拱结构的损伤识别方法及损伤结果可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁是交通运输系统的重要组成部分,桥梁结构的安全是交通运输系统正常运转的前提。但实际中往往由于设计、施工、不当使用、自然灾害等原因,使得许多桥梁发生老化、破损、裂缝等现象,甚至发生垮坍、断裂等严重后果,近年来这方面的例子不胜枚举。因此对桥梁结构进行健康监测研究,有重要的理论意义和实用价值。同时,由于监测结果比较抽象,不易被人们接受,研究工作者正在积极探索着如何对监测数据作更形象直观的描述。
     结构损伤识别是桥梁结构健康监测系统的重要组成部分。基于振动测试的结构损伤识别方法是目前国内外研究的热点,尽管已经提出的损伤识别理论和方法很多,但是都不同程度地存在一定局限性;近年来的小波分析作为一种新兴的数字信号处理工具,在空间、频率域都具有表征信号局部特征的能力,能对奇异信号进行很好的分析,在损伤识别领域得到广泛应用;同时,可视化技术在医学、地质等领域应用较多,而在损伤检测方面的应用比较少见。针对目前结构损伤识别方法的研究现状和前沿课题的需要,本论文对拱结构的损伤识别进行重点研究,结合小波分析理论,形成用于检测拱结构的损伤指标,并将其可视化为直观的结果。
     本文的主要研究内容有:
     1)回顾了国内外基于结构模态信息损伤检测与诊断的发展与现状;论述了小波时频变换理论作为奇异信号分析的有力工具的发展及其在损伤检测中的应用;概述了目前的图形图像处理技术和应用;分析了实现损伤检测可视化的必要性和可行性。
     2)重点研究拱结构的振动特性,分析了完好和损伤拱的振动微分方程的建立、求解,以扭转弹簧代替损伤,给定结构边界条件,得出了完好结构的固有频率和振型;并对抛物线拱进行了分析。
     3)有限元模拟了完好和多种损伤工况下拱结构的振动特性。位移模态采用线单元,应变模态采用实体单元,模拟了铰支和固支两种不同的边界条件。在此基础上构造出频率摄动法、模态差、曲率模态差、应变模态等损伤检测方法。
     4)将小波分析理论运用到拱结构的损伤检测。研究了连续小波变换和多分辨率分析的损伤识别效果;分析了Lip指数与损伤奇异性的关系,并通过集中因子来判定损伤的程度;同时讨论了多裂纹拱和抛物线拱的损伤识别,并研究了小波消失矩、边界和噪声对损伤识别的影响。
     5)对拱结构进行位移模态试验和应变模态实验,输入输出方式选择了多点激励单点响应和单点激励多点响应,传感器采用了加速度传感器和应变片传感器,损伤设置了单裂纹和多裂纹,研究各工况下的模态频率和模态振型,并用于损伤识别。
     6)将可视化的概念引入到损伤检测领域,介绍了可视化在其他领域的应用,研究了可视化的分类和比较,并讨论了图形可视化和图像可视化的实现方法,最后将拱结构的损伤识别结果进行可视化。分析了损伤可视化的变化规律,并给出了结构损伤识别结果可视化的下一步研究方向。
     研究过程中形成的主要结论有:(1)拱结构的振动方程为6阶微分方程,单损伤拱的特征方程为12阶矩阵的行列式;(2)损伤处的振型出现奇异性,模态差、曲率模态差、应变模态能识别结构损伤,利用小波变换能使损伤识别结果更明显;(3)损伤位置和损伤程度是影响损伤识别的两个重要因素,是一对相互制约的组合量,靠近结构模态节点的小损伤不利于结构裂纹识别;(4)可视化的损伤识别结果显示了结构的外观信息,适应人们的视觉认知,更易被人们接受。
     本论文的创新之处在于:
     (1)典型结构的选取和分析:拱是一类比较复杂的结构,圆弧拱和抛物线拱在工程应用较多,其损伤检测方面的研究较少。文中研究了拱结构的振动特征,对拱进行有限元模拟,并进行了模态试验研究。
     (2)模态节点对损伤识别的影响分析:相对于梁板结构,拱的模态节点比较多(1阶模态存在模态节点)。本文研究了拱的模态节点的位置和个数对损伤检测的影响,提出了多种模态综合识别损伤的方法,并讨论了结构检测中损伤位置和损伤程度的组合特性。
     (3)小波分析对拱的损伤检测:小波分析对奇异信号有良好的识别功能,损伤拱的振型存在不连续,损伤处包含奇异性。小波分析的引进增加了拱的损伤识别方法,提升了拱的裂纹检测效果。
     (4)可视化和损伤检测方法的结合:检测指标经过多年的发展,形成了频率变化、振型差异、应变测试,以及优化算法等适用于部分结构的指标,因指标的抽象性使其在工程上的推广得到限制。文中在可视化时先生成结构的轮廓信息,再将损伤指标转化成对应的灰度和色度,最后以想象直观的方式展示损伤。
Bridge is one of the vital parts of the traffic and transportation system. The healthy status of bridge structures is the premise for traffic and transportation system to operate normally. At present, some bridges appear aging, damage and crack even breaking down collapses for some reasons, such as design, construction, management, natural disasters and so on. There are too many examples to cite individually. Thereby, it is of great significance in theory and practice to perform health monitoring for bridge structures. Also, because monitoring results are rather abstract and difficult to be accepted, researchers are actively exploring how to show the monitoring data for a more intuitive description of the image.
