微网能量管理与优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微网是指由分布式电源、储能装置、能量变换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统,可以运行在并网和独立两种模式。微网作为一种新型能源网络化供应及管理技术,既方便了分布式能源的接入,又可实现需求侧管理及经济运行等目标。本文围绕微网的能量管理与优化设计、需求侧管理技术集成等问题展开研究,主要研究内容包括:
     1)建立了风力发电系统、光伏发电系统、柴油发电机、冷热电联供系统、储能元件、电力电子转换元件、负荷元件的准稳态或慢动态仿真模型,为后文各种典型微网能量管理和优化设计的研究奠定了理论基础。
     2)针对包含海水淡化负荷的风光柴储孤立微网系统,设计了一套实用化的协调运行控制策略,该策略以保证孤立系统的长期稳定运行,提高系统运行经济性为目标,同时计及了各种设备的运行约束条件。利用自主研发的长时间尺度的准稳态仿真工具,进行仿真计算,验证了本文所提方法的有效性。
     3)提出了一种适用于并网型微型燃气轮机冷电联供系统的能量优化控制策略,该策略能够使联供系统工作在以电定冷、以冷定电、经济最优和效率最高四种运行模式,综合考虑是否允许发电上网、购电价格、燃气价格和燃机上网发电价格等因素的影响,实时调整联供系统的电出力和制冷量。
     4)针对可再生能源波动对联络线功率的影响,采用家用电热泵设备作为用户侧负荷响应控制资源,基于状态队列(SQ)算法控制热泵负荷开关状态,以响应系统负荷平衡需求,提出一种使用需求侧负荷响应控制技术替代储能,平滑联络线的功率波动的方法。
     5)采用典型的带海水淡化负荷的风光柴储互补独立微网做为研究对象,提出了考虑全寿命周期净费用、可再生能源利用率以及污染物排放水平的多目标优化设计模型,可用于对微网中分布式电源和储能系统的容量进行优化配置。
A microgrid (MG) is a cluster of interconnected distributed generators, loads and intermediatestorage units,which cooperate with each other to be collectively treated by the grid as acontrollable load or generator. It can be operated under grid-connected mode or islanded mode. Asa new energy supply and network management technology, microgrid could allow renewable andclean resources to be integrated into a utility. At the same time, it could achieve demand-sidemanagement and economical operation. This paper focuses on the issues related to the energymanagement, optimal design and demand response of microgrid.
     First of all, classification of microgrid scale and topology, state of art of energy managementand optimal design method are presented in this thesis.
     Secondly, the quasi-steady state models of wind turbine, solar array, diesel, combined coolingheat and power (CCHP), battery, power electronics and demand-side load are presented. Themodels are the important modeling foundmental used in following chapters which addresses onenergy management and optimal design.
     Thirdly, considering of the operating constraints of primary equipments, a coordinated controlstrategy of typical isolated Microgrid including desalination load is proposed in this thesis. Theprimary design objectives are to ensure the long-term stable operation and to reduce the costsincurs over the system lifetime. A typical practical isolated Microgrid is studied via aself-developed quasi steady-state simulation tool. The simulation results show the effectivenessand correctness of proposed control strategy.
     Fourthly, this thesis proposes a reasonable integrated Energy Management System (EMS) forCCHP. Four kinds of operation modes listed as:(1) Determining cooling load by electricityconsumption,(2) Determining Electric Load by Cooling Consumption,(3) Optimal Cost and (4)Optimal Prime Energy Ratio (PER) are integrated in this EMS. Integrated factors such as thecooling and electric load, the generation possibility to grid, electricity price of micro-turbine(MT)for sale and the price of natural gas and electricity are considered into these four modes and thecooling capacity of Lithium Bromide Double-effect Absorption Refrigerator (LBDEAR) and MTpower are adjusted in real time conditions.
     Then, considering with the fluctuations caused by renewable energy integrated into MG, thisthesis presents a novel demand response algorithm for MG tie-line power flow smoothing. Theresidential heat pump is treated as one kind of demand-side responsive resources. This smoothingalgorithm controls the switching status of heat pumps based on a state-queueing (SQ) controlstrategy. The demand response is used to replace conventional storage device to provide powersmoothing service.
     Finally, this thesis presents a multi-objective optimal design method for an island Microgridwith desalination plant. The allocation ratio of net present cost (NPC) in the full life cycle, theutilization of renewable energy and pollutant emission level is the primary optimization problemin this model. The optimal number of distributed generators and the optimal capacity of energystorage are determined to satisfy the proposed multi-objective model.
引文
[1] United States Department of Energy Office of Electric Transmission and Distribution.Grid2030:A national version for electricity’s second100years [EB/OL].[2009-04-01].http://www.ferc.gov/eventcalendar/files/20050608125055-grid-2030.pdf.
    [2] United States Department of Energy Office of Electric Transmission and Distribution. Nationalelectric delivergy technologies roadmap[EB/OL].http://www.oe.energy.gov/smartgrid.htm.
    [3] EPRI.Power Delivery System and Electricity Marketsof the Future[R].EPRI, Palo Alto,CA,2003.1009102.
