一种基于切削稳定性的新型高速立铣刀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削作为制造业中的一种重要共性基础技术,因其具有提高生产率和加工精度、降低切削力和能耗、简化工艺流程、缩短生产周期等优点,在航空航天、汽车、模具等行业中得到广泛的应用。然而,由于高速切削刀具技术性强,而国内高速切削刀具技术在刀具基体和涂层材料的研发、刀具制造工艺技术、刀具安全技术、刀具应用技术以及高速切削机理的基础共性研究等方面与国外存在较大差距,自主研发能力弱,导致我国高速切削刀具大部分依赖进口。本文以提高高速铣削稳定性为目标,通过理论研究、数值仿真以及试验研究等手段,对高速铣削过程中的动态切削力、切削颤振、铣削稳定性以及不等齿距动平衡进行深入研究,提出了新型不等齿距高速立铣刀结构设计的思路,所做的主要工作包括:
     (1)对高速铣削颤振机理与切削力进行了研究。研究高速铣削被加工表面颤振振纹,通过测量振纹间距以及分析切削力信号两种方法计算颤振频率,结果表明两者是一致的。根据该结论,基于加工表面轮廓为刀具切削刃运动形成的映射的原理,提出了一种用于研究高速铣削颤振的新方法,并设计了快速落刀实验装置。基于微刃瞬时刚性力模型,建立了高速铣削过程的静、动态切削力模型。
     (2)对等齿距与不等齿距立铣刀的切削稳定性进行了对比研究。根据切削力模型和动力学微分方程,求解出铣削稳定域的极限切深和极限转速,为绘制切削稳定性极限图提供理论支持。通过分析等齿距与不等齿距铣刀结构特点及铣削力频谱的差异,揭示不等齿距铣刀抑制颤振的本质原因是通过不等的齿间夹角,改变延时时间及颤振产生的条件,使振动频谱更加分散。通过仿真和试验手段,研究等齿距和不等齿距铣刀高速切削时的稳定性,以及齿距差角对不等齿距铣刀切削稳定性的影响规律,研究表明:增大齿距差角可以提高不等齿距铣刀的切削稳定域,有效抑制铣刀高频振动。
     (3)对不等齿距铣刀的动平衡进行了深入研究,揭示了刀具结构参数对其动不平衡的影响。基于动平衡的基本理论和铣刀容屑槽的几何特点,建立了不等齿距三刃高速立铣刀质量偏心和不平衡量的数学模型。在三维造型软件UG中建立铣刀对应的三维实体模型,计算出铣刀的质量偏心,并通过刀具动平衡测量仪测量铣刀的不平衡量。通过实验验证了质量偏心和不平衡量数学模型的可靠性。分析了新型高速立铣刀质量偏心和动不平衡的影响因素,研究发现:刀具刃长和螺旋角对质量偏心和动不平衡的影响最大,且其变化规律具有周期性。
     (4)从抗振性方面对等齿距与不等齿距铣刀切削性能进行了系统的对比试验研究。基于抗振和动平衡综合性能,提出了不等齿距高速立铣刀结构设计思路。针对铝合金高速铣削工况,以新型不等齿距高速立铣刀和普通高速立铣刀为对比刀具,开展切削力和切削振动对比试验研究。研究结果表明:当切削参数和不平衡量相同时,新型不等齿距高速立铣刀能够有效抑制切削振动,可提高刀具抗崩缺性能,特别是在小切深、大切宽高速铣削和薄壁件高速铣削两种工况下,其抗振性能更好。
As an important common and basic technology of advanced manufacturing, highspeed cutting(HSC) is widely used in aerospace, automobile, and mould industries oweto its advantages, such as improving production efficiency and machining precision,reducing cutting force and power consuming, simplifying process flow, shorteningproduction cycle, and et al. However, HSC tool engineering is technical, and comparedto overseas technology, there is a big gap in tool substrate and coat material researchand development, tool manufacturing process and technology, tool safety technology,tool application technology and HSC mechanism research. Because the independentresearch and development capability is weaker, as a result, a majority of HSC tools areimported in our country. With the purpose of improving high speed milling(HSM)stability, dynamic cutting force, cutting chatter, and milling stability and dynamicbalance of end mill with unequal blade spaces are thoroughly researched by means oftheoretical research, simulation and experimental study, and a method to design a newtype of high speed end mill with variable pitch is put forward. The research workincludes four parts as follows:
     (1) Milling chatter and force in high speed milling processes are studied. Whenresearching milling chatter marks on the machined surface, it is discovered that thechatter frequency calculated from the distance between two vibration marks is nearlythe same with that calculated from the cutting force signal. According to theconclusion, based on the principle that machined surface contour reflects the movingtrack of cutting edge, a new method to study high speed milling chatter is proposed,and the fast tool-off experiment device is designed. At last, on the basis of theinstantaneous rigid force model for micro cutting edge, static and dynamic cuttingforce models for high speed milling processes are established.
