Ni-Fe/γ-Al_2O_3双金属催化剂的制备、表征及其CO甲烷化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO甲烷化技术在工业中具有重要的应用价值,如富氢气体中少量CO的脱除、城市煤气通过甲烷化提高热值、F-T合成中避免甲烷生成的研究等,其中利用焦炉煤气、褐煤合成代用天然气技术等,受到学术界和产业界的高度关注,已成为煤化工发展的重要方向。
     高温镍基催化剂(280-450℃)是工艺气体中少量CO甲烷化过程普遍使用的催化剂,使用该催化剂存在反应设备要求高、操作成本高、能耗大、安全性低等缺陷。因此,开发对反应设备要求较缓和、操作成本低、能耗小、安全性高的低温甲烷化催化剂有重要意义。在镍基催化剂的制备过程中,通过对催化剂活性组分的调变来提高催化剂的活性,实现低温甲烷化是一条切实可行的途径,同时进一步研究活性金属的调变对催化剂催化性能的影响具有重要的理论价值和实际意义。
     双金属催化剂活性组分多为合金,由于合金具有特殊的电子效应和表面结构,因此双金属催化剂对催化加氢、催化裂解等反应表现出了更优良的活性和选择性,被广泛应用于多种化工生产过程。本文采用浸渍法制备了一系列Ni/γ-Al2O3、Fe/γ-Al2O、Ni-Fe/γ-Al2O3催化剂,采用流动微反装置考察了催化剂的CO甲烷化催化性能,通过N2-physisorption、XRD、H2-TPR、H2-TPD和CO-TPD等手段考察了催化剂的结构和表面性质,同时利用程序升温表面反应(TPSR)和原位漫反射红外光谱法(in-situ DRIFTS)对催化剂上CO甲烷化的反应机理进行了探讨。通过对比Ni/γ-Al2O3、Fe/γ-Al2O3单金属催化剂和Ni-Fe/γ-Al2O3双金属催化剂结构和表面性质的变化以及催化剂上CO吸附和甲烷化反应的TPSR、in-situ DRIFTS差异,给出了Ni-Fe/γ-Al2O3双金属催化剂活性明显提高的主要原因。主要结果和结论如下:
     1.在相同负载量条件下,与Ni/γ-Al2O3、Fe/γ-Al2O3单金属催化剂相比,6Ni-4Fe/γ-Al2O3双金属催化剂表现出最高的催化活性,CO甲烷化反应具有最低的起燃温度(180℃)和完全转化温度(220℃),该催化剂镍铁最佳组成为6Ni-4Fe。
     2.第二组分铁的引入促进了催化剂中活性组分的分散,但双金属催化剂的织构特征没有明显变化;第二组分铁的引入减弱了活性组分与载体间的相互作用,还原后形成Ni-Fe合金,使Ni-Fe/γ-Al2O3双金属催化剂还原后活性物种数量增多,对H2、CO的吸附能力增强,表现出高的CO甲烷化催化活性。
     3.通过对催化剂上CO吸附和甲烷化反应的TPSR和in-situ DRIFTS研究发现,第二组分铁的引入改变了Ni-Fe/γ-Al2O3双金属催化剂上CO甲烷化的反应历程,C-O键的断裂方式明显不同。Ni/γ-Al2O3催化剂上C-O键的断裂经由羰基氢化物-多氢羰基氢化物的途径,而Ni-Fe/γ-Al2O3催化剂上C-O键经由直接断裂表面碳物种加氢的途径。双金属催化剂中合金的形成使Ni-Fe/γ-Al2O3催化剂还原后在较低温度下形成新的甲烷化活性位,这是Ni-Fe/γ-Al2O3催化剂CO低温甲烷化活性提高的重要原因。
Researchers expressed their great interests over CO methanation because of its important practical value in many ways. For example, it is used for the removal of a small amount of CO in H2-rich gases, improvement of the calorific value of city gas and the study on avoiding generation of methane in F-T synthesis. Especially, its application in synthesis of the substitute natural gas through coke oven gas or the low quality coal has become very important and attracted a great attention in academia and industry.