    [4] EPRI. Technical and Requirements of Advanced Distribution Automation[R]. EPRI, PaloAlto, CA,2003.1010915
    [5] EPRI.Profiling and Mapping of Intelligent Grid R&D Programs[R].EPRI, Palo Alto, CA andEDF R&D,Clamart, France,2006.1014600.
    [6] Paul Haase.IntelliGrid: A Smart Network of Power[J].EPRI Journal, Summer2005:17-25.
    [7] European Commission.European Technology Platform Smart Grids: Vision and Strategy forEurope’s Electricity Networks of the Future[EB/OL],2006.[2008-10-10].http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.
    [8] U.S. Department of Energy,National Energy Technology Laboratory. Modern Grid Initiative: AVision for Modern Grid[EB/OL]. March2007.[2007-06-01].http://www.netl.doe.gov/moderngrid/docs/.
    [9]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006~2020年)http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [10] European Research Project MicroGrids [Online]. Available: http://MicroGrids.power.ece.ntua.gr.
    [11] European Research Project More MicroGrids [Online]. Available: http://MicroGrids.power.ece.ntua.gr.
    [12] R. Lasseter,A. Akhil, C. Marnay, and et al. White paper on integration of distributed energyresources--the CERTS MicroGrid concept [Online]. Available: http://certs.lbl.gov/pdf/LBNL_50829.pdf.
    [13] R. H. Lasseter and P. Piagi. MicroGrid: a conceptual solution[C]. Power Electronics SpecialistsConference, IEEE35th Annual, Germany,2004,6:4285-4290.
    [14] US Department of Energy Electricity Distribution Programme. Advanced distributiontechnologies and operating concepts–MicroGrids [Online]. Available:http://www.electricdistribution.ctc.com/MicroGrids.htm.
    [15] J. Stevens, H. Vollkommer, and D. Klapp. CERTS MicroGrid system tests[C]. IEEE PowerEngineering Society General Meeting, USA,2007, p4275559.
    [16] V. Budharja, C. Martinez, J. Dyer, and M. Kundragunta. Grid of the future white paper oninterconnection and controls for reliable, large scale integration of distributed energy resources
    [Online]. Available: http://certs.lbl.gov/pdf/CERTS-Interconnection.pdf.
    [17] L. Dignard-Bailey and F. Katiraei. Overview of MicroGrid research and development activities inCanada [Online]. Available: http://www.ctec-varennes.nrcan.gc.ca/.
    [18] J. Driesen, and F. Katiraei. Design for distributed energy resources[J]. IEEE Power and EnergyMagazine,2008,6(3):30-40.
    [19] Microgrids: An emerging paradigm for meeting building electricity and heat requirementsefficiently and with appropriate energy quality[Online]. Available: http://eetd.lbl.gov/EA/emp/der-pubs.html.
    [20] S. Morozumi. Overview of MicroGrid research and development activities in Japan[C].International Symposium on MicroGrids, Montreal,2006.
    [21] S. Morozumi. Micro-grid demonstration projects in Japan[C]. Fourth Power ConversionConference-NAGOYA, Japan,2007:635-642.
    [22] S. Morozumi, K. Nara. Recent trend of new type power delivery system and its demonstrativeproject in Japan[J]. IEEJ Transactions on Power and Energy,2007,127(7):770-775.
    [23] B. Kroposki, C. Pink, T. Basso, and R. DeBlasio. MicroGrid standards and technologydevelopment[C]. IEEE Power Engineering Society General Meeting, USA,2007, p4275819.
    [24] T. Funabashi and R. Yokoyama. MicroGrid field test experiences in Japan[C]. IEEE PowerEngineering Society General Meeting, Canada,2006, p1709312.
    [25] T. Funabashi, G. Fujita, K. Koyanagi, and et al. Field tests of a MicroGrid control system[C].Proceedings of the41st International Universities Power Engineering Conference, UK,2006,1:232-236.
    [26]林在豪.上海浦东机场能源中心冷、热、电三联供系统[J].上海节能,2005,6:158-164.
    [27]周小谦.中国电力改革和推进热电联产、分布式供电的发展[J].热电技术,2006,2:1-3,14.
    [28]郭力,王成山,王守相等,微型燃汽轮机微网技术方案[J].电力系统自动化,2009,33(9):82-85.
    [29]郭力,王成山,王守相等,两类双模式微型燃汽轮机并网技术方案比较[J].电力系统自动化,2009,33(8):84-88.
    [30] D. Herman, Investigation of the Technical and Economic Feasibility of Micro-Grid-Based PowerSystems, Final Report,2001, Electric Power Research Institute, USA.
    [31] Setiawan AA, Zhao Y, Nayar CV. Design, economic analysis and environmental considerations ofmini-grid hybrid power system with reverse osmosis desalination plant for remote areas.Renewable Energy2009;34:374-383.
    [32] J Song, JC Lee, JH Yun, SK Kim. PERFORMANCE EVALUATION OF PV-WIND HYBRIDPOWER GENERATION SYSTEM AT GOBI-DESERT AREA. Photovoltaic SpecialistsConference,2005.
    [33]王宇.风光互补发电控制系统的研究与开发:[硕士学位论文],天津;天津大学,2004.
