膜分离强化炼厂气中轻烃冷凝回收的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,石油资源有限的储量与日益增长的需求量已成为人们关心的大问题。与此同时,石油重质化程度逐渐增大,因此,各大炼厂普遍加设了催化裂化、加氢裂化及渣油焦化等转化过程。这些过程产生大量的炼厂气,如不合理的利用,将会降低能源的利用率,造成资源的浪。采用单一分离工艺处理富气产生的二次尾气等炼厂贫气中仍含有较多的轻烃和氢气,因此有必要开发具有高分离效率和回收率的分离工艺来回收该部分资源,减少资源浪,提高经济效益。本文针对两种典型的炼厂气采用单一分离技术产生的二次尾气为原料,基于传统的压缩冷凝轻烃回收工艺,设计了多种采用膜强化的轻烃冷凝回收工艺,并对设计工艺采用UniSim Design模拟软件进行模拟优化。
     论文以催化裂化干气经膜分离回收氢过程中产生的渗余气为原料气,基于传统的压缩/冷凝工艺(SCS),设计了后置有机蒸气膜富集冷凝尾气中轻烃强化回收工艺(SC-VM)。对SCS工艺和SC-VM工艺进行模拟优化,确定了各自的最优操作参数,以经济效益为评价流程优劣的最终标准,SC-VM工艺为较优的方案。当渗余气为350kmol/h的时候,采用SC-VM工艺可回收轻烃51720吨/年,轻烃回收率由传统的压缩/冷凝工艺(SCS)的79.7%提高到98.8%,价值高达23274万元/年,公用工程消耗为2071.7万元/年,单耗为0.4006元/千克,年经济效益预计为13170万元,比SCS工艺年经济效益增加4068万元。
     以加氢裂化干气经PSA处理过程中产生的解吸气为原料气,基于传统的压缩/冷凝工艺(SCS),设计了分别采用后置有机蒸气膜富集冷凝尾气中轻烃强化回收工艺(SC-VM)和前置氢膜浓缩轻烃以强化其冷凝回收的工艺(HM-SC)。对SCS工艺、SC-VM和HM-SC工艺进行模拟与优化,确定了各自的最优操作参数,以经济效益为评价流程优劣的标准,HM-SC工艺为最优的方案。当解吸气为400kmol/h时,采用HM-SC工艺可回收轻烃约27333吨/年,轻烃回收率由传统的压缩冷凝工艺(SCS)的55.6%提高到75.0%,价值12299.7万元,浓度为92mol%的副产氢气产量可达到2271万Nm3/年,价值高达2498万元/年,公用工程消耗约1226.7万元/年,单耗为0.4500元/千克,年经济效益预计为8523.4万元,比SCS工艺年经济效益增加4445万元,比SC-VM工艺年经济效益增加154万元。
     结果表明,经膜分离强化的轻烃回收工艺可以明显提高轻烃的回收率和生产过程的经济效益,对生产具有一定的指导作用。
With the development of modern industry, the inconsistence between limited reserves of oil resources and increasing demand has become a big issue that attracts more and more attention. But with the transition of focus on high quality oil, the introduction of some conversion processes generated a large amount of refinery gas, such as the process of catalytic cracking, hydrocracking, residuum coking etc. It is a serious waste of petroleum resource if this part of refinery gas cannot be used efficiently. The secondary vent gas was generated in the single separation process while treating rich gas and the poor gas from refinery still contain much light-hydrocarbons and hydrogen. In order to recovery the resource, a couple process, which has high separation efficiency and recovery ratio, is necessary to be developed to reduce the waste of resource and promote economic profit. In this paper, two kinds of secondary vent gases which were remained after single separation process were investigated as raw materials. Based on the traditional shallow condensation process, a modified shallow condensation process enhanced by various membranes was designed for light-hydrocarbons recovery from refinery gases. The designed process was simulated and optimized by the Unisim Design software.