     Structural damage identification techniques are the important components of health monitoring system of bridge structures. The vibration-based methods for the structural damage identification are the hot researches at home and abroad. Many theories and methods for damage identification have been presented, however, there are varying certain limitations in these techniques for damage detection to some degrees; Recently, wavelet analysis as a new kind of digital signal processing tools have the capacity of charactering the local features of signals in space and frequency domain, can make a good analysis of signal singularity, for this reason which can be widely applied in injury recognition area; At the same time, the application of visualization techniques in medicine, geology and other fields is more, but less in damage detection area. For the current research status of structural damage identification method and the needs of cutting-edge issues, in this thesis research is emphasized on damage identification of the arch structure, combined with wavelet analysis theory. The damage detection indexes of arch structure are formed and the injury recognition results are visualized vividly.
     The research works in this dissertation mainly include:
     (1) A general view of the latest development in the fields of damage detection and diagnose based on structural mode at home and aboard. The development and application in damage detection with wavelet analysis as powerful tool in irregular signal are illustrated. The technique and use of graph and image at present are summarized. The necessary and feasibility of realizing damage identification visualization are analysis.
     (2) The vibration characteristics of arch is heavily researched. The establishment and solution of vibration differential equation of intact and damage arch are analyzed, replacing damage with torsion spring, giving the structure of boundary conditions, and obtaining the natural frequencies and mode shapes. Simultaneously parabolic arch is analyzed.
     (3) Vibration characteristics in intact and damaged arch are simulated by the finite element method. Displacement modes and strain modes are simulated separately employing line elements and solid elements, two different boundary conditions (hinge support and fixed support) are used. The damage detection methods such as frequency perturbation method, mode difference, modal curvature difference, strain mode et al. are constructed based on the simulation.
     (4) The wavelet analysis theory is applied to the arch structure damage detection. The damage identification results via the continuous wavelet transform and multi-resolution analysis are studied; the relationship between the Lip index and damage singularity is analyzed and the extent of injury is determined through concentration factor. Simultaneity the damage identification for the multi-cracks arch and parabolic arch is discussed; the effects of wavelet vanishing moments, the boundary and noise on the damage identification are research.
     (5) Displacement mode test and strain mode experiment of the arch structure are performed, the input and output approaches on single-point excitation and multi-point response, multi-point excitation and single-point response are selected, acceleration sensors and strain gauge are used, a single crack and multi-crack are set up in arch, the mode frequencies and vibration shapes for damage identification in diverse conditions are studied.
     (6) The concept of visualization is introduced to the damage detection field, describing the application of visualization in other areas, the classification and comparison on visualization are studied, and the implementation method of the graphical visualization and image visualization are discussed, finally the arch structure damage identification results are visualized. The regularity of visual damage results is analyzed, and the following research on the visualization of the structural damage detection results is given.
     The main conclusions formed during the study are:(1) The vibration equation of arch is a 6 order differential equations, the characteristic equation of a single injury arch is the determinant of the 12 order square matrix; (2) The injury enable mode shape to exist singularity in damage position, resulting to the structural damage detection by mode variety, curvature mode change, and strain mode et al., and a more obvious detection results using wavelet transform; (3) The damage location and damage degree are two important factors affecting the damage detection, is a pair of mutual restraint combination. The small injury near mode nodes is not conducive to be identified; (4) the visualization of structure damage identification results show the appearance of the structure, meet the people's visual perception and is more easily accepted.