     (2) The cutting stability of end mills with equal pitches and that of end mill withvariable pitches are researched and compared. Based on the force models and dynamicdifferential equation, the limited depth of cut and speed are solved, which lay thetheoretical basis for drawing the stability lobe diagram. By comparing the structureand cutting force spectrum of the two kinds of end mill, it is discovered that thesubstaintial cause for end mill suppressing chatter is that the unequal pitches dispersevibration spectrum by changing the delay time, and destroying chatter generatingconditions. By simulation and experiment, researches on HSM stability of end mill and the law for the difference of pitch to affect milling stability are carried out. The resultsindicate that increasing the difference of pitch can enlarge the stability domain andeffectively suppress the high frequency vibration.
     (3) In order to reveal the influence of structure parameters on dynamic balance,the dynamic balance for end mill with variable pitches is deeply investigated. Based onthe basic theories of dynamic balance and the geometry characteristics of helical flutes,a mathematical model of mass eccentricity and imbalance value of the high speed endmill with three unequal pitches is established. The3D solid model of the end mill isbuilt in the software UG, and its mass eccentricity value is calculated. Meanwhile, theimbalance value of the end mill is measured by a dynamic balance measuringinstrument, and the reliability of the mathematical model is verified by this dynamicbalance test experiment. According to the mathematical model of eccentricity andimbalance, influencing factors are thoroughly analyzed. It is found that the length ofcutting edge and helical angle have the most influence on mass eccentricity andimbalance value, and they change mass eccentricity and imbalance periodically.
     (4) The cutting performance of end mills with equal and variable pitches iscomprehensively researched from the aspect of anti-vibration. Considering the abilityin anti-vibration and dynamic balance, the structure optimal design method for the newtype of high speed end mill with variable pitched is proposed. Making high speedmilling aluminum alloy as the experimental condition, and end mill with equal andvariable pitches as the cutting tool, comparative tests of cutting force and vibration arecarried out. The results show that, when the cutting parameters and imbalance are thesame, the new end mill can effectively suppress chatter and enhance resistance tochipping, and especially under the condition of high speed milling thin-walled part ormilling in small cutting depth and big cutting width, the capability of the new end millto suppress vibration is better.
引文
[1]叶毅,叶伟昌.高速加工技术及其刀具[J].工艺装备,2002,40(453):43-45
    [2]艾兴,刘战强,赵军,等.高速切削加工技术[M].北京:国防工业出版社,2003
    [3] Tlusty J.High-speed milling[J].Annals of the CIRP,1993,42(2):733-738
    [4] Byrne G,Dornfeld D,Denkena B.Advancing cutting technology[J].Annals of theCIRP,2003,52(2):483-507
    [5]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002
    [6]张伯霖.高速切削加工技术在美国的最新发展[J].制造技术与机床,1994,(4):5-6
    [7]付秀丽,艾兴,张松.航空整体结构件的高速切削加工[J].工具技术,2006,40(3):80-83
    [8]万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[D].济南:山东大学,2006
    [9]宋清华.高速铣削稳定性及加工精度研究[D].济南:山东大学,2009
