高分散Pt基催化剂的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷二氧化碳重整反应对于缓解能源危机、保护环境具有重要的科学意义。它不仅可以制备低H2/CO比(<1)的合成气,为费托合成及其他深度转化提供理想的原料,同时这一过程有利于控制甲烷和二氧化碳这两种温室气体的排放。常规使用的Ni基催化剂易发生积炭和活性组分的流失,导致催化剂活性快速降低,贵金属催化剂由于活性高、抗积炭能力强而成为重整反应研究的一个热点方向。本论文旨在通过载体改性、改进制备方法、添加助剂等过程来制备高分散Pt基催化剂,改善Pt粒子的稳定性,同时提高其抗积炭能力。
     采用环境友好的离子交换树脂法,通过单因素实验考察得出制备改性纳米MgO载体的最佳条件为:0.2 mol/L的MgCl2溶液,在400 r/min的搅拌下,与体积比为1 : 2.5的树脂在323 K下反应8 h,经抽滤洗涤得Mg(OH)2水凝胶,然后在通N2条件下于673 K焙烧6 h。所制备的MgO具有均匀的六方片状结构,平均粒径为15 nm左右,比表面积可高达105.7 m2/g,适合用作Pt基催化剂载体。
     采用共浸渍法制备了一系列0.8%Pt-3%CeO_2-3%ZrO_2/MgO催化剂,考察载体改性过程对催化剂性能的影响,通过活性评价,并结合XRD、SEM、BET、CO_2-TPD等手段对催化剂进行了表征。结果表明,由离子交换树脂法制备的Mg(OH)2水溶胶经抽滤、洗涤、393 K普通干燥6 h后所得Mg(OH)2粉作为载体的催化剂具有较大的比表面积,有利于Pt的分散,表现出很好的催化活性。
     采用分步浸渍法制备了一系列0.8%Pt-3%CeO_2-3%ZrO_2/MgO催化剂,考察活性组分与助剂的浸渍顺序对催化剂性能的影响。XRD测试和活性评价结果表明,先浸Pt有利于提高活性组分在MgO载体上的分散,CeO_2和ZrO_2的添加有助于增强金属-载体间的相互作用,从而使催化剂0.8Pt-3Ce3Zr/MO800-IE、0.8Pt-3Ce3Zr/MO800显示出很高的催化活性;先浸CeO_2和ZrO_2,载体的部分孔道有可能会被ZrO_2所堵塞,尤其是在ZrO_2的添加量较大时,从而减小了金属Pt的分散度,使催化剂活性下降。
     以MOH(GD)-IE作为载体制备催化剂时,CeO_2和ZrO_2助催化剂添加的最佳质量分数比为1 : 0.33。CO_2-TPD结果表明,这主要是因为CeO_2助剂的添加量越大,载体的碱性位越多,越有利于重整反应的进行。
Methane reforming with carbon dioxide has important scientific significance on mitigating the energy crisis and protecting the environment not only because it yields syngas with low H2/CO(<1) desirable for Fischer-Tropsch synthesis and other depth conversion, but also because it is beneficial to control the emission of greenhouse gas CH4 and CO_2. Owing to the rapid deactivation resulted from carbon deposition and loss of active components on the conventional Ni-based catalysts, the noble catalysts with higher activity and stability have been attracting enormous interest. This paper is focused on the preparation of highly dispersed Pt-based catalysts by support modification, improvement of preparation method and addition of promoter, which can reduce the cost of Pt, improve the stability and resistence to carbon deposition of the catalysts.
     The optimal conditions of modified nano-MgO support which is prepared by environmental friendly ion exchange resin method are obtained from monofactor experiment study for the first time as follows: under continuous stirring of 400 r/min, 100 mL MgCl2 solution of 0.2 mol/L is added to 250 mL 201×7 strong-base anion exchange resin to react for 8 h at 323 K, the Mg(OH)2 hydrogel is obtained after vacuum filtrating and washing, and then calcined at 673 K for 6 h under nitrogen atmosphere. The obtained nano-MgO has a regular hexagonal lamellar morphology with an average diameter of 15 nm and SBET of 105.7 m2/g, which is suitable to act as Pt-based catalyst support.
