高硬度球面磨削机理及磨削质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,高硬度金属基材料(如WC-Co,Ni60 ,STL20)的发展很快,它们具有耐高温、耐高压、耐磨损、抗热冲击、抗热腐蚀等特性,并在钢铁冶炼、石油化工、核电等重大工程项目中发挥着越来越大的作用。这类材料在平面磨削加工的研究已经开展,但在球面磨削上研究工作还较少,众多基础问题有待探明。虽然在磨削机理研究上球面磨削可以部分借鉴平面磨削的研究成果,但在磨削工艺基础理论上球面磨削特点鲜明,在实际磨削过程中发现越来越多亟待研究的问题。本文针对高硬度材料在球面磨削中以何种方式去除以及球面磨削质量如何提高此两大问题在高硬度球面磨削机理和磨削质量控制上展开了系统的研究。
     本文首先针对高硬度球面加工的两大难点,即工件表面硬度高(HRC≥70)材料难以去除以及形状精度要求高等,开发了一种新型的高硬度回转球面精密磨削装备,该装备在保证被加工球面精度和表面粗糙度的前提下,可用一种直径规格的砂轮磨具实现不同直径规格球面的精密磨削加工。
     从利于实验观察和测量的角度出发,采用杯形砂轮平面封闭分布式磨削来揭示球面磨削机理。首先系统的研究了高硬度材料封闭分布式磨削的磨削力。构造了表征封闭分布式磨削力的参数模型,包括有效磨削宽度、有效磨削面积、动态有效磨粒数等,研究了磨削加工参数对单位面积磨削力、单颗粒磨削力和磨削分力比的影响规律,并通过实验验证了这些模型的准确性。其次以磨削力的实验结果及所建立的理论模型为重要依据,结合工件磨削表面微观形貌,揭示了高硬度材料的去除机理。
     研究了杯形砂轮封闭分布式磨削方式下磨削加工参数对材料表面粗糙度的影响规律,在此基础上,结合球面磨削加工的特点,提出降低球面磨削表面粗糙度的方案。首先基于球面磨削轨迹成型原理,从磨头转速和主轴转速出发,提出了磨削效率、阻滞轨迹封闭相位角、最小加工次数等衡量指标,逐次修正选择策略,提高迹线密度和分布均匀性;其次在综合考虑回转工作台摆动速度、磨削深度、磨头转速和主轴转速的基础上,建立了vogl快速BP网络模型,构造正交试验表,结合小步长算法,进一步优化工艺参数,降低球面粗糙度。
Currently, there is a booming development of high hardness coating materials with metal substrate, such as WC-Co, Ni60 and STL20, there are of high temperature resistance, high pressure resistance,wear resistance, thermal shock resistance and thermal corrosion resistance, and they play an important role in large-scale engineering projects such as steel-smelting, petrochemical industry and nuclear power. Research on such coating material is on the way in plane flied while not in sphere flied, spherical grinding mechanism can refer to that of plane grinding partly, but, as a unique curved surface, there are more and more problems that urgently to be solved. Therefore, in this dissertation, grinding mechanism and grinding quality control in machining spherical surface are researched.
     According to two difficulties in spherical surface machining, that is high hardness of workpiece surface and high form accuracy, a new high hardness spherical surface grinder is built, different diameter sphere can be grinded by one type wheel, and their sphericity and surface toughness can be guaranteed.
     In favor of experimental observation and measurement, the closed and distributed grinding was used to reveal the grinding mechanism. Firstly, the grinding force was researched in detail, grinding parameters, including effective grinding width, effective grinding area, number of effective dynamic grains and grinding force etc, were constructed, secondly, the characteristics of the grinding force was analyzed and the influence of grinding parameters (including the grinding depth, feeding speed of workpiece , grain size and the type of caking agent ) on the grinding force( including the grinding force of elemental area and each grain of the wheel ) and the grinding force ratio were analyzed, finally, based on the microscopic topography analysis and the experiment results, the mechanism of high hardness WC-Co material is revealed.