     In this paper, using the residual gases generated in the process of membrane separation of hydrogen from catalytic cracking gas as raw materials and based on traditional shallow condensation system(SCS), a shallow condensation-vapor membrane (SC-VM) process with back organic vapor membrane was designed to enhance the light-hydrocarbons recovery. Both of the SCS and SC-VM processes were simulated and optimized and finally the optimal parameters were achieved respectively. In comparison to traditional condensation system, SC-VM coupling process was the optimal choice through economic analysis. When the flow rate of residual gas is about 350mol/h, the mass flow of recoveried light-hydrocarbons was 51720t/a and the recovery ratio was improved from 79.7%to as high as 98.8%, the total value of which was about 232.74 million yuan per year. The annual utilities consumption was about 20.72 million yuan, and the specific energy consumption was 0.4006yuan/kg. The economic profit of the couple process was to be 131.70 million yuan per year, which was 40.68 million yuan more than that of the SCS process.
     Using the desorption gas of PSA purifying H2 from hydrocracking gas as raw materials, a series of modified shallow condensations were designed for light-hydrocarbons recovery from refinery gases with rubbery membranes for light-hydrocarbons enrichment and glassy membranes for hydrogen removal. Based on the traditional shallow condensation system, SC-VM coupling process and HM-SC coupling process were presented for enhancement of the recovery of light-hydrocarbons. At last the respective optimal operation parameters were achieved by simulation and optimization of the two coupling processes.In comparison to other processes, HM-SC coupling process with two stages was the optimal one based on the enconomical analysis. When the flow rate of desorption gas was 400 kmol/h,:the mass flow of the light-hydrocarbons was bout 27333t/a, and the recovery ratio was increased from 55.6%to 75.0%, the value of which was 122.997 million yuan. The yield of byproduct hydrogen with a concentration of 92mol% can be as high as 22.71 million Nm3/h and the total profit of the gas is 24.98 million yuan. The utilities consumption was 12.27million yuan per year, and the specific energy consumption was 0.4500yuan/kg. The economic profit the HM-SC process was about 85.23 million yuan per year, which was 44.45 million yuan more than that of the SCS process and 1.54 million yuan more than that of the SC-VM process.
     The results showed that the the membrane enhanced shallow condensation process can improve the recovery ratio of light-hydrocarbons and economic profit obviously,. The conclusion gives directions to the future work.
引文
[1]W. D. Walls. Petroleum refining industry in China[J]. Energy olicy,2010,38:2110-2115.
    [2]林泰明,谷育生,李吉春等.催化裂化干气的综合利用[J].石化技术与应用,2004,22(5):315-319.
    [3]吴茨萍,孙利.炼厂干气的分离回收和综合利用[J].现代化工,2001,21(5):20-23.
    [4]仲伟萍.可用于回收炼厂气的膜分离技术[J].石油和化工节能,2009,2:21-23.
    [5]徐喆,韩波.我国炼厂气的综合利用[J].当代化工,2009,38(3):257-261.
    [6]张惊涛.炼厂气分离回收烯烃的先进技术[J].炼油技术与工程,2003,(1):18-21.
    [7]瞿国华.浅论我国原油资源战略和重质原油加工前景[J].当代石油石化,2002,10(8):6-10.
    [8]侯芙生.加氢裂化-21世纪的主要炼油技术[J].石油炼制与化工,2000,31(9):1-5.
    [9]徐勤利.炼厂气分级利用[J].齐鲁石油化工,2009,37(3):252-254.
    [10]彭琳.综合回收炼厂气中氢气及轻烃工艺的设计研究[D].大连:大连理工大学化工学院,2008.
    [11]许庆本,高健康.变压吸附提纯氢气及其影响因素[J].甘肃科技,2008,24(12):32-33.
    [12]李立清,曾光明,唐新村等.变压吸附技术净化分离有机蒸气的研究进展[J].现代化工,2004,24(3):20-23.
    [13]王红光,王立国.炼厂干气回收轻烃技术评述[J].炼油技术与工程,2009,39(12):8-11.
    [14]汪涵,郭桂悦,周玉莹等.挥发性有机废气治理技术的现状和进展[J].化工进展,2009,28(10):1833-1841.
    [15]汤明,肖泽仪,史晓燕.膜技术在含烃类气体分离中的研究及前景[J].过滤与分离,2005,15(4):21-23.
    [16]黄维秋,钟秦.油气回收技术分析与比较[J].化学工程,2005,33(5):53-56.