    [10]贾青云,李冬妮,孙凤池.现代汽车制造技术之机械加工——世界汽车技术发展研究跟踪(一)[J].汽车工艺与材料,2002,(4):1-5
    [11]梁彦学,高峰.我国高速加工技术现状及发展趋势[J].工具技术,2002,36(1):16-21
    [12]赵军,艾兴,刘大志等.模具高速加工技术与策略[J].工具技术,2002,36(12):32-34
    [13]周树锦.淬硬钢模具高速铣削工艺参数优化研究[D].广东:广东工业大学,2007
    [14]蔡玉俊.模具型腔高效数控加工策略及参数优化研究[D].大连:大连理工大学,2005
    [15]王成勇,秦哲,李文红等.石墨电极的高速加工[J].制造技术与机床,2002,(3):25-30
    [16]周玉海,秦哲,陈选民等.石墨材料高速切削加工的研究现状[J].工具技术,2009,43(5):3-7
    [17]晓立.高速加工的技术进展与应用——访米克朗中国有限公司陈民总经理[J].航空制造技术,2002,(4):47-48
    [18]中国设备网.珠三角高档刀具市场竞争优势[EB/OL].(2011-9-23)[2012-2-20].http://www.cnsb.cn/html/news/679/show_679179.html
    [19]唐委校.高速切削稳定性及其动态优化研究[D].济南:山东大学,2005
    [20] Vanugh R L. Ultra-high speed machining-solution to productivity problems[J].The Tool Engineering,1958,(10):71-76
    [21] Vaughn R L. Ultra-high speed machining[J]. AMC Technical Report,1960,(6):607-625
    [22] Kruech R T,Vaughn R L. Recent developments in ultra-high speed machining[J].The Tool Engineering,1960,(4):95-100
    [23] Tanaka Y, Tsuwa H, Kitano M. Cutting mechanism in ultra-high-speedmachining[J]. Transactions of the ASME,1967(6):7-14
    [24] Von Turkovich B F. Study on a class of thermomechanical processes during rapidplastic deformation (with special reference to metal cutting)[J]. Annals of theCIRP,1972,21(1):151-160
    [25] Rogers H C. Adiabatic plastic deformation[J]. Ann Revised Material Sci,1979,9:283
    [26] King R L. The chip making revolution[J]. American Machinist,1977,121(6):135-139
    [27] King R L,Mac Donald J G. Product design implications of new high-speedmilling techniques[J]. Transactions of the ASME,1976,8:1170-1175
    [28] Astakhov V P,Shvets S. The assessment of plastic deformation in metal cutting[J].Journal of Materials Processing Technology,2004,146:193-202
    [29]黄燊华.切削力学[M].北京:机械工业出版社,1988
    [30]邓朝晖,刘战强,张晓红.高速高效加工领域科学技术发展研究[J].机械工程学报,2010,46(23):106-120
    [31] Guo Y B. An integral method to determine the mechanical behaviour of materialsin metal cutting[J]. Journal of Materials Processing Technology,2003,142:72-81
    [32]中国科学技术协会,中国机械工程学会.机械工程学科发展报告(2008~2009)(机械制造)[M].北京:中国科学技术出版社,2009
    [33] Fang N. A new quantitative sensitivity analysis of the flow stress of18engineering materials in machining[J]. Transactions of the ASME,Journal ofEngineering Materials and Technology,2005,127(4):192-196
    [34]付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究[D].济南:山东大学,2007
    [35]王宇.PCBN刀具高速精密硬态切削机理与应用技术[D].哈尔滨:哈尔滨理工大学,2008
    [36]刘文芝.NAK80材料高速铣削机理及应用研究[D].天津:天津大学,2004
    [37]郭培燕.高速切削加工表面残余应力的分析和模拟[D].青岛:山东科技大学,2007
    [38]艾兴,刘战强,赵军,等.高速切削刀具材料的进展和未来[J].制造技术与机床,2001,(8):21-26
    [39]邹浩波,张宇,戴丽玲.高速切削加工的刀具材料及其合理选择[J].机械研究与应用,2005,18(3):6-7,44
    [40]李鹏南,张厚安,张永忠,等.高速切削刀具材料及其与工件匹配研究[J].工具技术,2008,42(6):21-25
    [41]叶毅,叶伟昌.超硬材料刀具的新进展[J].精密制造与自动化,2004,(3):55-58
    [42]姚学祥,张桂香.超硬材料刀具研究现状和趋势[J].硬质合金,2001,18(3):182-186
    [43]杨仕娥,马丙现,李会军,等.金刚石涂层刀具的研究进展[J].真空与低温,2001,7(2):68-71
    [44]李金巧,庆华.高速切削刀具技术[J].机械制造与研究,2006,35(3):51-53,57
    [45]王西彬,师汉民.高速切削刀具的研究[J].机械工艺师,1998,(8):39-41
    [46]李平,杨祖孝.高速切削加工刀具技术研究[J].机械工程师,2003,(2):3-5
    [47]曲会玲.高速立铣刀优化设计[D].济南:山东建筑大学,2008
    [48]邵子东.高速整体硬质合金立铣刀结构设计及其性能研究[D].济南,山东大学,2007
    [49]汤爱君.薄壁件高速铣削三维稳定性及加工变形研究[D].济南:山东大学,2009
    [50] Taylor F W. On the art of cutting metals[J]. Transactions of the ASME,1907,10(6):31-33