     The innovations of this paper are:
     (1) The selection and analysis of the typical structure:arch is a relatively complicated structure, circular arch and the parabolic arch is employed more in engineering, whereas there is the less research of damage detection in arch. In the paper, the vibration characteristics and the numerical simulation of the arch is studied, and the arch modal testes are carried out.
     (2) The impact of mode node to damage detection:there are more mode nodes (1mode node in first mode) in arch structure relative to mode nodes in the beam and plate. In this paper, the influence of mode nodes position and number in arch on the damage detection is investigated, the multi-mode damage identification approach is proposed, and the combination features of damage location and damage severity in structural damage detection is discussed.
     (3) The damage detection in arch with wavelet analysis:the wavelet analysis has a good recognition to the singular signals, the vibration shape in the damage arch is a discontinuous mode, which containing the singularity in damage location. The damage identification methods in arch are increased and the crack detection effect is improved by introducing wavelet analysis.
     (4) The integration of the visualization and damage detection methods:damage detection indicators such as the frequency variety, the vibration change, strain testing, and optimization algorithms, fitting for the part of the structure are formed during the years of development, wherever the application of the indicator to the engineer structure is restricted for the abstract of the damage indicator. In the paper, first, the outline information of arch is performed in visualizing, then damage index is converted into the corresponding gray and color, finally the structural image containing damage is displayed exactly and vividly.
引文
[1]袁万城,崔飞,张启伟,桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999,27(2),5-8.
    [2]马宏伟,杨桂通,结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4),514-527
    [3]李雪艳,刘济科,韩琳,结构损伤识别方法综述[C].第七届全国振动理论及其应用学术会议论文集,同济大学出版社,1999.12.
    [4]Salawu O S, Detection of structural damage through changes in frequency:a review[J]. Engineering Structures,1997,19(9),718-723
    [5]Rizos P F., Aspragathos N., and Dimarogonas N., Identification of crack location and magnitude a cantilever beam from the vibration modes[J]. Journal of Sound and Vibration,1990, 138(3),381-388
    [6]Pandey A K, Biswas M, and Samman M M, Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration,1991,145(2),321-332.
    [7]Thyagarajan S K, Schulz M J, Pai P F, and Chung J, Detecting structural damage using frequency response functions[J]. Journal of Sound and Vibration,1998,210(1):162-170.
    [8]Hajela P., and Soeiro F. J, Structural damage detection based on static and modal analysis[J]. AIAA Journal,1990,28(6),1110-1115
    [9]Antonino Morassi. Crack-induced changes in eigen parameters of beam structures[J]. Journal of Engineering Mechanics,1993,119,1798-1803.
    [10]O.S.Salawu, Detection of structural damage through changes in frequency:a Review[J]. Engineering Structures,1997,19(9),718-723
    [11]Scott W. Doebling et al.. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:A literature review, Los Alamos National Laboratory Report LA-13070-MS,1995.
    [12]Sampaio R.P.C., Maia N.M.M.. Strategies for an efficient indicator of structural damage[J]. Mechanical Systems and Signal Processing,2009,23(6):1855-1869.
    [13]Katsikeros C.E., Labeas G.N. Development and validation of a strain-based Structural Health Monitoring system. Mechanical Systems and Signal Processing,2009,23(2):372-383.
    [14]陈长征等.结构损伤检测与智能诊断[M].科学出版社,2001.
    [15]王志华,程载斌,马宏伟.梁结构裂纹参数的识别方法[J].机械强度,2006,28(3):406-410.
    [16]余岭,万祖勇.基于宏观调控策略的结构损伤检测pso改进算法[J].计算力学学报2008,25(1),14-19.
    [17]余岭,万祖勇.基于pos算法的结构模型修正与损伤检测.振动与冲击[J].2006,25(5),37-40.
    [18]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法[J].同济大学学报,2000,28(1),5-8.
    [19]李国强,郝坤超,陆烨.框架结构损伤识别的两步法[J].同济大学学报,1998,26(5),483-487
    [20]张启伟,范立础.利用动静力测量数据的桥梁结构损伤识别[J].同济大学学报,1998,26(5),528-532.
    [21]谢峻,韩大建,周毅姝.整合统计的结构损伤动力诊断三步法[J].振动与冲击,2004,23(4),119-122
    [22]陈昕.损伤识别理论在桥梁中的应用及存在问题[J].公路,2005,4,156-158.