     The high-temperature Ni-based catalyst (280-450℃) is commonly used in the methanation process of a small amount of CO in process gases. Although the catalyst shows the high catalytic activity, the reaction has the equipment requirement, the high cost in operation, the high energy consumption and the low security. Low temperature methanation can provide useful information for development of methanation catalyst which has the moderate equipment requirement, low cost in operation, small energy consumption and high security. In order to increase its catalytic activity and achieve the purpose of low-temperature methanation, choosing the suitable metal or several metals in preparation process of catalyst is a practicable and feasible way. In addition, investigating the effect of metal or metals on the catalytic activity of catalyst has important theoretical and practical significance.
     The adding of the second metal to bimetallic catalyst, the two metals also have an interaction between the metal including the metal and support interaction, which can change the structure of the catalyst. Alloys were observed in most of the bimetalic catalysts as the active species owning to alloys have special electronic effects and surface structure. So bimetallic catalysts for catalytic hydrogenation, catalytic cracking reactions show a better activity and selectivity, and widely used in many fields of chemical production process. In this paper, a series of Ni/γ-Al2O3、Fe/γ-Al2O3、Ni-Fe/γ-Al2O3 catalysts were prepared by the wet impregnation method. The catalytic activity for CO methanation was investigated in a fixed-bed continuous-flow microreactor. Then the the structure and surface property of the catalysts were investigated via the N2-physisorption、XRD, H2-TPR, H2-TPD and CO-TPD characterizations. Meanwhile, CO methanation reaction mechanism was discussed by the TPSR technique and in-situ DRIFTS. By comparing the changes of structure and surface property of the catalysts as well as TPSR and DRIFTS differences of CO adsorption and methanation reaction over the monometal catalysts and the bimetallic catalyst, the reasons for increase of the catalytic activity of the Ni-Fe/γ-Al2O3 catalyst were given. The main results are as follows:
     1. From the investigation of the Ni/γ-Al2O3、Fe/γ-Al2O3 and Ni-Fe/γ-Al2O3 catalysts, the 6Ni-4Fe/γ-Al2O3 catalyst has the lowest light-off temperature (180℃) and completely conversion temperature (220℃), and shows the highest catalytic activity.
     2. Characterizations results show that the alloy formation in bimetallic catalyst has little effect on the texture of the catalysts, but the dispersion of active species in the 6Ni-4Fe/γ-Al2O3 catalyst is obviously promoted. In addition, the addition of the second component iron causes the formation of the Ni-Fe alloy, which decreases the interaction between active species and the support. The moderate interaction improves the dispersion degree and the reduction degree of active species, and then results in more active active species and stronger adsorption ability for H2 and CO.
     3. From TPSR and in-situ DRIFTS investigation of CO adsorption and methanation reaction over the catalysts, it is found that the addition of the second component iron change the CO methanation reaction mechanism on Ni-Fe/γ-Al2O3 bimetallic catalyst, the breaking of C-0 bond over on the Ni/γ-Al2O3 and 6Ni-4Fe/γ-Al2O3 catalysts is quite different. Ni/γ-Al2O3 catalyst is via multi-hydrogen carbonyl hydride but 6Ni-4Fe/γ-Al2O3 catalyst is via direct breaking in CO methanation reaction. Meanwhile, combined with the characterizations of the structure and surface properties, the formation of alloy leads to more active species, stronger adsorption ability for CO and H2 and in the presence of H2, the formation of a new active carbon species at lower temperature over the Ni-Fe/γ-Al2O3 catalyst, which is the reason for increase of the catalytic activity for CO methanation.
