S. Wang, D. B.McDermott, A.T. Lin, N. C. Luhmann, and K. R. Chu, "High power CARM for high gradient RF linac," in Proc.1990 SPIE(1126) Conf. Intense Microwave and Particle Beams, 220-227(1990).
    [52] Y. X. Lai, S. C. Zhang, H. B. Zhang, "Calculation approach of the RF-field distribution in an eccentrically coaxial cavity," Asia-Pacific Microwave Conference Proceedings, 2005, APMC 2005, vol.3, pp.l635-1637,(2005)
    [53] S.C. Zhang, and M. Thumm, "Gyrokinetic description of the structural eccentricity on the strationg current of a coaxial-cavity gyrotron," Phys. Plasmas. 20,157-170(1999).
    [54] Shi-Chang Zhang, Xiao-Hui Chen, and Ying-Xin Lai, "Effect of Eccentricity on Transmission in a Coaxial Bragg Structure," Int. J. Infrared and Millimeter Waves, 28,1043-1050 (2007)
    [55] www.cst-china.com