    [23]刘沐宇等.大跨度钢管混凝土拱桥安全性模糊综合评价[J].武汉理工大学学报,2003,25(5),33-36.
    [24]沈亚鹏、唐照千.裂纹对悬臂粱板振动频谱的影响[J].固体力学学报,1982,2,247-251.
    [25]王谓季,张阿舟.通过实测敏感的振动特性诊断结构故障[J].振动与动态测试,1986,(2),1-8.
    [26]孙世基,雷继锋.结构故障的应变模态诊断方法[J].武汉水运工程学院学报,1992,16(1),59-65.
    [27]陆秋海,李德葆,张维.利用模态试验参数识别结构损伤的神经网络法[J].工程力学,1999,16(Ⅰ),35-42
    [28]周先雁,沈蒲生,用应变模态对混凝土结构进行损伤识别的研究[J].湖南大学学报,1997, 24(5),69-74.
    [29]李晏,石来德,利用应变传递特性诊断箱型梁裂纹的实验研究[J].同济大学学报,1999,27(5),618-620.
    [30]Song T C, etc, The application of the time domain method in strain modal analysis[C].4th IMAC, Los Angeles, Feb.1986.
    [31]李德葆,诸葛鸿程,王波,实验应变模态分析原理和方法[J].清华大学学报,1990,30(2),105-112.
    [32]李德葆,结构动力分析的应变模态法[J].机械强度,1990,12(3),56-61.
    [33]姜绍飞,苏莹.分形理论在土木工程领域中的应用[J].工程力学,2009,26,148-152.
    [34]徐伟华,刘济科,吕中荣.基于振动响应的弦结构损伤检测[J].振动与冲击,2009,28(6),29-31.
    [35]杨秋伟,刘济科.网架结构损伤检测的一种方法[J].振动与冲击,2009,28(2),22-24.
    [36]杨智春,党晓娟,谭光辉.蜂窝夹层复合材料悬臂梁损伤检测的试验研究[J].工程力学2009,26(7),205-210.
    [37]Hou Z.K.,etc. Wavelet-based approach for structural damage detection[J]. Journal of EM, 2000,126(7),677-683.
    [38]Wang W.J,.Mcfadden P.D, Application of orthogonal wavelets to early gear damage detection[J]. Mechanical Systems and Signal Processing,1995,9(5),386-496.
    [39]Yan, G., Z. et al. Structural damage detection using residual forces based on wavelet transform[J]. Mechanical Systems and Signal Processing,2010,24(1):224-239.
    [40]Fan, W., Qiao P. A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures [J]. International Journal of Solids and Structures,2009,46(25-26): 4379-4395.
    [41]Grabowska, J., et al. Damage identification by wavelet analysis[J]. Mechanical Systems and Signal Processing,2008,22(7):1623-1635.
    [42]Ren W.X., Sun Z.S. Structural damage identification by using wavelet entropy[J]. Engineering Structures,2008,30(10):2840-2849.
    [43]Messina, A. Refinements of damage detection methods based on wavelet analysis of dynamical shapes[J]. International Journal of Solids and Structures,2008,45(14-15):4068-4097.
    [44]李洪泉,董亮,吕西林,基于小波变换的结构损伤识别[J].土木工程学报,2003,36(5),52-57.
    [45]唐和生等.小波基带宽的变化对结构损伤识别的影响[J].同济大学学报,2003,31(8),883-887.
    [46]林京,屈梁生.基于连续小波变换的奇异性检测与故障诊断[J].振动工程学报,2000,13(4),523-530.
    [47]张伟伟,王志华,马宏伟.多分辨率分析在悬臂梁裂纹检测中的应用[J].太原理工大学学报,2005,36(6),666-668.
    [48]吴浩中,戴小文,王开文.小波变换在摆式列车倾摆控制系统故障诊断中的应用研究[J].机械强度,2003,25(1),12-15.
    [49]万方义,华军,许庆余.二维小波变换及其在机械碰摩故障诊断中的应用[J].机械强度,2002,24(2),168-171
    [50]王海生,叶昊,王桂增.基于小波分析的输油管道泄漏检测[J].信息与控制,2002,31(5),456-460
    [51]陈建云.小波变换在管道损伤检测中的应用研究[学位论文].太原理工大学硕士论文,2006
    [52]李峰,任宜春.连续小波变换在梁结构损伤诊断中的应用研究[J].振动、测试与诊断,2004,24(2),121-124.