引文
[1]汪丛伟,周帅林,洪学伦.燃料电池汽车氢源选择的研究进展和预测[J].化学通报,2005,1:30-35
    [2]杜宇平,陈红雨,冯书丽.质子交换膜燃料电池发展现状[J].电池工业,2002,7(5):266-271
    [3]CRABTREE G W, DRESSELHAUS M S, BUCHANAN M V. The Hydrogen Economy[J]. Physics Today,2004,57(39):39-44
    [4]TURNER J A. A Realizable Renewable Energy Future[J]. Science,1999,285:687-689
    [5]TURNER J A. Sustainable Hydrogen Production[J]. Science,2004,305:912-974
    [6]雪峰.布什政府着手绘制“氢经济”发展蓝图[J].全球科技经济燎望,2003,7:34-36
    [7]PENNER S S. Steps Toward the Hydrogen Economy[J]. Energy,2006,31(1):33-43
    [8]毛宗强.关注氢能源——21世纪最具发展潜力的能源[J].科技中国,2004,11:28-33
    [9]PAOLA C, SUPRAMANIAM S. Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000[J]. Journal of Power Sources, 2001,102:242-252
    [10]VIRAL MEHTA, JOYCE SMITH. Cooper Review and Analysis of PEM Fuel Cell Design and Manufacturing[J]. Journal of Power Sources,2003,114(1):32-53
    [11]周未,王金全.制氢技术发展概况[J].贵州化工,2003,28(1):5-10
    [12]AMPHLETT J C, MANN R F, PEPPLEY B A. On Board Hydrogen Purification for Steam Reformation/PEM Fuel Cell Vehicle Power Plants[J]. International Journal of Hydrogen Energy,1996,21(8):673-678
    [13]贺德华,马兰,刘金尧.烃类/醇类重整制氢的研究进展[J].石油化工,2008,37(4):315-322
    [14]武瑞芳,张因,王永钊,高春光,赵永祥.Zr02助剂对Ni/SiO2催化剂CO甲烷化催化活性及其吸附性能的影响[J].燃料化学学报,2009,37(5):578-582
    [15]GALLETTI C, SPECCHIA S, SARACCO G, SPECCHIA V. CO-selective Methanation Over Ru/γ-Al2O3 Catalysts in H2-rich Gas for PEMFC[J]. Applications Chemical Engineering Science,2010,65(1):590-596
    [16]DAGLE A R, WANG Y, XIA G G, STROHM J J, HOLLADAY J, PALO R D. Selective CO Methanation Catalysts for Fuel Processing Applications[J]. Applied Catalysis A:General,2007,326(2):213-218
    [17]沈跃.深冷分离法和加膜分离法的空气分离装置[J].低温与特气,1997,2:26-27
    [18]魏玺群,陈健.变压吸附气体分离技术的应用和发展[J].低温与特气,2002,20(3):1-5,11
    [19]席怡宏.膜分离-变压吸附联合工艺生产燃料电池氢气[J].上海化工2006,31(1):26-28
    [20]李锦卫,詹瑛瑛,林性贻,郑起.焙烧温度对低温水煤气变换Au/Fe2O3催化剂性能的影响[J].物理化学学报,2008,24(6):932-938
    [21]ERNANDOM F, CLAUDE D, DANIEL D. Noble Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX)[J]. Applied Catalysis B:Environmental,2004,54(1):59-66
    [22]SELIM A, ANAND U N, MANOS M, BRYAN E. Ru-Pt Core-shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen[J]. Nature Materials,2008, 7:333-338
    [23]PARASKEVI P, DMITRIS I K, XENOPHON E V. Selective Methanation of CO over Supported Ru Catalysts[J]. Applied Catalysis B:Environmental,2009, 88(3-4):470-478
    [24]KRAMERA M, DUISBERGB M, STOWEA K, MAIERA W F. Highly Selective CO Methanation Catalysts for the Purification of Hydrogen-rich Gas Mixtures [J]. Journal of Catalysis,2007,251(2):410-422
    [25]EUN D P, DOOHWAN L, HYUN C L. Recent Progress in Selective CO Removal in a H2-rich Stream[J]. Catalysis Today,2009,139(4):280-290
    [26]SABATIER P, SENDERENS J B. New Synthesis of Methane[J]. Les Comptes Rendus de l'Academie des sciences,1902,134:514-516.