     In order to investigate the effect of the support modification process on catalysts performance, a series of 0.8%Pt-3%CeO_2-3%ZrO_2/MgO catalysts are prepared by co-impregnation method, and their characterization and the performance of CO_2 reforming CH4 are investigated by activity measurement, XRD, SEM, BET and CO_2-TPD et.al. Experiment results reveal that the catalysts supported on Mg(OH)2 powder which is generated from Mg(OH)2 hydrosol after vacuum filtration and general drying at 393 K for 6 h have larger surface area and show higher Pt metal dispersion and catalytic activity.
     In order to investigate the effect of the impregnation order between the active component and promoter on catalyst performance, a series of 0.8%Pt-3%CeO_2-3%ZrO_2/MgO catalysts are prepared by seq-impregnation method. XRD and activity evaluation results indicate that, when Pt is impregnated firstly, and then promoter CeO_2 and ZrO_2 which can contribute to the improvement of metal-support interaction, the prepared catalysts 0.8Pt-3Ce3Zr/MO800-IE and 0.8Pt-3Ce3Zr/MO800 have better dispersion of Pt metal on MgO, thus show high catalytic activity. However, the catalytic activity reduces when the impregnation order is opposite, because some pore channels of MgO may be blocked, especially in the case of large amount of ZrO_2.
     When the catalysts are prepared using the MOH(GD)-IE as the support, the optimum mass ratio of CeO_2 to ZrO_2 promoter is 1 : 0.33. According to the CO_2-TPD result, this is mainly because the large additive amount of CeO_2 results in the increase of basic sites of support, consequently, the reforming reaction is easily performed.
引文
[1] Noronha F B,Fendley E C,Soares R R,et al.Correlation between catalytic activity and support reducibility in the CO_2 reforming of methane over Pt/CexZr1?xO_2 catalysts.Chemical Engineering Journal.2001,82: 21–31.
    [2]王锐.CH4/CO_2重整反应中Rh基催化剂上CeO_2的助剂作用研究(博士学位论文).中国科学院研究生院.2007: 1-1.
    [3]陶凯.甲烷二氧化重整催化剂制备及反应性能研究(硕士学位论文).大连理工大学.2007: 3-3.
    [4]王锐,刘雪斌,陈燕馨等.金属-载体相互作用对CH4/CO_2重整反应中Rh基催化剂抗积炭性能的影响.催化学报.2007, 28(10): 865-869.
    [5] Gheno S M,Damyanova S,Riguetto B A,et al.CO_2 reforming of CH4 over Ru/zeolite catalysts modified with Ti.Journal of Molecular Catalysis A: Chemical.2003, 198(1-2): 263-275.
    [6] Bhat R N,Sachtle W M H.Potential of zeolite supported rhodium catalysts for the CO_2 reforming of CH4.Applied Catalysis A: General.1997, 150: 279-296.
    [7] Erdohely A,Csereny J,Solymost F.Activation of CH4 and its reduction with CO_2 over supported Rh catalysts.Journal of Catalysis.1993, 141(1): 287-299.
    [8]徐恒泳,孙希贤,范业梅等.二氧化碳转化制合成气的研究——Ⅰ.催化剂及其催化性能.石油化工.1992, 21 (3): 147-153.
    [9] Wang S B,Lu G Q M,Millar G J.Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art.Energy and Fuels.1996, 10(4): 896-904.
    [10]吴晓滨.Ni-Ce-ZrO_2催化剂在二氧化碳甲烷重整制合成气中的研究.内蒙古石油化工.2006, 11: 8-10.
    [11] Wang S B,Lu G Q M.Reforming of methane with carbon dioxide over Ni/Al2O_3 catalysts: Effect of nickel precursor.Applied Catalysis A: General.1998, 169: 271-280.
    [12] Huang C J,Fei J H,Wang D J,et al.The dramatic effect of metal precursor on the catalytic performance of Co/SiO_2 catalyst for CO_2 reforming of CH4.Chinese Chemical Letters.2000, 11(2): 181-184.
    [13] Mueller S G,Stallbaumer P J,Slade D A,et al.Segregation of Pt and Re during CO_2 reforming of CH4.Catalysis Letters.2005, 103(1-2): 69-74.
    [14] Zhang H G,Wang H,Dalai A K.Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO_2 reforming of CH4.Applied Catalysis A: General.2008, 339(2): 121-129.