     The influence of grinding parameters (including the grinding depth, feeding speed of workpiece , grain size and the type of caking agent ) on the surface toughness( including the grinding force of elemental area and each grain of the wheel ) was analyzed, and according to the processing characteristic, a method to reduce surface toughness was proposed. On the basis of track molding theory, according to wheel speed and main spindle speed, grinding efficiency, phase angle to retard trajectory close, minimum machining time were presented. Then, take into account work table rotational speed and grinding depth, an improved vogl fast BP network model was built, orthogonal experimental table was designed, combining with small step search method and optimization of technology parameters, spherical surface roughness is improved finally.
引文
[1]沈阳高中压阀门厂.阀门制造工艺.北京,机械工业出版社, 1984
    [2]谢代田.标定用球体加工方法.机械制造, 1995, 5: 27-28
    [3]刘元林,刘兴,刘元柱,麻晓红.球体加工方法的研究与应用.煤矿机械, 2000,4: 31-32
    [4]任舒宪.大型回转曲面的坐标加工法.机械制造, 1994, 11: 17-18
    [5]曲恒剑.用经济型数控车床车球体的简易方法.机械工人(冷加工), 2002, 5: 52
    [6]陈国柱.经济型数控车床加工球体零件.机械工艺师, 1995, 8: 14-15
    [7]何正武.球体车削夹具.机械工人(冷加工), 2003, 11: 62
    [8]李汉民.空心球体的加工.机械工艺师, 1996, 11: 32-33
    [9]江九林.提高球体外表面加工精度的探讨.机床与液压, 1994, 2: 109-112
    [10]姚淑芹,李宗贺.用普通车床加工球体.阀门, 1994, 4: 35-36
    [11]钱子亮.双刀飞外球面车削工具.机械工人(冷加工), 1999, 7: 12
    [12]查继明.旋风切削外球面夹具.机械工人(冷加工), 2000, 5: 17
    [13]陈国柱,吕自力.可调车球体装置.机械制造, 1996, 4: 29
    [14]左宏.球面滚压加工.现代制造工程, 2003, 12: 112~113
    [15]王德拥译.球阀球体的滚压加工及专用机床.阀门, 1995, 3: 30-32
    [16]郑文虎.球面副的磨削加工.铁道机车车辆工人, 1994, 3: 1-3
    [17]杨铁昭.球阀球面的磨削加工.机械工艺师, 1997, 12: 32
    [18]邓朝晖,张璧,周志雄等.高硬度材料磨削的表面/亚表面损伤.湖南大学学报,29(5):61-71
    [19]王西彬,任敬心.结构高硬度材料磨削表面微裂纹的研究.无机材料学报,1996,11(4): 658-664
    [20]任敬心,康仁科,史兴宽著.难加工材料的磨削.北京:国防工业出版社,1999
    [21] Malkin S, Hwang TW. Grinding mechanisms for ceramics, Annals of the CIRP 1998, 45(2): 569-580
    [22] Lawn B. R. Fracture of brittle solids,2nd Editions. Cambridge University Press,1993, 249-306
    [23]龚江宏著.高硬度材料材料断裂力学.北京:清华大学出版社,2001
    [24] Mayer J. E, Fang G. P. Effect of grinding parameters on surface finish of ground ceramics, Annals of the CIRP 1994, 44(1): 279-282
    [25]邓朝晖.纳米结构高硬度材料涂层精密磨削机理及仿真预报技术的研究[D]博士论文湖南大学
    [26]吴琦.高硬度回转球面精密磨削技术的研究[D],博士论文,上海交通大学
    [27] Warneck G, Barth C. Optimization of the dynamic behavior of grindingwheel for grinding of hard and brittle materials using the finite element method, Annals of CIRP, 1995, 44(l):283-286
    [28] Hegeman J. B, J W, De Hossen J. T. Grinding of WC-Co hard metals, Wear, 2001, 248:187-196
    [29] Lee M. High temperature hardness of tungsten carbide, Metallurgical Transactions A, 1983, 14A: 1625-1629
    [30] Roweliffe D. J, Jayaram V, Hibbs M. K, et al. Compressive deformation and fracture in WC materials. Materials Science and Engineering A, 1998, 105-106: 299-303
    [31] Green wood R. M, Loretto M. H, Smallinan R. E. The defect structure of tungsten carbide in deformed tungsten carbide-cobalt composites. Acta Metall, 1982, 30: 1193-1196
    [32] Jayaram, V, Sinclair R, Roweliffe D. J. intergranular cracking inWC-6%Co: an application of the von Mises criterion, Acta Metall , 1983, 31(3):373-378
    [33] Larsen B J, Koyanagi E T. Abrasion of WC-Co alloys by quartz. Trans ASME, 1979, 101: 208-11