    [51] Wiercigroch M,Budak E. Sources of nonlinearities,chatter generation andsuppression in metal cutting[J]. Philosophical Transactions of the Royal Societyof London,A,2001,359:663-693
    [52] Wiercigroch M,Krivtsov A M. Frictional chatter in orthogonal metal cutting[J].Philosophical Transactions of the Royal Society of London,2002,359:713-738
    [53]陈花玲,戴德沛.机床切削颇振的非线性理论研究[J].振动工程学报,1992,5(4):335-342
    [54]刘习军.机床速度型切削颤振的非线性研究[J].振动与冲击,1999,18(2):5-9
    [55] Hahn S. On the theory of regeneration chatter in precision grinding operation[J].Transaction of the ASME,B,1954,76(1):593-597
    [56] Tlusty J,Polacek M. The stability of machine tools against self-excited vibrationsin machining. Transactions of the ASME,Journal of International Research inProduction Engineering,1963:465-474
    [57] Hook C J,Tobias S A. Finite amplitude instability-a new type of chatter[C]. In:Proceedings of the4th International Machine Tool Design and ResearchConference,Manchester,1964,97-109
    [58] Davies M A,Dutterer B S,Pratt J R. On the dynamics of high-speed milling withlong,slender endmills[J]. Annals of the CIRP,1998,47(l):55-60
    [59] Altintas Y,Budak E. Analytical prediction of stability lobes in milling[J]. Annalsof the CIRP,1995,44(l):357-362
    [60] Altintas Y,Lee P. A general mechanics and dynamics model for helical endmills[J]. Annals of the CIRP,1996,45(1):59-64
    [61] Altintas Y,Engin S,Budak E. Analytical prediction of chatter stability and designfor variable pitch cutters[J]. Transactions of the ASME,Journal of ManufacturingScience and Engineering,1999,121(3):173-178
    [62] AltintasY,Shamoto E,Lee P,et al. Analytical prediction of stability1obes in ballend milling[J]. Transactions of the ASME,Journal of Manufacturing Science andEngineering,1999,121(4):586-592
    [63] Altintas Y,Engin S. Generalized modeling of mechanics and dynamics of millingcutters[J]. Annals of the CIRP,2001,50(1):25-30
    [64] Minis I,Yanushevsky T. Analysis of linear and nonlinear chatter in milling[J].Annals of the CIRP,1990,39(l):459-462
    [65] Minis I,Yanushevsky T. A new theoretical approach for the prediction of machinetool chatter in milling[J]. Transactions of the ASME,Jounal of EngineeringIndustry,1993,115(l):l-8
    [66] Stépán G. Modeling non-linear regenerative effects in metal cutting[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical andEngineering Sciences,2001,359:739-757
    [67] Balachandran B. Nonlinear dynamics of milling processes[J]. PhilosophicalTransactions of the Royal Society A:Mathematical,Physical and EngineeringSciences,2001,359(178):793-819
    [68] Moon,Francis C,Kalmár-Nagy,et al. Nonlinear models for complex dynamicsin cutting materials[J]. Philosophical Transactions of the Royal Society ofLondon,2001,359(1781):695-711
    [69] Govekar E,Gradisěk J,Kalveram M. On stability and dynamics of milling atsmall radial immersion[J]. Annals of the CIRP,2005,54(l):357-362
    [70]师汉民.金属切削理论及其应用新探[M].武汉:华中科技大学出版社,2002
    [71]师汉民.机械振动系统——分析、测试、建模、对策[M].武汉:华中科技大学出版社,2004
    [72]龙震海,王西彬,王好臣.超高强度合金钢铣削中切削力特征的非线性析因研究[J].北京理工大学学报,2004,34(12):1037-1040
    [73]孔繁森,于骏一.切削过程再生颤振的模糊稳定性分析[J].振动工程学报,1998,11(1):106-109
    [74]付连宇,于骏一,鲍明.切削颤振的相位特性研究[J].振动工程学报,2000,13(4):510-515
    [75]孔繁森,王宇,于骏一.基于信息融合方法的切削颤振状态识别技术[J].振动工程学报,2004,17(2):219-223
    [76] Tlusty J,Ismail F. basic non-linearity in machining chatter[J]. Annals of theCIRP,1981,30(l):21-25