    [15] Nowosielska M,Jozwiak W K,Rynkowski J.Physicochemical characterization of Al2O_3 supported Ni–Rh systems and their catalytic performance in CH4/CO_2 reforming.Catalysis Letters.2009, 128: 83-93
    [16]陈娟荣,黎先财,杨沂凤等.BaTiO_3负载Ni-Co双金属催化剂催化CH4/CO_2重整反应天然气化工.2007, 32(4): 20-23.
    [17] Yang M,Papp H.CO_2 reforming of methane to syngas over highly active and stable Pt/MgO catalyst.Catalysis Today.2006, 115(1-4): 199-204.
    [18] Zhang Z L,Verykios X E.CH4/CO_2 reforming over Ni/La2O_3.Applied Catalysis A: General.1996, 138(1): 109-112.
    [19]李春林,伏义路,卞国柱.不同方法制备的Ni/ZrO_2-CeO_2-Al2O_3催化剂对CH4-CO_2重整反应的催化性能.催化学报.2003, 24(3): 187-192.
    [20]刘水刚,李军平,赵宁等.介孔Ni/CaO-ZrO_2纳米复合物催化甲烷和二氧化碳重整.催化学报.2007, 28(11): 1019-1023.
    [21] Roh H S,Potdar H S,Jun K W,et al.Carbon dioxide reforming of methane over Ni incorporated into Ce-ZrO_2 catalysts.Applied Catalysis A: General.2004, 276(1-2): 231-239.
    [22] Ruckenstein E,Hu Y H.The effect of precursor and preparation conditions of MgO on the CO_2 reforming of CH4 over NiO/MgO catalysts.Applied Catalysis A: General.1997, 154(1-2): 185-205.
    [23] Chen J X,Wu Q Y,Zhang J X,et al.Effect of preparation methods on structure and performance of Ni/Ce0.75Zr0.25O_2 catalysts for CH4–CO_2 reforming.Fuel.2008, 87: 2901-2907.
    [24] Wei J M,Xu B Q,Li J L,et al.Highly active and stable Ni/ ZrO_2 catalyst for syngas production by CO_2 reforming of methane.Applied Catalysis A: General.2000, 196(2): 167-172.
    [25]魏俊梅,徐柏庆,李晋鲁等.CO_2重整CH4纳米ZrO_2负载Ni催化剂的研究(Ⅰ)——与常规载体上Ni催化剂的比较.高等学校化学学报.2002, 23(1): 92-97.
    [26]魏俊梅,徐柏庆,孙科强等.CO_2重整CH4纳米ZrO_2负载Ni催化剂的研究(Ⅱ)——催化剂组成与反应条件对催化剂性能的影响.高等学校化学学报.2002, 23(11): 2106-2111.
    [27]张美丽,季生福,胡林华等.高稳定性Ni/SBA-15催化剂的结构特征及其对二氧化碳重整甲烷反应的催化性能.催化学报.2006, 27(9): 777-782.
    [28] Roh H S,Potdar H S,Jun K W.Carbon dioxide reforming of methane over co-precipitated Ni-CeO_2, Ni-ZrO_2 and Ni-Ce-ZrO_2 catalysts.Catalysis Today.2004, 93-95: 39-44.
    [29] Laosiripojana N,Assabumrungrat S.Methane steam reforming over Ni/Ce-ZrO_2 catalyst: Influences of Ce-ZrO_2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics.Applied Catalysis A: General.2005, 290: 200–211.
    [30] Rezaei M,Alavi S M,Sahebdelfar S,et al.CO_2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts.Applied Catalysis B: Environmental.2008, 77(3- 4): 346–354.
    [31]钱岭,阎子峰,袁安.Ni/γ-Al2O_3中助剂的加入对于CH4/CO_2重整反应性能的影响.燃料化学学报.2001, 29(S1): 90-92.
    [32] Osaki T,Mori T.Role of potassium in carbon-free CO_2 reforming of methane on K-promoted Ni/Al2O_3 catalysts.Journal of Catalysis.2001, 204(1): 89-97.
    [33] Pompeo F,Nichio N N,Gonzalez M G,et al.Characterization of Ni/SiO_2 and Ni/Li-SiO_2 catalysts for methane dry reforming.Catalsis Today.2005, 107-108: 856-862.
    [34] Juan-Juan J,Roman-Martinez M C,Illan-Gomez M J.Catalytic activity and characterization of Ni/Al2O_3 and Ni-K/Al2O_3 catalysts for CO_2 methane reforming.Applied Catalysis A: General.2004, 264(2): 169-174.