    [34] Larsen B J. Some mechanisms of abrasive wear of cemented carbide composite. Met.: Corros. Ind, 1980, 653: l-8
    [35] Larsen B J. Effect of composition. Microstructure and service conditions on the wear of cemented carbides. Journal of Metals, 1983(11): 35-42
    [36] Larsen B J. Binder extrusion in sliding wear of WC-Co alloys. Wear, 1985, 105:247-256
    [37] Anand K, Conrad H. Microstructure and scaling effect in the damage of WC-Co alloys by single impacts of Hard Particles. J.mater.Sci, 1998, 23:2931-2942
    [38] Faulring G, Ramalingam S. Oxide inclusions and tool wear in machining. Metal, Trans. A. 1979, 10: 1781-1792
    [39] Masuda M, Kuroshima Y, Chujo Y. Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials. Wear, 1993, 169:135-140
    [40] Naerheim Y,Trent E M. Diffusion wear of cemented carbide tools when cutting steel at high speeds. Metal Technology, 1977, 4: 548
    [41]于怡青,徐西鹏,沈剑云等,高硬度材料磨削机理及磨削加工技术研究进展.湖南大学学报,1999,Vol.26(2,增刊): 48-56
    [42]任敬心,史兴宽,磨削技术的新发展一硬脆材料光滑表面的超精密磨削.中国机械工程,1997,Vol.8(4): 106-110
    [43] Lawn B R, Marshall D B. Hardness, toughness, and brittleness: an indentation analysis. J. Amer. Ceram. Soc, 1979, 62( ): 347-350
    [44] Jahanmir S, Strakna T J, Quinn G D, et al. Effect of grinding on strength and surface integrity of silicon nitride: Part I, machining of advanced material. In: Machining of Advanced Materials, NIST Special Publication 847,1993, 263-277
    [45] Jahanmir S, Strakna T J, Quinn G D, et al. Effect of grinding on strength and surface integrity of silicon nitride: Part II,machining of advanced material. In: Machining of Advanced Materials川ST Special Publication 847,1993, 279-291
    [46] Ahn H S, Wei L H, Jahanmir S. Nondestructive detection of damage produced by a sharp indenter in ceramics. Transactions of the ASME, Journal of Engineering Materials and Technology, 1996,118: 402-409
    [47] Pfeiffer W, Hollstein T. Damage determination and strength prediction of machined ceramics by X-ray direction techniques. In: Machining of Advanced Materials, NIST Special Publication 847, Washington D C: Government Printing Office,1993, 235-245
    [48] Xu H. H. K, Jahanmir S. Simple technique for observing subsurface damage in machining of ceramic. J. Amer. Ceram. Soc., 1994,77: 1388-1390
    [49] Yoshikawa W., Zhang B, Tokura H. Observations of ceramic surface cracks by newly proposed methods. J.Ceram.Soc.Jpn. Int Ed.,1987,95:911-918
    [50] Liao T. W, Sathyanarayanan G, Plebani L J, et al. Characterization of grinding-induced cracks in ceramics. Int.J.Mech.Sci., 1995,37:1035-1050
    [51] Jia K, Fischer T E. Abrasion resistance of nanostructure and conventional carbides. Wear, 1996, 200: 201-214
    [52] S.Malkin, J. E. Ritter, Grinding Mechanism and Strength Degradation for Ceramics.Transactions of the ASME,Journal of Engineering for Industry, 1989,111(2): 167~173
    [53] T. W. Hwang, S. Malkin, Grinding Mechanism and Energy Balance for Ceramics,Transactions of the ASME,Journal of Manufacturing Science and Engineering, 1999, 121(4): 623~631
    [54] T. W. Hwang, C. J. Evans, S. Malkin, Size effect for specific energy in grinding of silicon nitride, Wear, 1999, 225~229: 862~867
    [55] T. W. Hwang, S. Malkin, Upper bound analysis for specific energy in grinding of ceramics, Wear, 1999, 231: 161~171