    [27]MILLS G A, STEFFGEN F W. Catalytic Methanation[J].Catalysis Reviews, 1974,8(1):159-210
    [28]Hans Schulz, Short History and Present Trends of Fischer-Tropsch Synthesis[J]. Applied Catalysis A:General,1999,186(1-2):3-12
    [29]FISCHER F, TROPSCH H, DILTHEY P. The Reduction of Carbon Monoxide to Methane in the Presence of Various Metals[J]. Brennstoff-Chemie,1925,6:265-271
    [30]KARN F S, SHULTZ J F, ANDERSON R B. Hydrogenation of Carbon Monoxide and Carbon Dioxide on Supported Ruthenium Catalysts at Moderate Pressures [J]. Industrial & Engineering Chemistry Product Research and Development,1965,4(4): 265-269
    [31]MCKEE D W. Interaction of Hydrogen and Carbon Monoxide on Platinum Group Metals[J]. Journal of Catalysis,1967,8(3):240-249
    [32]REHMAT A, RANDHAVA S S. Selective Methanation of Carbon Monoxide[J]. Industrial & Engineering Chemistry Product Research and Development,1970, 9(4):512-515
    [33]SCHLESINGER M D, DEMETER J J, MURRAY GREYSON. Catalyst for Producing Methane from Hydrogen and Carbon Monoxide[J]. Industrial Engineering Chemistry,1956,48(1):68-70
    [34]催化学会.C1化学-创造未来的化学,山东,宇航出版社,1984,12-13
    [35]葛福云,姚士冰,陈荣钦,陈秉彝,许书楷,周绍民Ni-Fe合金电沉积层结构的穆斯堡尔谱与X射线衍射研究[J].高等学校化学学报,1993,14(9):1289-1292
    [36]BERRY F J, SMART L E, SAI P S, LINGAIAH N, KANTA P. Microwave Heating during Catalyst Preparation:Influence on the Hydrodechlorination Activity of Alumina-supported Palladium-iron Bimetallic Catalysts[J]. Applied Catalysis A: General,2000,204:191-201
    [37]王益,沈俭一.Ni-Fe-Al合金制备雷尼镍催化剂的研究[J].无机化学学报,1997,13(3):320-324
    [38]唐忠,张帆,陶庭树,冯仰渝Ni-Cu-B非晶态合金催化剂对双烯选择性加氢性能的研究[J].石油化工,2000,29(10):754-756
    [39]杨宝军,陈建平,焦天恕,李志鲲,梁开伦,吕功煊.废水中偏二甲肼在Ni/Fe催化剂上的催化分解研究[J].分子催化,2007,21(2):104-108
    [40]ISHIHARA T, EGUCHI K, ARAI H. Hydrogenation of Carbon Monoxide over SiO2-supported Fe-Co, Co-Ni and Ni-Fe Bimetallic Catalysts[J]. Applied Catalysis,1987, 30(1):225-238
    [41]WANG YA-QUAN, QI SUI-TAO, HOU YONG-JIAO. CO Hydrogenation Catalyzed by Supported Ni-Cu Bimetallic Catalysts[J]. Reaction Kinetics and Catalysis Letters,2000,70(2):213-271
    [42]BAITAO L, SHIGERU K, YUYAM, TOMOHISA M, TOSHIHIRO M, SHUICHI N, KAZUO, KIMIOK, KEIICHI T. Surface Modification of Ni Catalysts with Trace Pt for Oxidative Steam Reforming of Methane[J]. Journal of Catalysis,2007,245 (1):144-155
    [43]钟顺和,王希涛,宓立新,肖秀芬.SnO2-SiO2负载Cu、Ni催化剂的C02加氢反应性能[J].燃料化学学报,2001,29(2):154-158
    [44]P VLADIMIR. Alloy catalysts:the concepts[J]. Applied Catalysis A:General, 2001,222(1):31-45
    [45]王亚权.CO加氢Ni-Cu/ZnO双金属催化剂的研究[J].天然气化工,1998,6:17-21
    [46]李增喜,陈霄榕.贵金属铂对镍基催化剂上萘转化性能的影响[J].催化学报,2003,24(4):253-258
    [47]王松蕊,林伟,朱月香,谢有畅,陈经广,单层分散型Pt/Ni双金属催化剂的制备及其C=C和C=O催化加氢性能[J].催化学报,2006,27(4):301-303
    [48]PETER SCHOUBYE. Methanation of CO on Some Ni Catalysts[J]. Journal of Catalysis,1969,14(3):238-246
    [49]ALSTRUP I, TAVARES M T. Kinetics of Carbon Formation from CH4+H2 on Silica-Supported Nickel and Ni-Cu Catalysts[J]. Journal of Catalysis,1993, 139(2):513-524
    [50]HERWIJNEN T V, DOESBURG H V, DE JONG W A. Kinetics of the Methanation of CO and CO2 on a Nickel Catalyst[J]. Journal of Catalysis,1973,28(3):391-402
    [51]PETER SCHOUBYE. Methanation of CO on a Ni cataly st[J]. Journal of Catalysis, 1970,18(2):118-119
    [52]FISCHER F, TROPSCH H. The Synthesis of Petroleum at Atmospheric Pressures from Gasification Products of Coal[J]. Brennstoff-Chemie.1926,7:97-104
    [53]CRAXFORD S R, RIDEAL E K. The Mechanism of the Synthesis of Hydrocarbons from Water Gas[J]. Journal of the Chemical Society,1939,3:1604-1614
    [54]VLASENKO V M, YUZEFOVICH G E. Mechanism of the Catalytic Hydrogenation of Oxides of Carbon to Methane[J]. Russian Chemical Reviews,1969,38 (9):728-739
    [55]STORCH H H, GOLUMBIC H, Anderson R B, The Fischer-Tropsch and Related Synthesis, Wiley, New York,1951.