    [34]王坤林,游亚戈,张亚群.海岛可再生独立能源电站能量管理系统[J].电力系统自动化,2010,34(14):13-17.
    [35] Manolakos, D., G. Papadakis, et al.(2001). A Simulation-optimisation Programme for DesigningHybrid Energy Systems for Supplying Electricity and Fresh Water Through Desalination toRemote Areas-Case Study: the Merssini Village, Donoussa island, Aegean Sea, Greece. Energy26(7):679-704.
    [36]廖志凌,阮新波.独立光伏发电系统能量管理控制策略[J].中国电机工程学报,2009(21):46-52.
    [37] Casadei D,Grandi G,Rossi C.Single-phase single-stage photovoltaic generation system basedon a ripple correlation control maximum power point tracking[J].IEEE Trans. on EnergyConversion,2006,21(2):562-568.
    [38] Teulings W J A,Marpinard J C,Capel A,et al.A new maximum power point trackingsystem[C].24th Annual IEEE Power Electronics Specialists Conference,Seattle,USA,1993.
    [39] Pacheco V M,Freitas L C,Vieira Jr J B,et al.A DC-DC converter adequate for alternative supplysystem applications[C].Seventeenth Annual APEC,Dallas,TX,USA,2002.
    [40] D.MENNITI, A. PINNARELLI, N. SORRENTINO. A METHOD TO IMPROVE MICROGRIDRELIABILITY BY OPTIMAL SIZING PV/WIND PLANTS AND STORAGESYSTEMS.CIRED20,Prague,2009.
    [41] WANG Cheng-shan, WANG Shou-xiang. Study on Some Key Problems Related to DistributedGeneration Systems. Automation of Electric Power Systems,2008,32(20), pp.1-4.
    [42] J.k.Kaldellis, K.A.Kavadias. Optimal Wind-hydro Solution for Aegean SeaIslands’electricity-demand Fulfilment. Applied Energy,70,2001, pp.334-354.
    [43] Josep M. Guerrero, Juan C. Vasquez, José Matas, Luis García de Vicu a, and Miguel Castilla.Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach TowardStandardization. IEEE Transactions on Industrial Electronics, vol.58, no.1, January,2011, pp.158-167.
    [44] M. Ashari, and C. V. Nayar,“An optimum dispatch strategy using set points for aphotovoltaic-diesel-battery hybrid power system,” Solar Energy, vol.66, No.1, pp.1-9,1999.
    [45] Michel Vandenbergh, Randolf Geipel, Markus Landau, Philipp Strauss. Performance Evaluationof the Gaidoroumandra Mini-grid with Distributed PV Generators,4th European PV-Hybrid andMini-Grid Conference,29th–30th May2008, Athens, Greece
    [46] Ajai Gupta, R. P. Saini, and M. P. Sharma. Computerized Modelling of Hybrid EnergySystem—Part II: Combined Dispatch Strategies and Solution Algorithm.5th InternationalConference on Electrical and Computer Engineering.ICECE2008,20-22December2008, Dhaka,Bangladesh:13-18.
    [47]李振杰,袁越.智能微网—未来智能配电网新的组织形式[J].电力系统自动化,2009,33(17):42-48.
    [48]张建华,苏玲,陈勇等.微网的能量管理及其控制策略[J].电网技术,2011,35(7):24-28.
    [49] IEEE1547IEEE Standard for interconne cting distributed resource with electric powersystem[S].USA:IEEE Standands Coordinating Committee21,2003.
    [50] F. Katiraei, R. Iravani, N. Hatziargyriou, and et al. Microgrids management [J]. IEEE Power andEnergy Magazine,2008,6(3):54–65.
    [51] DIMEAS A L, HATZIARGYRIOU N D. A MAS architecture for microgrids control, Proceedingsof the13th International Conference on Intelligent Systems Application to Power Systems,November6-10,2005, Washington, USA:402-406.
    [52] European microgrids project. Large scale integration of micro-generation to low voltage grids:MicroGrids [EB/OL].[2008-03-25]. http://MicroGrids.power.ece.ntua.gr.
    [53] T. S. Ustun, C. Ozansoy, A. Zayegh, Recent developments in microgrids and example casesaround the world—A review, Renewable and Sustainable Energy Reviews15(2011):4030-4041
    [54] Tsikalakis A G, Hatziargyriou N D. Centralized control for optimizing microgridsoperation[J].IEEE Trans on Energy Conversion,2008,23(1):241-248.
    [55] Dimeas A L,Hatziargyriou N D.Agent based control for microgrids [C].IEEE PowerEngineering Society General Meeting,Tampa,Florida,2007.
    [56] Rahman S, Pipattanasomporn M, Teklu Y. Intelligent distributed autonomous powersystems(IDAPS)[C].IEEE Power Engineering Society General Meeting,Tampa,Florida,2007.
    [57] Toyoda J, Saitoh H, Minazawa K, et al. Security Enhancement of Multiple Distributed Generationby the Harmonized Grouping[A]. In:Transmission and Distribution Conference and Exhibition:Asia and Pacific[C].2005.1-5.