    [53]郭健,孙炳楠.基于小波变换的桥梁健康监测多尺度分析[J].浙江大学学报(工学版),2005,39(1),114-118.
    [54]Liew K M, Wang Q, Application of wavelet theory for crack identification in structure[J]. Journal of Engineering Mechanics,1998,124 (2),152-157
    [55]Hou Z, Noori M, Amand R St, Wavelet-based approach for structural damage detection[J]. Journal of Engineering Mechanics,2000,126(7),677-683
    [56]Wang Q, Deng X M, Damage detection with spatial wavelets [J]. International Journal of Solids and Structures,1999,36,3443-3468
    [57]Ser-Tong Quek, Quan Wang, Liang Zhang, Kian-Keong Ang, Sensitivity analysis of crack detection in beams by wavelet technique[J]. International Journal of Mechanical Sciences.2001, 43,2899-2910.
    [58]Douka E, Loutridis S, Trochidis A, Crack identification in beams using wavelet analysis[J]. Journal of Sound and Vibration,2003,40,3557-3569
    [59]CHENG L Y, etal. Effect of the mode order in arch on damage detection [C]. Structural Condition Assessment, Monitoring and Improvement,2007,1:426-430.
    [60]O VANESOVA A V, SUAREZ L E. Applications of wavelet transforms to damage detection in frame structures[J].Engineering Structures,2004,26:39-49.
    [61]孙增寿,韩建刚,任伟新.基于曲率模态和小波变换的结构损伤位置识别[J].地震工程与工程振动,2005,25(4):44-49.
    [62]马乾瑛等.小波分析在结构损伤判别中的应用及试验研究[J].混凝土,2009,6.116-119.
    [63]Z.Sun, etc,A wavelet packet based method for structural damage assessment[J].2002
    [64]Cheng L.Y., etc Investigation of Combination Characteristic of Damage Location and Intensity in Arch[C]. Environmental Vibration:Prediction, Monitoring and Evaluation,2009.10, ppl388-1392.
    [65]Castro E., et al. Defect identification in rods subject to forced vibrations using the spatial wavelet transform. Applied Acoustics,2007,68(6):699-715.
    [66]Zhu Z.H., Meguid S.A. Vibration analysis of a new curved beam element. Journal of Sound and Vibration,2008,309(1-2):86-95.
    [67]Zhong S.C., Oyadiji S.O. Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mechanical Systems and Signal Processing, 2007,21(4):1853-1884.
    [68]Li H.L., Deng X.Y., Dai H.L. Structural damage detection using the combination method of EMD and wavelet analysis. Mechanical Systems and Signal Processing,2007,21(1):298-306.
    [69]李军,周月琴,李德仁.小波变换用于高分辨率全色影像与多光谱影像的融合研究[J].遥感学报,1999,3(2):117-120.
    [70]李树涛,王耀南.基于树状小波分解的多传感器图像融合[J].红外与毫米波学报,2001,20(3):219-222.
    [71]Chipman L.J.,ORR T.M.,Graham L.N.. Wavelets and image fusion[C]. Proc. of Int. Conf on Image Processing.Los Alamitos:IEEE Computer Society,1995:248-251.
    [72]LI H.,Manjuanth B.S.,MITRA S.Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Process,1995,57(3):235-245.
    [73]Koren I,Laine A,Tayl of F.Image fusion using steerable dyadic wavelet ransform[C]. Proc.of Int. Conf. on Image Processing.Los Alamitos:IEEE Computer Society,1995:232-235.
    [74]Liu Z.,Tsukada K.,Hansaki K.,et al..Image fusion by using steerable pyramid[J]. Pattern Recognition Letters,2001,22(9):929-939.
    [75]Zhang Z,Blum R S..A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[C].Proceedings of the IEEE, 1999,87(8):1315-1326.
    [76]Oliver R.. Image sequence fusion using a shift invariant wavelet transform[C]. Proc. of Int. Conf. on Image Processing.Los Alamitos:IEEE Computer Society,1997:288-291.
    [77]Unser M.Texture classification and segmentation using wavelet frames[J]. IEEE Trans. Image Processing,1995,11 (4):1549-1563.
    [78]李小春,陈鲸.多进制小波变换的快速构造及在遥感图像融合中的实现[J],计算机工程与应用,2004,14(7):32-34.
    [79]朱长青,王倩,杨晓梅.基于多进制小波的SPOT全色影像和多光谱遥感影像融合[J].测绘学报,2000,29(2):132-136.