    [56] Jia K, Fischer T. E. Sliding wear of conventional and nanostructure carbides. Wear, 1997, 203-204: 310-318
    [57] J.Yoshioka, K. Koizumi, M.Shimizu, et al, Surface Grinding with Newly Developed Ultra Precision Grinding Machine, SME Technical Paper, 1982, MR82-930
    [58] H. K. T.nshoff, B. Karpuschewski, T. Mandrysch, et al, Grinding Process Achievements and Their Consequences on Machine Tools Challenges and Opportunities, Annals of the CIRP, 1998, 4 7(2): 651~668
    [59] Y. Furukawa, N. Morinuki, K. Kitagawa, et al, Development of ultra precision machine tool made of ceramics, Annual of the CIRP, 1986, 35(1): 279~282
    [60] P. A. McKeown, K. Carlisle, P.Shore, et al, Ultra-precision High Stiffness CNC Grinding Machines for Ductile Mode Grinding of Brittle Materials, Journal of the Japan Society of Precision Engineering, 1990, 806~813
    [61] L. Chouanine, H.Eda, J. Shimizu, Development of Key-Technology on the State-of-the-Art Machine Tool and Generalization of Grinding Forces under Ductile Mode Grinding Experiments, International Journal of the Japanese Society for Precision Engineering, 1998, 32(2): 98~103
    [62] G. K. Nnemann, H.Eichhorn, R.Petzold. Multi-Nano for the finish grinding of semiconductor materials, Industrial Diamond Review. 2000, (4): 301~303
    [63] G. K.Nnemann, H.Eichhorn, R.Petzold, Nanogrinder for high precision machining of silicon wafers, Industrial Diamond Review, 1999, (1): 30~33
    [64] D. J. Stephenson, J. Corbett, J. Hedge, Ultra Precision Grinding Using the Tetraform Concept, Abrasives Magazine, 2002, (1): 15~20
    [65] T. G. Bifano, T. A.Dow, R. O. Scattergood, Ductile Regime Grinding: A New Technology for Machining Brittle Materials, Transactions of the ASME,Journal of Engineering for Industry, 1991, 113(2): 184~189
    [66] T. G. Bifano, J. B. Hosler, Precision Grinding of Ultra-Thin Quartz Wafers, Transactions of the ASME, Journal of Engineering forIndustry, 1993, 115(3): 258~262
    [67] H. Ohmori, T. Nakagawa, Mirror Surface Grinding of Silicon Wafers with Electrolytic In-Process Dressing, Annals of CIRP, 1990, 3 9(1): 392~332
    [68]大森整,ELID研削加工技术,日本东京:工业调查会(日本),2000
    [69]刘利译.磨削加工的智能化.机电一体化.1998, 5:pp12-14.
    [70] Vishnupad, P. Shin, Y. C. Intelligent optimization of Grinding Processes Using Fuzzy Logic. Proceedingds of the institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. V 212, nB8, 1998: 647-660.
    [71] Wang. J. B. the Application of Intelligent Fuzzy Control Technique to Grinding Long-thin Shaft [J]. Key Engineering Materials.V 202-203, 2001: 445-458.
    [72] Lezanski, Pawel, et.al. An intelligent System for Grinding Process Control and Optimization. Modern Trends in Manufacturing CAMT Conference. 2003: 231-238.
    [73] T. WarrenLiao, L. J. Chen. A neural network approach for grinding processes: modeling and optimization. Int. J.Mach.ToolsMannufact. 1994, 34(7): 919-937.
    [74] Sakakura M, Inasaki I. A Neural Network Approach to the Decision-Making Process for Grinding Operations [J], Annals of the CIRP, 1992, 41(1):353-356.
    [75] Sathyanarayanan G, Lin I. J,Chen M. K.Neural network modeling and multi-object optimization of creep feed grinding og super-alleys [J], International journal of production research, 1992, 30(10): 2421-2438.