    [58] Alibhai Z, Lum R, Huster A, et al. Coordination of Distributed Energy Resources[A]. In:IEEEAnnual Meeting of Fuzzy Information[C].2004.913-918.
    [59] Matsubara M, Fujita G, Shinji T, et al. Supply and Demand Control of Dispersed Type PowerSources in Micro Grid[A].In: Proceedings of the13th International Conference on IntelligentSystems Application to Power Systems[C].2005.67-72.
    [60] Lu M S,Chang C L,Lee W J,et al.Combining the wind power generation system with energystorage equipment[J].IEEE Trans. on Industry Applications,2009,45(6):2109-2115.
    [61] Teleke S,Baran M E,Huang A Q,et al.Control strategies for battery energy storage for windfarm dispatching[J].IEEE Trans. on Energy Conversion,2009,24(3):725–732.
    [62] Yoshimoto K,Nanahara T,Koshimizu G.New control method for regulating state-of-charge ofa battery in hybrid wind power/battery energy storage system[C].IEEE PES Power SystemsConference and Exposition,Atlanta,USA,2006.
    [63] Yoshimoto K,Nanahara T,Koshimizu G.Analysis of data obtained in demonstration test aboutbattery energy storage system to mitigate output fluctuation of wind farm[C].CIGRE/IEEE PESJoint Symposium on Integration of Wide-Scale Renewable Resources Into the Power DeliverySystem,Paris,France,2009.
    [64]李霄,胡长生,刘昌金,等.基于超级电容储能的风电场功率调节系统建模与控制[J].电力系统自动化,2009,33(9):86-90.
    [65] LI Xiao,HU Changsheng,LIU Changjin,et al.Modelling and controlling of SCES based windfarm power regulation system[J].Automation of Electric Power Systems,2009,33(9):86-90(inChinese).
    [66] Jia Hongxin,Fu Yang,Zhang Yu,et al.Design of hybrid energy storage control system for windfarms based on flow battery and electric double-layer capacitor[C].Asia-Pacific Power andEnergy Engineering Conference,Chengdu,China,2010.
    [67] Lee T Y.Operating schedule of battery energy storage system in a time-of-use rate industrial userwith wind turbine generators: a multipass iteration particle swarm optimization approach[J].IEEETrans. on Energy Conversion,2007,22(3):774-782.
    [68] Su W F,Huang S J,Lin C E.Economic analysis for demand-side hybrid photovoltaic and batteryenergy storage system[J].IEEE Trans. on Industry Applications,2001,37(1):171-177.
    [69] Venu C,Riffonneau Y,Bacha S,et al.Battery storage system sizing in distribution feeders withdistributed photovoltaic systems[C].IEEE Bucharest Power Tech Conference,Bucharest,Romania,2009.
    [70] J. D. Kueck, R.H. Staunton, S. D. Labinov, B.J. Kirby,Microgrid Energy Management System,ORNL/TM-2002/242,2003
    [71] Jinsoo Song,Jeong Chul Lee,Jae Ho Yun,et al.Performance evaluation of PV-wind hybrid powergeneration system at Gobi-desert area. In:Conference Record of the Thirty-First IEEEPhotovoltaic Specialists Conference,3-7Jan.2005, Lake buena Vista, FL, USA.
    [72] Manolakos, D., G. Papadakis, et al.(2001)."A simulation-optimisation programme for designinghybrid energy systems for supplying electricity and fresh water through desalination to remoteareas-Case study: the Merssini village, Donoussa island, Aegean Sea, Greece." Energy26(7):679-704.
    [73] Morais, H., P. Kadar, et al.(2008). VPP Operating in the Isolated Grid.2008Ieee Power&EnergySociety General Meeting, Vols1-11. New York, Ieee:896-901.
    [74] Michel Vandenbergh, Randolf Geipel, Markus Landau, Philipp Strauss,Performance evaluation ofthe Gaidoroumandra mini-grid with distributed PV generators,4th European PV-Hybrid andMini-Grid Conference,29th–30th May2008, Athens, Greece
    [75] Jong-Yul Kim, Jin-Hong Jeon, Seul-Ki Kim,“Cooperative Control Strategy of Energy StorageSystem and Microsources for Stabilizing the Microgrid during Islanded Operation”. IEEETRANSACTIONS ON POWER ELECTRONICS, VOL.25, NO.12, DECEMBER2010
    [76] Nema, P.; Rangnekar, S.; Nema, R.K.;“Pre-feasibility study of PV-solar Wind Hybrid EnergySystem for GSM type mobile telephony base station in Central India”,Computer and AutomationEngineering (ICCAE),2010The2nd International Conference on26-28Feb.2010,Singapore,PP.152–156
    [77] de S. Ribeiro, L.A.; Saavedra, O.R.; de Matos, J.G.; Bonan, G.; Martins, A.S.,”Small RenewableHybrid Systems for Stand Alone Applications”, Power Electronics and Machines in WindApplications, PEMWA2009. IEEE,2009, Page(s):1-7
    [78] Handschin E, Neise F, Neumann H, Schultz R. Optimal operation of dispersed generation underuncertainty using mathematical programming. In: Proceedings of the15th power systemscomputation conference (PSCC), Lie`ge, Belgium, August22–26,2005.