    [56]EISCHENS R P, PLISKIN W A, FRANCIS S A. Infrared Spectra of Chemisorbed Carbon Monoxide, The Journal of Chemical Physics,954,22:1786-1787
    [57]GARLAND C W, LORD R C, TROIANO P F. Infrared Spectrum of Carbon Monoxide Chemisorbed on Evaporated Nickel Films[J]. The Journal of Physical Chemistry,1965,69 (4):1195-1203
    [58]GEORGE BLYHOLDER. Molecular Orbital View of Chemisorbed Carbon Monoxide[J]. The Journal of Physical Chemistry,1964,68(10):2772-2777
    [59]BLYHOLDER G, NEFF L D. Infared Spectra of CO, CO2, O2, and H2O Adsorbed on Silica-supported Iron[J]. The Journal of Physical Chemistry,1962,66(8):1464-1469
    [60]BLYHOLDER G, NEFF L D. Infrared Study of the Adsorption of Methanol, Ethanol, Ether, and Water and the Interaction of Carbon Monoxide and Hydrogen on a Nickel Surface[J]. Journal of Catalysis,1963,2(2):138-144
    [61]MCCARTY J G, WISE H. Hydrogenation of Surface Carbon on Alumina-Supported Nickel[J]. Journal of Catalysis,1979,57(3):406-416.
    [62]陈绍谦.一氧化碳甲烷化反应研究[J].化学研究与应用,1998,10(2):154-158.
    [63]GUO X Y, ZHONG B, PENG S Y. Monte Carlo Simulation to Study the Kinetics of CO Methanation [J]. Chemical Physics Letters,1995,233(5-6):580-584.
    [64]BAJUSZ I G, GOODWIN J G. Hydrogen and Temperature Effects on the Coverages and Activities of Surface Intermediates during Methanation on Ru/SiO2[J]. Journal of Catalysis,1997,169(1):157-165.
    [65]胡云行,万惠霖,关玉德.Ni催化剂上一氧化碳加氢反应机理研究[J].高等学校化学学报,1995,16(8):1289-1291.
    [66]张成.CO与C02甲烷化反应研究进展[J].化工进展,2007,26(9):1269-1273.
    [67]黄传荣,甘世凡,阎敢全.城市煤气甲烷化工艺研究开发进展[J].广州化工,1993,21(4):17-20.
    [68]张美菊,徐广通,候朝鹏.钴基费托合成催化剂活性及选择性影响因素分析[J].天然气化工,2008,33:66-71.
    [69]李化成.焦炉煤气联产氢气和人工代用天然气装置:中国发明专利,ZL200620033245.5.2007.
    [70]SANTOS PT A, COSTAACFM, KIMINAMI RHGA, ANDRADEHMC, LIRA H L, GAMA L. Synthesis of a NiFe2O4 Catalyst for the Preferential Oxidation of Carbon Monoxide (PROX)[J]. Journal of Alloys and Compounds,2009,483:399-401
    [71]姜洪涛,李会泉,张懿.Ni/Al2O3催化剂上CH4三重整反应-催化剂床层温度分布[J].燃料化学学报,2007,35(1):72-78
    [72]陈娟荣,黎先财,杨沂凤,魏元珍.BaTiO3负载Ni-Co双金属催化剂催化CH4/CO2重整反应[J].天然气化工,2007,32(4):20-26
    [73]PROVENDIER H, PETIT C, ESTOURNES C, LIBS S, KIENNEMANN A. Stabilization of Active Nickel Catalysts in Partial Oxidation of Methane to Synthesis Gas by Iron Addition[J]. Applied Catalysis A:General,1999,180(122):163-173
    [74]王爱菊,钟顺和.La2O3对Ni-Cu/MgSiO3催化剂的甲烷部分氧化制氢反应性能的影响[J].催化学报,2004,25(2):101-106
    [75]YIN HONGMEI, DING YUNJIE, LUO HONGYUAN, ZHU HEJUN, HE DAIPING. Influence of Iron Promoter on Catalytic Properties of Rh-Mn-Li/SiO2 for CO Hydrogenation[J]. Applied Catalysis A:General,2003,243:155-164