    [76] Yoneda T, Yamanaka M, Kakazu Y. Study on optimization of grinding conditions using neural networks on learning method when lacking a portion of learing data and detecting method of heterogeneous data [J], Journal of the Japan Society of precision Engineering, 1992, 58(7): 1239-1244.
    [77] RoweWB, LiY. Inasaki, I.Malkin, S, Applications of artificial intelligence in grinding [J], Keynote paper, Annals of the CIRP, 1994, 43 (2): 521-531.
    [78]李培生等.螺纹智能磨削的研究[J],机械工程学报,1992,28(1):14-19.
    [79]席光辉,龚小方.专家系统用于磨削精度控制研究[J],武汉汽车工业大学学报,1999,21(4):13-16.
    [80]徐志良等.高精度丝杠磨削的智能控制[J],华中理工大学学报,1992,20(Sup):148-151.
    [81]董秀林,史维祥.径向切入磨削加工的新程式及其自适应预测最优控制方法[J],磨床与磨削,1999(4):57-60.
    [82]周福章,董秀林.磨削质量智能控制的实现[J],轴承,2000,(12):12-15.
    [83]孙炜,毛建旭,王耀南等.一种基于专家模糊控制磨削加工质量控制系统[J],湖南大学学报,1998,(5):69-72.
    [84]贾春玉,李艳文,王茜慧.基于模糊神经网络进行磨削加工尺寸精度智能控制的研究[J],燕山大学学报,2001,(1):80-83.
    [85]刘贵杰,巩亚东,王宛山.基于模糊控制的外圆磨削数控系统研究[J].组合机床与自动化加工技术. 2002,(7):53-55.
    [86]刘贵杰,巩亚东,王宛山.普通外圆磨床数控化改造[J],机械与电子,2002,(6):32-34.
    [87]刘贵杰,巩亚东,王宛山.基于交流异步电机驱动磨床进给位移的自学习控制[J],东北大学学报,2001,22(3): 268-270.
    [88]刘贵杰,巩亚东,王宛山.平面磨床工作台位移的计算机控制系统[J],机床与液压,2001,(6):27-28.
    [89] XU Kai-zhou,HU De-jin,WEI Chen-jun.Vogl fast BP network and orthogonal experiment method in optimization of sphere grinding process parameters. Journal of Shanghai Jiaotong University, 2009, 43(12): 1956-1961.
    [90] SUN Lin, YANG Shi-yuan .Prediction for Surface Roughness of Profile Grinding and Optimization of Grinding Parameters Based on Least Squares Support Vector Machine.Journal of mechanical engineering,2009,45(10):254-260.
    [91] S.Agarwal,P. Venkateswara Rao.A new surface roughness prediction model for ceramic grinding.Proceedings of the Institution of Mechanical Engineers,2005,219(B11):811-821.
    [92] Rong-Tsong Lee,Yih-Chyun Hwang,Yuan-Cherng Chiou.Dynamic analysis and grinding tracks in the magnetic fluid grinding system Part II.The imperfection and ball interaction effects[J],Precision Engineering,2009,33:91-98.
    [93] S. J. Schneider, R. W. Rice, The Science of Ceramic Machining and Surface Finishing I, NBS Special Publication, 1972, 348
    [94] B. J. Hockey, R. W. Rice, The Science of Ceramic Machining and Surface Finishing II, NBS Special Pub lication, 1979, 562
    [95] S. Jahanmir, L. K. Ives, A. W. Ruff, et al, Ceramic Machining: Assessment of Current Practice and Research Needs in the United States, NIST Special Publication, 1992, 834
    [96] G. D. Quinn, L. K. Ives, S. Jahanmir, On the Fractorgarphic Analysis of Machining Cracks in Ground Ceramics: A Case Study on Silicon Nitride, NIST Special Publication, 2003, 996
    [97] R. Komanduri, D. A.Lucca, Y. Tani, Technological advances in fine abrasive processes, Annuals of the CIRP, 1997,4 6(2): 545-596
    [98] I. P. Tuersley, A. Jawaid, I. R. Pashby, Various methods of machining advanced ceramic materials, Journal of Materials Processing Technology, 1994, 42(4): 377~390
    [99] Zhang B. Surface integrity in machining hard brittle materials. Joumal ofJapan society for Abrasive Technology, 2003, 47(3):131-134
    [100] Zhang B,Zheng XL,Tokura H,et al. Grinding induced damage in ceramics, Journal of Material Processing Technology, 2002, 132: 353-364
    [101] Inasaki I, Grinding of hard brittle materials. Annals of the CIRP,1987,36(2):463471
    [102] Xiao-rui Fan, Michele H.Miller . Force analysis for grinding with segmental wheels [J].Machining Science and Technology, 2006, 10: 435-455.