    [79] BORGES C L T, FALCAO D M. Optimal distributed generation allocation for reliability, lossesand voltage improvement. Electrical Power and Energy Systems,2006,8(6):413-420.
    [80] GREATBAN KS J A, POPOVIC D H, BEGOVIC M, et al. On optimization for security andreliability of power systems with distributed generation, Proceedings of IEEE Bologna PowerTech Conference, June23-26,2003, Bologna, Italy:1-8.
    [81] KASHEM M A, L E AN D T, NEGNEVITSKY M, et al. Distributed generation forminimization of power losses in distribution systems, Proceedings of IEEE Power EngineeringSociety General Meeting, June18-22,2006, Montreal, Canada:1-8.
    [82] GANDOMKAR M, VA KILIAN M, EHSAN M. A genetic based Tabu search algorithm foroptimal DG allocation in distribution networks. Electrical Power and Components System,2005,33(12):1351-1362.
    [83] CHIRADEJA P. Benefit of distributed generation: a line loss reduction analysis, IEEE/PESTransmission and Distribution Conference&Exhibition: Asia and Pacific, August14-18,2005,Dalian, China:1-5.
    [84] GRIFFIN T, TOMSOVIC K, SECREST D, et al. Placement of dispersed generation systems forreduced losses, Proceedings of IEEE33rd Annual Hawaii International Conference on SystemsSciences, January4-7,2000, Maui HI, USA:129.
    [85]陈琳,钟金,倪以信,等.联网分布式发电系统规划运行研究.电力系统自动化,2007,31(9):26231.
    [86] CHEN Lin, ZHONG Jin, NI Yixin, et al. A study on grid-connected dist ributed generationsystem planning and it soperation performance. Automation of Elect ric Power Systems,2007,31(9):26-31.
    [87] RANJBAR N T, SHIRANI A M, OSTADIL A R. A new approach based on ant algorit hm forVolt/Var cont rol in distribution network considering dist ributed generation. Iranian Journal ofScience&Technology,2005,29(B4):1214.
    [88] GAU TAM U, MITHULANANTHAN N. Optimal DG placement in deregulated electricitymarket. Electric Power System Research,2007,77(2):1627-1636.
    [89] HARRISON G P, WALLACE A R. Optimal power flow evaluation of distribution networkcapacity for t he connection of distributed generation. IEE Proceedings: Generation, Transmissionand Distribution,2005,152(1):115-122.
    [90]王守相,王慧,蔡声霞,分布式发电优化配置研究综述,电力系统自动化,2009,33(18):110-115.
    [91]刘殿海,杨勇平,杨昆,等.分布式发电优化配置研究.工程热物理学报,2006,27(1):9-12.
    [92] Borowy BS, Salameh ZM. Methodology for optimally sizing the combination of a battery bankand PV array in a wind/PV hybrid system. IEEE Trans Energy Convers1996;11(2):367–73.
    [93]Markvart T. Sizing of hybrid PV–wind energy systems. Solar Energy1996;59(4):277–81.
    [94] Yang HX, Lu L, Zhou W. A novel optimization sizing model for hybrid solar–wind powergeneration system. Solar energy2007;81(1):76–84.
    [95] Kellogg WD et al. Generation unit sizing and cost analysis for stand-alone wind, photovoltaic andhybrid wind/PV systems. IEEE Trans Energy Convers1998;13(1):70–5.
    [96] Tina G, Gagliano S, Raiti S. Hybrid solar/wind power system probabilistic modeling for long-termperformance assessment. Solar Energy2006;80(5):578–88.
    [97] Karaki SH, Chedid RB, Ramadan R. Probabilistic performance assessment of autonomous solar–wind energy conversion systems. IEEE Trans Energy Convers1999;14:766–72.
    [98] Koutroulis E et al. Methodology for optimal sizing of stand-alone photovoltaic/wind-generatorsystems using genetic algorithms. Solar Energy2006;80(9):1072–88.
    [99] Yang HX, Zhou W, Lu L, Fang ZH. Optimal sizing method for stand-alone hybrid solar–windsystem with LPSP technology by using genetic algorithm. Solar Energy2008;82(4):354–67.
    [100] CELLI G, PILO F. Optimal dist ributed generation allocation in mv dist ribution networks,Proceedings of22nd IEEE Power Engineering Society International Conference, May20-24,2001, Sydney, Australia:81-86.
    [101] SINGH R K, GOSWAMI S K. Optimum siting and sizing of dist ributed generations inradial and networked systems. Elect ric Power Component s and Systems,2009,37(2):127-145.
    [102] SINGH R K, CHOUDHURY N B, GOSWAMI S K. Optimal allocation of dist ributedgeneration in dist ribution network with voltage and f requency dependent loads, Proceedings ofIEEE Region10and the Third International Conference on Industrial and Information Systems,December8-10,2008, Kharagpur, India:125.
    [103] WANG Caisheng, HASHEM NEHRI M. Analytical approaches for optimal placement ofdist ributed generation sources in power systems. IEEE Trans on Power Systems,2004,19(4):2068-2076.