    [80]J.Nunez,X.Otazu,O.Forse,et al..Multiresolution-based image fusion with additive wavelet decomposition[J].IEEE Trans. Geosci. Remote Sensing,1999,37(3):1204-1211.
    [81]哈司巴干,马建文,李启清.小波局部高频替代融合方法[J].中国图象图形学报,2002,7(10):1012-1016
    [82]李军,周月琴,李德仁.小波变换用于高分辨率全色影像与多光谱影像的融合研究[J].遥感学报,1999,3(2):117-120.
    [83]周立俭.多小波构造方法研究及在图像处理中的应用[D].中国海洋大学.2007.
    [84]R.C.Gonzalez,R.E.Woods.玩秋琦,阮宇智等译.数字图像处理[M].北京:电子工业出版社.2006.
    [85]孙仲康,沈振康.数字图像处理及其应用[M].国防工业出版社,1985.
    [86]朱秀昌,刘峰,胡栋.数字图像处理与图像通讯[M].北京:北京邮电大学出版社,2002.
    [87]戴青云,余英林.数学形态学在图像处理中的应用进展[J].控制理论与应用,2001,18(4):478-482.
    [88]朱秀昌,刘峰,胡栋.数字图像处理与图像通讯[M].北京:北京邮电大学出版社,2002
    [89]刘娜,张锡富等.图像处理在非接触测量中的应用[J].电测与仪表,1998,8(2):78-82.
    [90]王耀南,李树涛.多传感器信息融合及其应用综述.控制与决策[J],2001,16(5),518-522.
    [91]潘泉等.信息融合理论的基本方法与进展.自动化学报[J],2003,29(4),599-611.
    [92]Tseng D.C.,Chen Y.L.,Liu M.S.,Wavelet-based Multispectral Image Fusion[C]. IEEE Int. Conf. on IGARSS.2001.4:1956-1958.
    [93]Tu T.M.,Su S.C.,Shyu H.C.,Huang P.S.,A New Look at HIS-Like Image Fusion Methods[J]. Information Fusion.2001,2,177-186.
    [94]Kabir, S., Rivard P. Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery[J]. Construction and Building Materials,2009,23(10): 3166-3174.
    [95]Xia Y.,Leung H.,Bosse E.,Neural Data Fusion Algorithm Based on a Linearly Constrained Least Square Method[J].IEEE Trans. On Neural Networks.2002.13(2):320-329.
    [96]倪国强.多波段图像融合算法研究及新发展,光电子技术与信息,2001,14(5):11-17.
    [97]Yamamoto K.,Yamada K.. Image Processing and Fusion to Detect Navigation obstacles[C]. Proc SPIE.1998.3364:337-346.
    [98]Burt P.J.,Koleznski R.J..Enhanced Image Capture Through Fusion[C]. IEEE 4th International Conf. on Computer Vision,1993,4,173-182.
    [99]Shetigara V.. A Generalised Component Substitution Technique for Spatial Enhancement of MultisPectral Image Using a Higher Resolution Data Set[J]. Photogrammetric Engineering and Remote Sensing.1992.58(5),561-567.
    [100]Pohl C.,Genderen J.V.. Multisensor Image Fusion in Remote Sensing:Concepts, Methods and Applications[J]. Int. Journal Remote Sensing.1998.19(5):823-854.
    [101]Toet A.,Walraven J.,New False Color Mapping for Image Fusion[J]. Optical Engineering. 1998.35(3):650-658.
    [102]Geng B.Y.,Xu J.Z.,Yang J.Y.,An Approach Based on the Features of Space-Frequency Domain for Fusion of Edge Maps obtained through Multisensors[J]. Systems Engineering and Electronics.2002.22(4):18-22.
    [103]Smith S., Searff L.A.. Combing Visual and IR Images for Fusion-Two Approaches[J].Visual Data Interpretation.1992.1668,102-112.
    [104]Wright W.A.,Fast Image Fusion with a Markov Random Field[C].. Proc. Int. Conf. on Image Processing and its Applications. Stevenage,UK:IEE.1999.557-561.
    [105]刘刚,敬忠良,孙韶媛.基于期望值最大算法的图像融合[J].激光与红外,2005,35(2):130-133.
    [106]Blum R.S. Robust image fusion using a statistical signal Processing approach[J]. Information Fusion,2005,(6):119-128.
    [107]Burt P.,The Pyramid as a Structure for Efficient Computation[M]. Multiresolution Image Processing and Analysis. London:Springer-Veralg.1984.