    [35]许峥,李玉敏,张继炎等.甲烷二氧化碳重整制合成气的镍基催化剂性能Ⅱ.碱性助剂的影响.催化学报.1997, 18(5): 364-367.
    [36] Munera J F,Irusta S,Cornaglia L M,et al.Kinetics and reaction pathway of the CO_2 reforming of methane on Rh supported on lanthanum-based solid.Journal of Catalysis.2007, 245(1): 25–34.
    [37] Stagg-Williams S M,Noronha F B,Fendley G,et al.CO_2 Reforming of CH4 over Pt/ZrO_2Catalysts Promoted with La and Ce Oxides.Journal of Catalysis.2000, 194(2): 240-249.
    [38] Rezaei M,Alavi S M,Sahebdelfar S,et al.Effects of K2O Promoter on the Activity and Stability of Nickel Catalysts Supported on Mesoporous Nanocrystalline Zirconia in CH4 Reforming with CO_2.Energy and Fuels.2008, 22(4): 2195-2202.
    [39] Ruiz J A C,Passos F B,Bueno J M C,et al.Syngas production by autothermal reforming of methane on supported platinum catalysts.Applied Catalysis A: General.2008, 334(1-2): 259-267.
    [40] Feio L S F,Hori C E,Damyanova S,et al.The effect of ceria content on the properties of Pd/CeO_2/Al2O_3 catalysts for steam reforming of methane,Applied Catalysis A: General,2007, 316(1): 107–116.
    [41] Wang S B,Lu G Q M.Effects of promoters on catalytic activity and carbon deposition of Ni/gamma-Al2O_3 catalysts in CO_2 reforming of CH4 . Journal of Chemical Technology and Biotechnology.2000, 75(7): 589-595.
    [42] Wang S B,Lu G Q M.Role of CeO_2 in Ni/CeO_2-Al2O_3 catalysts for carbon dioxide reforming of methane.Applied Catalysis B: Environmental.1998, 19(3-4): 267-277.
    [43] Damyanova S,Bueno J M C.Effect of CeO_2 loading on the surface and catalytic behaviors of CeO_2-Al2O_3-supported Pt catalysts.Applied Catalysis A: General.2003, 253(1): 135-150.
    [44] Jun K W,Roh H S,Chary K V R.Structure and Catalytic Properties of Ceria-based Nickel Catalysts for CO_2 Reforming of Methane.Catalysis Surveys from Asia.2007, 11(3): 97–113.
    [45] Sun H J,Huang J,Wang H,et al.CO_2 reforming of CH4 over xerogel Ni-Ti and Ni-Ti-Al Catalysts.Industrial and Engineering Chemistry Research.2007, 46(13): 4444- 4450.
    [46] Iwasa N,Takizawa M,Arai M.Preparation and application of nickel-containing smectite-type clay materials for methane reforming with carbon dioxide.Applied Catalysis A: General.2006, 314(1): 32-39.
    [47] Pan Y X,Liu C J,Cui L.Temperature-programmed Studies of Coke Resistant Ni Catalyst for Carbon Dioxide Reforming of Methane.Catalysis Letters.2008, 123(1-2): 96–101.
    [48]李艳,叶青,魏俊梅等.制备高效稳定CO_2重整甲烷Ni/ZrO_2催化剂的新方法.催化学报.2004, 25(4): 326-330.
    [49] Takehira K,Shishido T.Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting "memory effect" .Catalysis Surveys from Asia.2007, 11(1-2):1-30.
    [50] Ashok J,Kumar S N,Venugopal A,et al.COx free hydrogen by methane decomposition over activated carbons.Catalysis Communications.2008, 9(1): 164-169.
    [51] Wang S B,Lu G Q M.Catalytic Activities and Coking Characteristics of Oxides-Supported Ni Catalysts for CH4 Reforming with Carbon Dioxide.Energy and Fuels.1998, 12(2): 248-256.
    [52] Zhang X L,Lee C S M,Mingos D M P,et al.Carbon dioxide reforming of methane with Pt catalysts using microwave dielectric heating.Catalysis Letters.2003, 88(3-4): 129-139.
    [53] Kroll V C H,Swaan H M,Mirodatos C.Methane reforming reaction with carbon dioxide over Ni/ SiO_2 catalyst(Ⅰ): Deactivation studies.Journal of Catalysis.1996, 161(1): 409-422.