    [104] AJA Y2D2VIMAL RAJ P, SENTHIL KUMAR S, RAJA J, et al. Optimization ofdistributed generation capacity for line loss reduction and voltage profile improvement using PSO.Elekt rika: Journal of Elect rical Engineering,2008,10(2):41-48.
    [105] SHEIDAEI F, SHADKAM M, ZAREI M. Optimal dist ributed generation allocation in distribution systems employing ant colony to reduce losses, Proceedings of Universities PowerEngineering Conference, September1-4,2008, Padova, Italy:125.
    [106] COELLO C A, PULIDO G T, L ECHU GA M S. Handling multiple objectives with particleswarm optimization. IEEE Trans on Evolutionary Computation,2004,8(3):256-279.
    [107] Soteris A, Kalogirou. Optimization of solar systems using artificial neuralnetworks andgenetic algorithms. Appl Energy2004;77(4):383–405.
    [108]雷金勇,谢俊,甘德强.分布式发电供能系统能量优化及节能减排效益分析,电力系统自动化,2009,33(23):29-36.
    [109] Hongbo Ren, Weisheng Zhou, Ken’ichi Nakagami, Weijun Gao, Qiong Wu. Multi-objectiveoptimization for the operation of distributed energy systems considering economic andenvironmental aspects. Appl Energy2010;87:3642–51.
    [110] Pelet X, Favrat D, Leyland G. Multiobjective optimisation of integrated energy systems forremote communities considering economics and CO2emissions. Int J Therm Sci2005;44(12):1180–9.
    [111] KIM K H, L EE Y J, YOU S K. Dispersed generation placement using fuzzy2GA in distribution systems, Proceedings of IEEE Power Engineering Society Summer Meeting, July25,2002, Chicago, IL, USA:1148-1153.
    [112]唐勇俊,刘东,阮前途,等.计及节能调度的分布式电源优化配置及其并行计算,电力系统自动化,2008,32(7):92-97.
    [113]安青松.基于燃气轮机的冷热电三联供系统优化模拟.天津大学硕士论文,2004.3.
    [114]Capstone Turbine Corporation. Poduct Specification Model C200–Capstone MicroTurbine.Available at:http://www.interstatepower.us/Capstone%20Document%20Library/Product%20Specifications/460045C_C200_PS.pdf
    [115]Capstone Turbine Corporation. Capstone C200ISO Partial Load Performance. Available at:http://www.interstatepower.us/Capstone%20Document%20Library/Technical%20Reference/410066C_C200_Tech_Ref.pdf
    [116]郭力,许东,王成山,王守相,冷电联供分布式供能系统能量优化管理[J].电力系统自动化,2009,33(19):96-99.
    [117]Shepherd,1965. CM Shepherd, Design of primary and secondary cells—An equation describingbattery discharge. J. Electrochem. Soc.112(1965). pp.657–664.
    [118]Manwell J, Rogers A, Hayman G, Avelar C, McGowan J. Hybrid2—a hybrid system simulationmodel: theory manual. Available at: http://www.ecs.umass.edu/mie/labs/rerl/hy2/.
    [119] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay,“Microgrids,” IEEE Power EnergyMag., vol.5, no.4, pp.78–94, Jul./Aug.2007.
    [120]Teleke S,Baran M E,Huang A Q,et al.Control strategies for battery energy storage for windfarm dispatching[J].IEEE Trans. on Energy Conversion,2009,24(3):725–732.
    [121]D. Callaway. Achieving controllability of electric loads. Proc IEEE,2011,99(1):184-199
    [122]张钦,王锡凡,付敏,王建学,需求响应视角下的智能电网[J].电力系统自动化,2009,33(17):49-55.
    [123]N. Lu,“An Evaluation of the HVAC Load Potential for Providing Load Balancing Service”,accepted: IEEE Trans. Smart Grid,2012.
    [124]S. Parkinson, D. Wang, C. Crawford, and N. Djilali. Comfort-constrained distributed heat pumpmanagement, Proc. of IEEE ICSGCE2011,2011.
    [125]Lu N, DJ Hammerstrom, and SN Patrick.2009. Grid FriendlyTM Device Model Developmentand Simulation. PNNL-18998, Pacific Northwest National Laboratory, Richland, WA.
    [126]Carl Johan Rydh, Bjorn A. Sanden. Energy Analysis of Batteries in Photovoltaic system. Part I:Performance and Energy Requirements. Energy Conversion and Management.46,2005, pp.1957-1979.
    [127]Marnay, C., Venkataramanan, G., and Stadler, M., et al. Optimal Technology Selection andOperation of Commercial-Building Microgrids[J]. IEEE Transactions on Power Systems,2008,23(3):975-982.
    [128]Mohamed, F. A., H. N. Koivo, et al.(2007). MicroGrid online management and balancing usingmultiobjective optimization. New York, Ieee.
    [129]Xiaohong Guan, Zhanbo Xu, Qing-Shan Jia,“Energy-Efficient Buildings Facilitated byMicrogrid”, IEEE TRANSACTIONS ON SMART GRID Mag., VOL.1, NO.3, pp.243–252,DECEMBER2010
    [130]S. Teleke, M. Baran, S. Bhattacharya, and A. Huang,“Optimal control of battery energy storagefor wind farm dispatching,” IEEE Trans. Energy Convers., vol.25, no.3, pp.787–794, Sep.2010.