    [17]董子丰.用膜分离从炼厂气中回收氢气[J].低温与特气,1997,3:34-42.
    [18]Kaldis S P, Kaoantaidakis G C, Sakellaropoulos G P. Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases. Journal of Membrane Science,2000,173(1):61-71.
    [19]刘建军,屠原祯,栾秀文等.气体膜分离在石化行业氢气分离回收中的应用[J].膜科学与技术,2005,25:11-16.
    [20]J. S. Cha, V. Malic, D. Bhaumik, R.Li, K.K. Sirkar. Removal of VOCs from waste gas streams by permeation in a hollow fiber permeator[J]. Journal of Membrane Science, 1997,128:195-211.
    [21]Y. K. Vijay, S. Wate, N. K. Acharya. The titanium-coated polymeric membranes for hydrogen recovery[J]. International Journal of Hydrogen Energy,2002,27:905-908.
    [22]中国石油化工股份有限公司.从烯烃-氢混合物中分离烯烃和氢的方法[P].中国,200410086381.6.2006-5-10.
    [23]刘丽,邓卖村,袁权.气体分离膜研究和应用新进展[J].现代化工,2000,20(1):17-21.
    [24]张茂华.胜利油田轻烃资源的开发利用决策研究[D].大连,大连理工大学工商管理学院.
    [25]李仁科.提高轻烃回收率工艺参数研究[D].西南石油学院油气储运工程.
    [26]时均,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001.
    [27]Tian M M, Zhang X, Liu S Q, et al. Gas permeation of segmented polyurethanes and their blends with PVC[J]. Chinese Journal of polymer science,1989,7(2):132-141.
    [28]Mazid M A, Matsuura T. Membrane gas separation:a critical overview[J]. Separation Science and Technology,1993,28:2287-2296.
    [29]李旭祥.分离膜制备与应用[M].北京:化学工业出版社,2004.267
    [30]Arne Lindbrathen, May-Britt Hagg. Glass membranes for purification of aggressive gases Part 1:Permeability and stability[J]. Journal of Membrane Science,2005, 259:145-153.
    [31]T. Kondo. New developments in gas sep technology. Toray Research Center, INC,1996.6.
    [32]Baker R W, Wi jmans J G, Kaschemekat J H. The design of membrane vapor-gas separation systems [J]. Journal of Membrane Science,1998,151:55-62.
    [33]贺高红.中空纤维膜气体分离过程的研究[D].大连:中国科学院大连化学物理研究所,1993.
    [34]Wijmans J G, Baker R W. The solution-diffusion model:a review[J]. Journal of Membrane Science,1995,107 (1-2):1-21.
    [35]Pratibha Pandey, R. S. Chauhan. Membrane for gas separation [J]. Progress in Polymer Science,2001,26(6):853-893
    [36]徐仁贤.气体分离膜应用的现状和未来[J].膜科学与技术,2003,23(4):123-128.
    [37]C. K. Yeom, S. H. Lee, H. Y. Song, J.M. Lee. Vapor permeations a series of VOCs/N2 mixtures through PDMSs membrane[J]. Journal of Membrane Science,2002,198:129-143.
    [38]赵婵.气体分离复合膜涂层材料—改性硅橡胶的研制[D].大连:大连理工大学,2007.
    [39]Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. Journal of Membrane Science, 2006,279(1-2):1-49.
    [40]孔祥英.用膜分离技术提浓重整氢气[J].石油炼制与化工,1994,25(12):10-14.
    [41]李晖,刘富强,曹义鸣等.膜法分离有机蒸气/氮气混合气的过程研究[J].2000,20(2):39-42.
    [42]Mohammed Al-Juaied, W. J. Koros. Performance of natural gas membranes in the presence of heavy hydrocarbons [J]. Journal of Membrane Science,2006,274:227-243.
    [43]Anjan K. Datta, Pradip K. Sen. Optimization of membrane unit for removing carbon dioxide from natural gas[J]. Journal of Membrane Science,2006,283:291-300.
    [44]A. Brunetti, F. Scura, G. Barbieri, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science,2009,26.
    [45]Woo-lk Sohn, Dong-Hyun Ryu, Sae-Joong Oh, et al. A study on the development of composite membranes for the separation for organic vapors[J]. Journal of Membrane Science,2000,175:163-170.