    [77] Altintas Y.数控技术与制造自动化[M].北京:化学工业出版社,2002
    [78]于骏一.机械加工振动的诊断、识别和控制[M].北京:清华大学出版社,1994
    [79]黄仁贵,郑艳萍,孙炎,等.机械加工振型耦合颤振研究[J].郑州大学学报(工学版).2002,23(3):67-69
    [80] Endres W J,Devor R E,Kapoor S G. A dual-mechanism approach to the predictionof machining forces,Part1:Model development[J]. Journal of Engineering forIndustry,1995,117:526-533
    [81] Paris H,Brissaud D,Gouskov A. A more realistic cutting force model at uncutchip thickness close to zero[J]. Annals of the CIRP,2007,56(l):415-418
    [82] Kienzle O, H.Victor. Spezifische sehnittkrafte bei der metallbearbeitung[J].Werkstofftechnik und Machinenbau,1957,47(5):224-225
    [83] Sabberwal A J. Chip section and cutting force during the milling operation[J].Annals of the CIRP,1961,10(3):197-203
    [84] Engin S,Altintas Y. Mechanics and dynamics of general milling cutters,Part I:helical endmills;Part II:inserted cutters[J]. International Journal of MachineTools and Manufacture,2001,41:2195-2231
    [85] Balachandran B,Zhao X. A mechanics based model for study of dynamics ofmilling operations[J]. Meccanica,2000,35:89-109
    [86] Insperger T,Stépán G. Stability of the milling process[J]. Periodical Polytechnic-Mechanical Engineering,2000,44:47-57
    [87] Faassen R P H,van de Wouw N,Oosterling J A J,et al. Prediction of regenerativechatter by modeling and analysis of high speed milling[J]. International Journal ofMachine Tools and Manufacture,2003,43:1437-1446
    [88] Long X H,Balachandran B,Mann B P. Dynamics of milling processes withvariable time delays[J]. Nonlinear Dynamics,2007,47:49-63
    [89] Faassen R P H,van de Wouw N, Nijmeijer H,et al. An improved tool path modelincluding periodic delay for chatter prediction in milling[J]. Journal ofComputational and Nonlinear Dynamics,2007,2(2):167-179
    [90] Liu X W,Cheng K,Webb D,et al. Improved dynamic cutting force model inperipheral milling,Part I:theoretical model and simulation[J]. InternationalJournal of Advanced Manufacturing Technology,2002,20:631-638
    [91] Sadeghi M H,Haghighat H,Elbestawi M A,A solid model-based ball-end millingprocess simulation[J]. International Journal of Advanced ManufactureTechnology,2003,(22):775-785
    [92] Li Z Z,Zheng M,Zheng L,et al. A solid model-based milling process simulationand optimization system integrated with CAD/CAM[J]. Journal of MaterialsProcessing Technology,2003,(138):513-517
    [93] Imani B M. An improved process simulation system for ball-end milling ofsculptured surfaces[J]. International Journal of Machine Tools and Manufacture,1998,(38):1089-1107
    [94] Wang J,Zheng C M. Identification of shearing and ploughing cutting constantsfrom average forces in ball-end milling[J]. International Journal of Machine Toolsand Manufacture,2002,(42):695-705
    [95] Takashi Miyaguchi. Effect of tool stiffness upon tool wear in high spindle speedmilling using small ball end mill[J]. Journal of the International Societies forPrecision Engineering and Nanotechnology,2001,(25):145-154
    [96] Chung K T,Geddam A. A multi-sensor approach to the monitoring of end millingoperations[J]. Journal of Materials Processing Technology,2003,(139):15-20
    [97] Li Y W,Steven Y. Cutting force analysis in transient state milling processes[J].International Journal of Machine Tools and Manufacture.1999,(15):785-790