    [108]Zhang Z.,Blum R.S.,A Categorization of Multiscale-Decomposition-Based image Fusion Schemes with A performance study for a digital camera application[C]. Proceedings of the IEEE,1999.87(8):1315-132.
    [109]Piella G.,A General Framework for Multiresolution Image Fusion:From Pixels to Regions[J].Information Fusion.2003.4(4):259-180.
    [110]陈树辉.强非线性振动系统的定量分析方法[M].北京.科学出版社,2007.
    [111]邓一三,李映辉,高庆.扁拱结构的非线性振动分析.重庆工学院学报[J],2007,21(10):42-46.
    [112]刘习军,陈予恕,侯书军.拱型结构在参_强激励下的非线性振动分析[J].力学学报,2000,32(1):99-104.
    [113]周雁群,唐雪松.钢筋混凝土拱结构破坏过程中损伤场的分布与演化[J].长沙交通学院学报,2006,22(03),30-34.
    [114]韩西等.利用模态试验和有限元分析对拱结构进行损伤识别[J].仪器仪表学报,2004,25(4):113-115.
    [115]熊峰,刘浩吾.钢筋混凝土模型拱动力特性分析[J].西南交通大学学报,2005,40(2):195-199.
    [116]项海帆,高等桥梁结构理论[M].北京,人民交通出版社,2001.
    [117]宋一凡,公路桥梁动力学[M].北京,人民交通出版社,2000.
    [118]M.N.Cerri, G.C.Ruta, Detection of localized damage in plane circular arches by frequency data[J]. Journal of Sound and Vibration,2004,270,39-59.
    [119]M.Tufekci, A.Arpaci. Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects[J]. Journal of Sound and Vibration 1998,209(5),845-856.
    [120]白葳,喻海良.通用有限元分析ANSYS 8.0基础教程[M].北京,清华大学出版社,2005
    [121]段进,倪栋,王国业.ANSYS10.0结构分析从入门到精通[M].北京,兵器工业出版社,2006
    [122]江克斌,屠义强,邵飞编.结构分析有限元原理及ANSYS实现[M].北京,国防工业出版社,2005.
    [123]张朝晖.ANSYS 11.0结构分析工程应用实例解析[M].北京,机械工业出版社,2008.
    [124]倪栋等.通用有限元分析ANSYS7.0实例精解[M].北京,电子工业出版社,2003.
    [125]李黎明.ANSYS有限元分析实用教程[M].北京,清华大学出版社,2005.
    [126]Yu L, etal. Application of eigenvalue perturbation theory for detecting small structural damage using dynamic responses[J]. Composite Structures,2007,78(3),402-409.
    [127]Du, S.Y., Yin, X.G., Chen, H.. Damage detection method based on 2nd order frequency perturbation[J]. Chinese journal of applied mechanics,2006,23(4),613-617.
    [128]胡广书.现代信号处理教程[M].北京,清华大学出版社,2004.
    [129]冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨,哈尔滨工业大学出版 社,2003.
    [130]徐长发,李国宽.实用小波方法[M].武汉,华中科技大学出版社,2004.
    [131]李建平,杨万年(译)小波十讲(Ten Lectures on wavelets)国防工业出版社[M].2004.
    [132]杨晓楠等.小波函数的选择对结构损伤识别的影响[J].沈阳建筑大学学报,2005,21(6),635-639.
    [133]宁佐贵,王雄祥,朱长春.小波分析方法在结构损伤检测中的应用研究.CNIC-01640,CAEP-0102.
    [134]邱颖,任青文,朱建华,基于小波奇异性的梁结构损伤诊断[J].工程力学,2005,22,146-151.
    [135]Chang Chih-Chieh, Chen Lien-Wen, Vibration damage detection of a Timoshenko beam by spatial wavelet based approach [J]. Applied Acoustics,2003,64,1217-1240.
    [136]李建平.小波分析与信号处理—理论、应用及软件处理[M].重庆出版社,2000.
    [137]飞思科技产品研发中心.MATLAB 6.5辅助小波分析与应用[M].北京,电子工业出版社,2003.
    [138]杨福生,小波变换的工程分析与应用[M].科学出版社,1999.
    [139]Douka E, Loutridis S, Trochidis A, Crack identification in beams using wavelet analysis[J]. International Journal of Solids and Structures,2003,40:3557-3569.
    [140]Hong. J.C, etc, Damage detection using the Lipschitz exponent estimated by the wavelet transform:applications to vibration modes of a beam[J]. International Journal of Solids and Structures,2002,39,1803-1816.