    [76]DAI X P, YU C C. H2-induced CO Adsorption and Dissociation Over Co/Al2O3 Catalyst[J]. International Journal of Hydrogen Energy,2008,17(4):365-368
    [77]BLIGAARD T, NΦRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. The Bronsted-Evans-Polanyi Relation and the Volcano Curve in Heterogeneous Catalysis[J]. Journal of Catalysis,2004,224 (1):206-217
    [78]CVETANOVIR J, AMENOMIYA Y. Application of a Temperature-Programmed Desorption Technique to Catalyst Studies[J]. Advances in Catalysis,1967,17:103-149
    [79]CVETANOVI R J, AMENOMIYA Y. A Temperature Programmed Desorption Technique for Investigation of Practical Catalysts Catalysis Reviews[J]. Science and Engineering,1972,6(1):21-48
    [80]陈绍谦.Ni催化剂上C02和CO的TPD及TPSR研究[J].四川大学学报(自然科学版),1998,35(3):441-445
    [81]ZAGLI A E, FALCONER J L, KEENAN C A. Methanation on Supported Nickel Catalysts Using Temperature Programmed Heating[J]. Journal of Catalysis,1979, 56(3):453-467
    [82]MCCARTY J G, WISE H. Hydrogenation of Surface Carbon on Alumina-supported Nickel[J]. Journal of Catalysis,1979,57(3):406-416
    [83]ZDANSKY E O, NILSSON A, MARTENSSON N. CO-induced Reversible Surface to Bulk Transformation of Carbidic Carbon on Ni(100) [J]. Surface Science,1994, 310(1-3):583-588
    [84]SONG DECHEN, LI JINLIN, CAI QIN. In Situ Diffuse Reflectance FTIR Study of CO Adsorbed on a Cobalt Catalyst Supported by Silica with Different Pore Sizes[J]. The Journal of Physical Chemistry C,2007,111:18970-18979
    [85]江大好,丁云杰,吕元,朱何俊,陈维苗,王涛,严丽,罗洪原.CO加氢Rh-Mn-Li/SiO2催化剂配比的优化及其CO脱附行为[J].催化学报,2010,30(7):697-703
    [86]张平,王乐夫.汽车尾气净化催化剂Ag-ZSM-5选择性催化还原NO[J].中国环境科学,2002,22(4):293-296.
    [87]张平,姚焱.漫反射光谱法测定葡萄酒和蜂蜜中还原糖的研究[J].食品科学,2002,23(4):108-110.
    [88]RYCZKOWSKI J. IR Spectroscopy in Catalysis[J]. Catalysis Today,2001, 68(4):263-381.
    [89]VANEVERY K W, GRIFFITHS P R. Characterization of Diffuse Reflectance FT-IR Spectrometry for Heterogeneous Catalyst Studies[J]. Applied Spectroscopy,1991, 45(3):347-359.
    [90]李振花,宋瑛,许根慧.CO在负载型钯金属催化剂上吸附的原位红外光谱研究[J].天然气化工,2002,27(6):25-28.
    [91]HU C W, CHEN Y Q, LI P M. On the Interaction of CO and H2 with Ni-based Catalyst[J]. Journal of Molecular Catalysis A:Chemical,1995,9(6):435-444.
    [92]陈诵英,孙予罕,丁云杰.吸附与催化[M].河南:河南科学技术出版社,2001.
    [93]陈维苗,丁云杰,王涛.H2对Rh-Mn-Li-Ti/SiO2催化剂上CO吸附和脱附的影响[J].催化学报,2005,26(12):1099-1103.
    [94]SONG D C, LI J L, CAI Q. In Situ Diffuse Reflectance FTIR Study of CO Adsorbed on a Cobalt Catalyst Supported by Silica with Different Pore Sizes[J]. The Journal of Physical Chemistry C,2007,111(51):18970-18977.
    [95]陈耀强,龚茂初,曹昭RhCo双金属催化剂的研究VI. Rh2Co2/Al2O3上表面羰基氢化物及其动态行为[J].催化学报,1998,19(1):9-13.
    [96]江琦.Ru/ZrO2作用下的二氧化碳甲烷化催化反应机理[J].燃料化学学报,‘2001,29(1):87-90.