    [98] Xu A P. Simulation and experimental investigation of the end milling processconsidering the cutter flexibility[J]. International Journal of Machine Tools andManufacture,2003,(43):283-292
    [99] Bernard W. Prediction of cutting forces and machining error in ball end milling ofcurved surfaces, Part I: theoretical analysis[J]. Journal of the InternationalSocieties for Precision Engineering and Nanotechnology,2001,(25):266-273
    [100]Shin-ichi Matsuoka. High-speed end milling of an articulated robot and itscharacteristics[J]. Journal of Materials Processing Technology,1999,(95):83-89
    [101]李忠群.复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究
    [D].北京:北京航空航天大学,2008
    [102]秦月霞,刘战强,汤爱君.高速切削加工稳定性研究综述[J].工具技术,2010,44(9):3-9
    [103] Pratt J R,Nayefh A H. Design and modeling for chatter control[J]. NonlinearDynamics,1999,19(l):49-69
    [104]Insperger T,Mnna B P,Stépán G,et al. Stability of up-milling and down-milling,Part I: alternative analytical methods; Part II: experimental verification[J].International Joumal of Machine Tools and Manufacture,2003,43:25-34,35-40
    [105]Solis E,Peers C R,Jime J E,etal. A new analytical-experimental method for theidentification of stability lobes in high-speed milling[J]. International Journal ofMachine Tools and Manufacture,2004,44:1591-1597
    [106]Gradisěk J, Kalveram M, Insperger T, et al. On stability prediction formilling[J].International Journal of Machine Tools and Manufacture,2005,45:769-781
    [107]刘志新.高速铣削过程动力学建模及其物理仿真研究[D].天津:天津大学,2006
    [108]唐委校.高速切削稳定性及其动态优化研究[D].济南:山东大学,2005
    [109]汤爱君,马海龙.切削加工系统稳定性研究现状的综述[J].机床与液压,2008,36(1):153-155
    [110]Wang M,Fei R. Chatter suppression based on nonlinear vibration characteristicof electrorheological fluids[J]. International Journal of Machine Tools andManufacture,1999,39:1925-1934
    [111]Wang M,Fei R. Improvement of machining stability using a tunable-stiffnessboring bar containing an electrorheological fluid[J]. Smart Materials andStructures,1999,8(4):511-514
    [112]Dohner J L,Lauffer J P,Hinneriehs T D,etal. Mitigation of chatter instabilitiesin milling by active structural control[J]. Journal of Sound and Vibration,2004,269:197-211
    [113]Pratt J R,Nayefh A H. Chatter control and stability analysis of a cantilever boringbar under regenerative cutting conditions[J]. Philosophical Transactions of theRoyal Society of London,Part A,2001,359:759-792
    [114]李彬,邓建新,张松.高速切削加工稳定性研究的现状和发展趋势[J].制造技术与机床,2008,(4):33-36
    [115]Shiraishi M,Kume E. Suppression of machine-tool chatter by state feedbackcontrol[J]. Annals of the CIRP,1988,37(1):369-372
    [116]Shiraishi M,Yamanaka K,Fujita H. Optimal control of chatter in turning[J].International Journal of Machine Tools and Manufacture,1991,31(1):31-43
    [117]Alter D M,TsaoT C. Stability of turning processes with actively controlledlinearmotor feed drives[J]. Transactions of the ASME,Journal of Engineering forIndustry,1994,116:298-307
    [118]王先上.车床振动的自动控制[J].机械工程学报,1986,22(2):38-47
    [119]勾治践,于骏一.变速切削的研究现状[J].吉林工学院报,1997,18(4):14-17
    [120]闫占辉,勾治践,于骏一.变速铣削的综合实验分析[J].实验技术与实验机,2002,42(1,2):51-52
    [121]包善斐,杨辅伦,王红岩,等.时变进给抑制切削颤振的机理分析和实验验证[J].振动工程学报,1995,8(4):293-301
    [122]杨辅伦,于骏一,张海燕.刀具工作前角时变系统切削稳定性的研究[J].振动工程学报,1994,7(1):80-85