    [54]程华艺,沈彬,张志忠.二氧化碳重整甲烷催化剂抗积炭性能的研究进展.上海化工.2005, 30(8): 25-29.
    [55] Li X C,Li S G,Yang Y F,et al.Studies on coke formation and coke species of nickel-based catalysts in CO_2 reforming of CH4.Catalysis Letters.2007, 118(1-2): 59-63.
    [56]史克英,宫丽红,商永臣等.负载低Ni含量工业催化剂上CO_2-水蒸气和氧气转化制备合成气的研究.天然气化工.2001, 26(5): 8-11.
    [57] Nandini A,Pant K K,Dhingra S C.Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO_2-Al2O_3 catalyst.Applied Catalysis A: General.2006, 308: 119-127.
    [58] Moon D J.Hydrogen Production by Catalytic Reforming of Gaseous Hydrocarbons (Methane & LPG).Catalysis Surveys from Asia.2008, 12(3): 188-202.
    [59] Qin D,Lapszewicz J.Study of mixed steam and CO_2 reforming of CH4 to syngas on MgO-supported metal.Catalysis Today.1994, 21(2-3): 551-560.
    [60] Zhang Z L,Tsipouriari V A,Efstathiou A M,et al.Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts :Ⅰ. Effects of support and metal crystallite size on reaction activity and deactivation characteristics.Journal of Catalysis.1996, 158(1): 51-63.
    [61] Lopez T,R Marmolejo, M. Asomoza,et al.Preparation of a complete series of single phase homogeneous sol-gels of Al2O_3 and MgO for basic catalysts.Materials Letters.1997,32(5-6): 325-334.
    [62] Aramendia M A,Benitez J A,Borau V,et al.Preparation of Pt/MgO catalysts. Influence of the precursor metal salt and solvent used.Colloids and Surfaces A: Physicochemical and Engineering Aspects.2000,168(1): 27-33.
    [63] Xu B Q,Wei J M,Wang H Y,et al.Nano-MgO: novel preparation and application as support of Ni catalyst for CO_2 reforming of methane.Catalysis Today.2001,68(1-3): 217-225.
    [64] Copp A N.American Ceramic Society Bulletin.1995, 74: 135.
    [65]倪星元,姚兰芳,沈军等.纳米材料制备技术.第1版.化学工业出版社,2009: 78-79.
    [66]宋士涛,邓小川,孙建之等.纳米氧化镁的制备与表征.无机盐工业.2005,37(12): 34-35.
    [67]汪国忠,程素芳,何国梁等.纳米级MgO粉体的合成.合成化学.1996,4(4):300-302.
    [68]张近.纳米氧化镁合成工艺条件的研究.无机盐工业.1999,31(2):3-5.
    [69]朱亚先,曾人杰,刘新锦等.MgO纳米粉的制备及表征.厦门大学学报.2001,40(6):1256-1258.
    [70]张志刚,袁媛,刘昌胜.溶胶-凝胶法制备纳米氧化镁.硅酸盐学报.2005,33(8): 968-974.
    [71]许珂,张保林,侯翠红等.纳米氧化镁制备工艺综述.无机盐工业.2007,39(6): 7-9.
    [72]张伟,王宝和.纳米氧化镁粉体制备技术的研究进展.中国粉体技术.2004,2: 40-44.
    [73]廖莉玲,刘吉平.固相法合成纳米氧化镁.精细化工.2001,18(12): 696-697.
    [74] Tokunaga O,Ogasawara S.Reduction of carbon dioxide with methane over Ni-catalyst.Reaction Kinetics and Catalysis Letters.1989,39(1): 69-74.
    [75] Yoshida T,Tanaka T,Yoshida H,et al.Study on the dispersion of nickel ions in the NiO-MgO system by X-ray absorption fine structure.Journal of Physical Chemistry.1996.100(6): 2302-2309.
    [76]王玉和,徐柏庆.加压下Ni/ MgO催化剂催化CO_2重整CH4反应的特性.催化学报.2005,26(4): 277-282.
    [77] Mehr Jr,Jozani K J,Pour A N,et al.Influence of MgO in the CO_2 steam reforming of methane to syngas by NiO/MgO/α-Al2O_3.Reaction Kinetics and Catalysis Letters, 2002, 75(2): 267- 273.