    [141]张伟伟.基于小波理论的结构损伤识别方法研究[学位论文].太原理工大学硕士论文,2006.
    [142]胡昌华等.基于MatLab 6.X的系统分析与设计—小波分析[M].西安电子科技出版社,2004.
    [143]杨福生.小波变换的工程分析与应用[M].科学出版社.1999.
    [144]程良彦.小波分析在梁/拱结构损伤识别中的应用.太原理工大学硕士论文,2007.
    [145]赵俊.基于曲率模态的拱结构的损伤识别方法研究[学位论文].暨南大学,2007.
    [146]李德葆,陆秋海.实验模态分析及其应用[M].北京,科学出版社,2001.
    [147]刘习军,贾启芬.工程振动理论与测试技术[M].北京,高等教育出版社,2004
    [148]李德葆.振动测量与实验分析[M].清华大学出版社,1992.
    [149]聂振华.基于应变模态的圆拱结构损伤识别方法研究[学位论文].暨南大学,2008.
    [150]Wong P C,Bergeron R D.30 Years of Multidimensional Multivariate Visualization// Scientific Visualization Overviews,Methodologies, and Techniques. Washington, DC:IEEE Computer Society Press,1997:3234.
    [151]孙扬,封孝生,唐九阳,肖卫东.多维可视化技术综述[J].计算机科学,2008,135(11),1-7.
    [152]Jennifer E. Michaels, Thomas E. Michaels. Guided wave signal processing and__image fusion for in situ damage localization in plates[J]. Wave Motion,,44,482-492.
    [153]Romaric Audigier, Roberto Lotufo, Alexandre Falcao.3D visualization to assist iterative object definition from medical images[J]. Computerized Medical Imaging and Graphics,2006, 30,217-230.
    [154]Deng-Hua Zhong, Ming-Chao Li, Ling-Guang Song, Gang Wang. Enhanced NURBS modeling and visualization for large 3D geoengineering applications:An example from the Jinpingfirst-level hydropower engineering project, China[J]. Computers & Geosciences,2006, 32,1270-1282.
    [155]H. Haase, M. Bock, E. Hergenrokther,C. KnoK. Meteorology meets computer graphics a look at a wide range of weather visualizations for diverse audiences [J]. Computers & Graphics 2000,24,391-397.
    [156]袁国明,周宁.信息可视化和知识可视化的比较研究[J].科技情报开发与经济,2006,16(12),12-17.
    [157]杨峰.从科学计算可视化到信息可视化[J].情报杂志,2007,(1),16-21.
    [158]刘勘,周晓峥等.数据可视化的研究与发展[J].计算机工程,2002,28(8),25-29.
    [159]周宁,陈勇跃等.知识可视化与信息可视化比较研究.理论与探索[J].2007,30(2),37-39.
    [160]贺全兵.可视化技术的发展及应用[J].中国西部科技,2008,4,04-07.
    [161]张铮.MATLAB程序设计与实例应用[M].北京,中国铁道出版社,2003.
    [162]姜健飞,胡良剑,唐俭.数值分析及其MATLAB实验[M].北京,科学出版社,2004.
    [163]景振毅,张泽兵,董霖.natlab7.0实用宝典[M].北京.中国铁道出版社,2008.
    [164]Duane Hanselman著,朱仁峰译.精通matlab7.0[M].北京.清华大学出版社,2006.
    [165]李文锋.图形图像处理与应用[M].北京.中国标准出版社,2006.
    [166]贺兴华等.VIATLAB 7.x图像处理[M].北京.人民邮电出版社,2006.
    [167]章毓普.图像处理与分析基础[M].北京.清华大学出版社,2002.
    [168]阳方林,郭红阳,杨风暴.像素级图像融合效果的评价方法研究[J].测试技术学报,2002,16,276-279.
    [169]夏明革,何友,欧阳文.像素级图像融合效果方法与融合效果评价[J].2002,8,224-229.
    [170]董长虹.natlab图像处理与应用[M].北京.国防工业出版社,2004.
    [171]朱习军等.MATLAB在信号与图像处理中的应用[M].北京.电子工业出版社,2009.
    [172]王家文,李仰军.MATLAB 7.0图形图像处理[M].北京.国防工业出版社,2006.
    [173]徐东艳,孟晓刚.MATLAB函数库查询辞典[M].北京.国防中国铁道出版社,2006.