    [131]H. Kakigano, Y. Miura, T. Ise, and R. Uchida,“A dc micro-grid for superhigh-quality electricpower distribution,” Elect. Eng. Japan, vol.164, no.1, pp.34–42,2008.
    [132]丁明,张颖媛,茆美琴等.集中控制式微网系统的稳态建模与与运行优化[J].电力系统自动化,2009,33(24):78-82.
    [133]汪少勇,基于分布式电源的微网的设计与运行[J].电力自动化设备,2011,31(4):120-123.
    [134]雷英杰等.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社.
    [135]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105.
    [136]Barton J,Infield D.Energy storage and its use with intermittent renewable energy[J].IEEE Trans.on Energy Conversion,2004,19(2):441-448.
    [137]Teleke S,Baran M E,Huang A Q,et al.Control strategies for battery energy storage for windfarm dispatching[J].IEEE Trans. on Energy Conversion,2009,24(3):725–732.
    [138]US Department of Energy. Benefis of demand response in electricity markets andrecommendations for achieving them: a report to the United State Congress pursuant to section ofthe Energy Policy Act of2005[EB/OL].[2007-07-21]. http://www.oe.energy.gov/Documentsand Media/congress_1252d. pdf.
    [139]张钦,王锡凡,王建学,冯长有,刘林,电力市场下需求响应研究综述,电力系统自动化,2008,32(3):97-106.
    [140]Federal Energy Regulatory Commission. Assessment of demand response and advancedmetering:2006staff report [EB/OL].[2007-07-21]. http://www.ferc.gov/legal/staff-reports/demand response. pdf.
    [141]Federal Energy Regulatory Commission. Assessment of demand response and advanced metering:2007staff report [EB/OL].[2007-09-13]. http://www.ferc.gov/legal/staff-reports/0907-demand-response.pdf.
    [142]LE K D, BOYLE R F, HUNTER M D, et al. A procedure for coordinating direct load controlstrategy to minimize system production costs. IEEE Trans on Power Apparatus and Systems,1983,102(6):1843-1849.
    [143]HSU Y Y, SU C C. Dispatch of direct load control using dynamic programming. IEEE Trans onPower Systems,1991,6(3):1056-1061.
    [144]WEI D C, CH EN N. Air condit ioner di rect load control by multi-pass dynamic programming.IEEE Trans on Power Systems,1995,10(1):307-313.
    [145]CHEN J, LEE F N, BREIPOHL A M, et al. Scheduling direct load control to minimize systemoperational cost. IEEE Trans on Power Systems,1995,10(4):1994-2001.
    [146]BHATTACH ARYYA K, CROW M L. A fuzzy logic based approach to direct load control. IEEETrans on Power Systems,1996,11(2):708-714.
    [147]YANG H T, HUANG K Y. Direct load control using fuzzy dynamic programming. IEEProceedings: Generation, Transmission and Distribut ion,1999,146(2):2940-300.
    [148]HUANG K Y, HUANG Y C. Integrating direct load control with interruptible load managementto provide instantaneous reserves for ancillary services. IEEE Trans on Power Systems,2004,19(3):1626-1634.
    [149]JORGE H, ANT UNES C H, MARTINS A G. A multiple objective decision support model forthe selecti on of remote load control st rategies. IEEE Trans on Power Systems,2000,15(2):865-872.
    [150]GOM ES A, ANTUNES C H, MARTINS A G. A multiple-objective evolutionary approach for thedesign and selection of load control strategies. IEEE Trans on Power Systems,2004,19(2):1173-1180.
    [151]GOM ES A, ANTU NES C H, MARTINS A G. A multiple-objective approach to direct loadcontrol using an interactive evolutionary algorithm. IEEE Trans on Power Systems,2007,22(3):1004-1011.
    [152]NG K H, SHE BLT G B. Direct load control aprofit based load management using linearprogramming. IEEE Trans on Power Systems,1998,13(2):688-695.
    [153]YAO L, CH ANG W C, YEN R L. An iterative deepening genetic algorithm for scheduling ofdirect load control. IEEE Trans on Power Systems,2005,20(3):1414-1421.
    [154]赵庆杞,黎明,张化光.基于蚁群算法的灵敏负荷调度.中国电机工程学报,2006,26(25):15-21.
    [155]KU RU CZ C N, BRANDT D, SIM S. A linear programming model for reducing system peakthrough customer load control programs. IEEE Trans on Power Syst ems,1996,11(4):1817-1824.
    [156]LEE F N, BREIPOH L A M. Operational cost saving of direct load cont rol. IEEE Trans onPower Apparatus and Systems,1984,103(5):988-993.
    [157]COH EN A I, WANG C C. An optimization method for load management scheduling. IEEE Transon Power Systems,1988,3(2):612-618.
    [158]CHU W C, CH EN B K, FU C K. Scheduling of direct load control to minimize load reductionfor a utility suffering from generation shortage. IEEE Trans on Power Systems,1993,8(4):1525-1530.