    [103] T. Ji,D.M. Guo,G...H. Bian.Removal process technology of precision grinding for complicated surface part of high performance hard and brittle materials [J] .Key Engineering Materials,2008, 359: 123-127.
    [104] YE Wei-chang.Present state development of grinding technique [J]. Mechanical Science and Technology for Aerospace Engineering, 1996, 25(1):5-8.
    [105]邓朝晖,程文涛.基于神经网络的成形磨削表面粗糙度的研究[J],机械制造, 2006,44(7): 39-40.
    [106] DENG Zhao-hui, CHENG Wen-tao.Study on the surface roughness in grinding based on neuralnetworks [J]. Machinery, 2006, 44(7):39-40.
    [107]张永宏,胡德金,张凯.基于进化神经网络算法的曲面磨削粗糙度预测[J].上海交通大学学报, 2005, 39(3):373-376.
    [108] ZHANG Yong-hong, HU De-jin, ZHANG Kai. Prediction of the surface roughness in curve grinding based on evolutionary neural networks [J].Journal of Shanghai Jiaotong University, 2005, 39(3): 373-376.
    [109] Wen Xiulan, Song Aiguo.An immune evolutionary algorithm for sphericity error evaluation [J]. International Journal of Machine Tools & Manufacture, 2004, 44(10): 1077-1084
    [110]许开州,魏臣隽,胡德金,展成法球面磨床的几何误差补偿[J],上海交通大学学报, 2010, 44(4):478-483.
    [111] CHENG Xiao-ping, HU Shu-gen. Application of neural network and orthogonal experiment method in optimization of injection process parameter [J]. Die & Mould Industry, 2007, 33(7):1-5.
    [112] Liu xingfa .Application of neural network and spheric harmonics function to system error correction of electro-optical tracker system with X-Y gimbal [A]. International Symposium on Advanced Optical Manufacturing and Testing Technologies[C], Chengdu (CN): SPIE, 2007: 67221A.1 - 67221A.6.
    [113] Zhu Xiangyang, Ding Han, Michael Y.Wang. Form Error Evaluation: AnIterative Reweighted Least Squares Algorithm [J]. Journal of Manufacturing Science and Engineering, 2004, 126(3):535-541.
    [114] Zhang K, Butler C, Yang Q, et al. A fiber opticsensor for the measurement of surface roughness and displacement using artificial neural networks [J].IEEE Transactions on Instrumentation andMeasurement, 1997, 46(4): 899-902.
    [115] Gott R M, Martinez A B. Estimation of compositeroughness model parameters via a backpropagation neural network [A]. Proceedings of the 37th MidwestSymposium on Circuits and Systems[C]. Lafayette: IEEE, 1994. 581-586.
    [116] Ben Fredj N, Amamou R, Rezgui M A. Surface roughness prediction based upon experimental designand neural network models [A].IEEE International Conference on Systems, Man and Cybernetics[C].Tunisia: IEEE, 2002.
    [117]董波,李郝林.恒力磨削中的闭环控制[J],精密制造与自动化, 2008, 1: 26-28.
    [118]何秀寿,闭环控制力磨削实验研究[J],精密制造与自动化,2008, 4: 26-34.
    [119]喻道远,段正澄,提高磨削加工圆度的磨削力适应控制的研究[J],机械工业自动化, 1989, 01: 29-35.
    [120]李成群,贠超,孙云权,机器人柔性磨削机床及磨削力补偿研究[J],机床与液压, 2008, 36(3): 49-52.
    [121] Kirikera G R,Shinde V,Schulz M J,et a1.Damage localization in composite and metallic structures using a structural neural system and simulated acoustic emissions[J].Mechanical Systems and Signal Processing, 2007, 21(1): 280-297.