    [46]Richard W. Baker. Future directions of membrane gas separation technology:a review[J]. Industrial and Engineering Chemistry Research,2002,41:1393-1411.
    [47]蒋国梁,徐仁贤,陈华.膜分离法与深冷法联合用于催化裂化干气的氢烃分离[J].石油炼制与化工,1995,26:26-29.
    [48]J. McCallion. Membrane process captures vinyl chloride other VOCs[J]. Chemical Processing,1994, (9):33-36.
    [49]刘舰.压缩冷凝-膜法回收小本体聚丙烯尾气中的丙烯单体[J].石油化工,2004,33(6):557-559.
    [50]柴永峰.膜-压缩冷凝耦合回收GTL尾气中轻烃的研究[D].大连:大连理工大学化工学院,2009.
    [51]朱开宏.化工过程流程模拟.北京:中国石化出版社,1993.
    [52]杨光辉.化工流程模拟技术及应用[J].山东化工,2008,37(8):35-38.
    [53]陈晓春,马桂荣.动态模拟技术与化学工程[J].现代化工,2002,22(3)
    [54]Davis R. A. Simple gas permeation and pervaporation membrane unit operation models for process simulators[J]. Chemical Engineering and Technology,2002,25(7).
    [55]刘正庚,赵建华,李制.石油化工流程模拟与应用[J].计算机与应用化学,1993,10(3):161-170.
    [56]杨晋庆,杨友麒,麻德闲.化工过程模拟与优化的计算策略[J].计算机与应用化学,1986,3(1):29-39.
    [57]杨友麒.过程流程模拟[J].计算机与应用化学,1995,12(1):1-6.
    [58]杨友麒,成思危.过程系统工程面临的挑战和发展趋势[J].化工进展,2002,21(8):527-535.
    [59]孔红先,赵听友,蔡冠梁.化工模拟软件的应用与开发[J].计算机与应用化学,2007,24(9):1285-1288.
    [60]郭广智,何中德,黄磊.用动态模拟软件HYSYS指导装置生产.石油化工设计,1997,14(4):53-57.
    [61]刘殿中,王明友.HYSYS模拟技术在丁辛醇装置用能优化方面的应用[J].中外能源,2009,14(3):81-83.
    [62]冯宏超.膜法回收氯甲烷的模拟与优化[D].大连:大连理工大学化工学院,2009.
    [63]郭宏远,左信,罗雄麟,等.基于UniSim的催化裂化分馏塔的模拟与优化[J].化学工程与装备,2008,(3):1-6.
    [64]皮红梅,董晓燕,王红梅.HYSYS软件在芳烃装置上的应用[J].化学工业与工程,2005,22(1) :77-79.
    [65]Ju Yeong Lee, Young Han Kim and Kyu Suk Hwang. Application of a fully thermally coupled distillation column for fractionation process in naphtha reforming plant [J]. Chemical Engineering And Processing,2004,43:495-501.
    [66]M. Soos, E. Graczova, J. Markos, A. Molnar, P. Steltenpohl, Design and simulation of a distillation column for separation of dichloropropane from a multicomponent mixture[J]. Chemical Engineering and Processing,2003,42:273-284.
    [67]刘家洪,周平.浅析HYSYS软件在三甘醇脱水工艺设计中的应用[J].天然气与石油,2000,18(1).
    [68]Ding YuPeng, Donald B. Robinson. A new two-constant equation of state[J]. Industrial and Engineering Chemistry Research Fundamentals,1976,15(1):59-64.
    [69]姜慧娟.对5个烃类状态方程预测结果的比较[J].大庆石油学院学报,22(1):57-59.
    [70]Honeywell. UniSim Design Simulation Basis-Reference Guide.2005:A-4-A-14.
    [71]王鹏宇.气体膜分离过程HYSYS模拟系统的研究[D].大连:大连理工大学化工学院,2005.
    [72]聂飞.贺高红.窦红等.HYSYS中膜分离单元的优化.第二届全国石油和化工行业节能节水技术会议论文集[C].北京:化学工业出版社,2008.
    [73]范瑛琦.回收费托合成弛放气中合成原料的研究[D].大连:大连理工大学化工学院,2009.