    [123]Yang F, Zhang B, Yu J. Chatter suppression via an oscillating cutter[J].Transactions of the ASME,Journal of Manufacturing Science and Engineering,1999,121(1):54-60
    [124]Lu B H,Lin Z H, Hwang X T,etal. on-line identification of dynamic behaviourof machine tool structure during stable cutting[J]. Annals of the CIRP,1983,32(l):315-318
    [125]刘晓胜,吴乐南,马玉林,等.基于电流信号的铣削颤振识别技术研究[J].机械工程学报,2000,36(4):26-29
    [126]刘安民,彭程,刘吉兆,等.高速铣削时颤振的诊断和稳定加工区域的预报[J].机械工程学报,2007,43(l):164-169
    [127]Soliman E,Ismail F. Chatter detection by monitoring spindle drive current[J].International Journal of Advanced Manufacturing Technology,1997,13:27-34
    [128]Li X Q,Wong Y S,Nee A Y C.Tool wear and chatter detection using thecoherence function of two crossed accelerations[J]. International Journal ofMachine Tools and Manufacture,1997,37(6):425-35
    [129]Gradisěk J,Govekar E,Grabec I. Using coarse-grained entropy rate to detectchatter in cutting[J]. Journal of Sound and Vibration,1998,214(5):941-952
    [130]Song D Y,Otani N,Aoki T,etal. A new approach to cutting state monitoring inend-mill machining[J]. International Journal of Machine Tools and Manufacture,2005,45:909-921
    [131]Kuljanic E,Sortino M,Totis G. Multisensory approaches for chatter detection inmilling[J]. Journal of Sound and Vibration,2008,312:672-693
    [132]Kuljanic E,Totis G,Sortino M. Development of an intelligent multisensorychatter detection system in milling[J]. Mechanical System and Signal Processing,2009,23(5):1704-1718
    [133]S.A.Tobias.机床振动学[M].北京:机械工业出版社,1977
    [134]Lee B Y,Tarng Y S,Ma S C. Modeling of the process damping force in chattervibration[J]. International Journal of Machine Tools and Manufacture,1995,35(7):951-962
    [135]Huang C Y,Wang J J J. Mechanistic modeling of process damping in peripheralmilling[J]. Journal of Manufacturing Science and Engineering,2007,129:12-20
    [136]Altintas Y,Eynian M,Onozuka H. Identification of dynamic cutting forcecoefficients and chatter stability with process damping[J]. Annals of the CIRP,2008,57(l):371-374
    [137]山特维克可乐满.山特维克可乐满CoroMill790铝合金加工的利器[J].航空制造技术,2009,(23):32-34
    [138]陈世平,廖林清,侯智,等.高速切削刀具系统动平衡研究与分析[J].机床与液压,2005,(10):32-33,62
    [139]Eugene I,Rivin.Tooling structure interface between cutting edge and machinetool.Annals of the CIRP,2009,49(2):591-634
    [140]赵炳桢.刀具动平衡技术的发展现状[J].工具技术,2002,36(12):3-7
    [141]陈世平,罗辑,石军.高速切削刀具系统动平衡技术研究[J].现代制造工程,2003,(12):55-57
    [142]何宁.高速切削技术[J].工具技术,2003,37(11):8-11
    [143]汤爱君.薄壁件高速铣削三维稳定性及加工变形研究[D].济南:山东大学,2009
    [144]Budak E,Altintas Y,Armarego E J A. Prediction of milling force coefficientsfrom orthogonal cutting data[J].Transactions of the ASME, Journal ofManufacturing Science and Engineering,1996,118(2):216-224
    [145]李辉,张宇平,刘凤利.不等齿距端铣刀对端铣振动影响的研究[J].机械科学与技术,2003,22(3):408-417
    [146]Slavicek J. The effect of irregular tooth pitch on stability of milling[C]. In:Proceedings of the Sixth MTDR Conference,Pergamon Press,London,1965,15-22
    [147]Opitz H,Dregger E U,Roese H. Improvement of the dynamic stability of themilling process by irregular tooth pitch[C]. In:Proceedings of the AdvancedMTDR Conference,1966,7(1),213-227
    [148]中国数控机床网.高速加工和动平衡[EB/OL].(2007-8-15)[2011-6-20].http://www. c-cnc. com/news/news. asp?id=21995
    [149]刘战强,艾兴.高速切削刀具的动平衡[J].机械加工与自动化,2001,(11):18-20
    [150]关延栋,王炽鸿.金属切削原理[M].上海:上海中外书局,1995