    [78] Guerrero-Ruiz A,Sepulveda-Escribano A,Rodriguez-Ramos I.Cooperative action of cobalt and MgO for the catalysed reforming of CH4 with CO_2.Catalysis Today.1994, 21(2-3): 545-550.
    [79]李基涛,陈旦明,严前古,等.助剂对CH4/CO_2重整镍基催化剂性能的影响.天然气化工.1999,24( 3): 25-27.
    [80]廖卫兵,曹小华.MgO助剂对CH4/CO_2重整反应Ni/BaTiO_3催化剂性能的影响.化工进展.2008,27(5): 724-728.
    [81]傅利勇,吕绍洁,谢卫国,等.碱性助剂的添加对Ni/CaO-Al2O_3催化剂性能的影响.分子催化.2000,14(3): 179-183.
    [82]董相廷,李铭,张伟.沉淀法制备CeO_2纳米晶与表征.中国稀土学报.2001,19(1): 24-26.
    [83] Lee J S,Lee J S,Choi S C.Synthesis of nano-sized ceria powders by two-emulsion method using sodium hydroxide.Materials Letters.2005,59(2-3): 395-398.
    [84] Zhang F,Yang S P,Wang W M,et al.Preparation of nanocrystalline ceramic oxide powders in the presence of anionic starburst dendrimer.Materials Letters.2004,58(26): 3285-3289.
    [85]李小忠,王连军,赵铭等.离子交换法制备纳米CeO_2晶体.稀有金属.2006,30(2): 189-192.
    [86]张近.纳米氧化镁合成工艺条件的研究.无机盐工业.1999,31(2): 3-5.
    [87]朱亚先,曾人杰,刘新锦等.MgO纳米粉的制备及表征.厦门大学学报.2001,40(6):1256-1258.
    [88] Komanreni S,Li D S ,Newalkar B,et al.Microwave-polyol process for Pt and Ag nanoparticles.Langmuir.2002, 18(15):5959-5962.
    [89] Tsuji H,Shishido T,Okamura A,et al.Oxygen exchange between magnesium oxide surface and carbon dioxide.Journal of the Chemical Society, Faraday Transactions.1994, 90(5): 803-807.
    [90]张现军,吴湘锋,王标兵等.后处理工艺对制备氢氧化镁质量的影响.盐业与化工.2009, 38(3): 5-8.
    [91] Guo Y,Lu G Z,Zhang Z G,et al.Preparaton of CexZr1-xO_2(x=0.75,0.62) solid solution and its application in Pd-only three-way catalysts.Catalysis Today.2007,126(3-4): 296-302.
    [92] Silva F A. Martinez D S,Ruiz J A C,et al.The effect of the use of cerium-doped alumina on the performance of Pt/CeO_2/Al2O_3 and Pt/CeZrO_2/Al2O_3 catalysts on the partial oxidation of methane.Applied Catalysis A: General.2008,335(2): 145–152.
    [93] Chen K,Xie S,Iglesia E,et al.Strueture and properties of Zirconia supported molybdenum oxidecatalysts for oxidation dehydrogenation of propane.Journal of Catalysis.2000, 189(2): 421一430.
    [94] Therdthianwonga S,Therdthianwongb A,Siangchina C,et al.Synthesis gas production from dry reforming of methane over Ni/Al2O_3 stabilized by ZrO_2 . International Journal of Hydrogen Energy.2008,33 (2): 991-999.
    [95] Hou Z Y,Yokota O,Tanaka T,et al.Surface properties of a coke-free Sn doped nickel catalyst for the CO_2 reforming of methane.Applied Surface Science.2004,233(1-4): 58-68.
    [96] Jeong H,Kim K I,Kim D,et al.Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts.Journal of Molecular Catalysis A: Chemical.2006,246(1-2): 43-48.
    [97] Martinez R,Romero E,Guimon C,et al.CO_2 reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum.Applied Catalysis A: General.2004,274(1-2): 139-149.
    [98] Silva P P,Silva F A,Portela L S,et al.Effect of Ce/Zr ratio on the performance of Pt/CeZrO_2/Al2O_3 catalysts for methane partial oxidation.Catalysis Today.2005,107–108: 734–740.
    [99] Rezaei M,Alavi S M,Sahebdelfar S,et al.Effects of CO_2 content on the activity and stability of nickel catalyst supported on mesoporous nanocrystalline zirconia.Journal of Natural Gas Chemistry.2008, 17(3): 278–282.