    [159]LAMENT J C, DE SAULNIERS G, MALH AME R P. A column generation method for optimalload management via control of electric water heaters. IEEE Trans on Power Systems,1995,10(3):1389-1399. Trans on Power Systems,1995,10(4):1994-2001.
    [160]Barton J,Infield D.Energy storage and its use with intermittent renewable energy[J].IEEE Trans.on Energy Conversion,2004,19(2):441-448.
    [161]Teleke S,Baran M E,Huang A Q,et al.Control strategies for battery energy storage for windfarm dispatching[J].IEEE Trans. on Energy Conversion,2009,24(3):725–732.
    [162]US Department of Energy. Benefits of demand response in electricity markets andrecommendations for achieving them: a report to the United State Congress pursuant to section1252of the Energy Policy Act of2005. http://eetd.lbl.gov/ea/ems/reports/congress-1252d.pdf
    [163]M. Andreolas,“Mega Load Management System Pays Dividends,” Transmission&DistributionWorld, Feb.2004, pp.33-37.
    [164]J.R. Stitt,“Implementation of a Large-Scale Direct Load Control System-Some Critical Factors,”IEEE Trans. on Apparatus and Systems, Vol.104, No.7, pp.1663-1669,1985.
    [165]J.M. Mcintyre, L. Ciecior, A. Kaspar, D. Castrop,“Distributed Intelligence in Load Control:Results of an Experiment Using Demand Limiting Devices for Residential Load Control,” IEEETrans. on Apparatus and Systems, Vol.104, No.5, pp.1140-1146,1985.
    [166]M. L. Chan, and W. H. Crouch, Jr.,“An integrated load management, distribution automation anddistribution SCADA system for old dominion electric cooperative,” IEEE Trans. on PowerDelivery, Vol.5, No.1, pp.384-390,1990
    [167]D. Callaway. Tapping the energy storage potential in electric loads to deliver load following andregulation, with application to wind energy. Energy Conversion and Management,2009,50(9):184-199
    [168]D.Wang, S. Parkinson, W. Miao, H. Jia, C. Crawford, N. Djilali.“Online voltage securityassessment considereing comfort-constrained demand response control of distributed heat pumpsystems.” Accepted: Appllied Energy,2011.
    [169]Ning Lu, Yuri V. Makarov, Mark R. Weimar, et al,“Wide Area Energy Storage and ManagementSystem Phase II Final Report-Flywheel Field Tests”, PNNL-19669, Pacific Northwest NationalLaboratory.
    [170]Jay Apt, The spectrum of power from wind turbines, Journal of Power Sources,2007,169:369–374
    [171]Barton J,Infield D.Energy storage and its use with intermittent renewable energy[J].IEEE Trans.on Energy Conversion,2004,19(2):441-448.
    [172]N. Lu and D. P. Chassin,“A state queueing model of thermostatically controlled appliances,”IEEE Trans. Power Syst., vol.19, no.3, pp.1666–1673, Aug.2004
    [173]Y.V. Makarov, C. Loutan, J. Ma, and P. de Mello,“Operational impacts of wind generation inCalifornia power system,” IEEE Trans. on Power Systems, Vol.24, No.2, pp.1039-1050,2009.
    [174]HOMER V.2.68beta National Renewable Energy Laboratory (NREL),617Cole Boulevard,Golden, CO80401-3393. http://www.homerenergy.com/
    [175]Rodolfo Dufo-Lopez, Jose L. Bernal-Agustin. Design and control strategies of PV-Disel systemsusing genetic algorithms. Solar Energy,79,2005, pp.33-46.
    [176]Tomonobu Senjyu, Daisuke Hayashi, etc. Optimal configuration of power generating systemsin isolated island with renewable energy. Renewable Energy,32,2007, pp.1917-1933.
    [177]Michel Vandenbergh, Randolf Geipel, Markus Landau, Philipp Strauss,Performance evaluationof the Gaidoroumandra mini-grid with distributed PV generators,4th European PV-Hybrid andMini-Grid Conference,29th–30th May2008, Athens, Greece
    [178]R. Lasseter, A. Akhil, C. Marnay, J. Stephens et al. White Paper on Integration of DistributedEnergy Resources. The CERTS MicroGrid Concept. Consortium for Electric ReliabilityTechnology Solutions (CERTS), CA, Tech. Rep. LBNL-50829,2002, pp.1-10.
    [179]肖世杰.构建中国智能电网技术思考.电力系统自动化,2009,33(9):1-4.
    [180]程明熙.处理多目标决策问题的二项系数加权和法[J].系统工程理论与实践,1983,(04)
    [181]石立宝,徐国禹.遗传算法在有功安全经济调度中的应用[J].电力系统自动化,1997,(06)
    [182]何琳,王科俊,李国斌等.最优保留遗传算法及其收敛性分析[J].控制与决策,2000,15(01).
    [183]Sonntag RE, Borgnakke C, Wylen GJV. Fundamentals of thermodynamics,6th ed. New York:Wiley;2002.
    [184]关于实施金太阳示范工程的通知http://www.gov.cn/zwgk/2009-07/21/content_1370811.html