几种典型金属及合金中He行为的原子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贮氚材料中,由于氚核自然衰变产生的He不溶于材料基体,He原子容易通过聚集而成泡,最终引起He的释放,从而破坏了晶体的结构,导致材料宏观性能的下降,并诱发材料使用性能的下降。因此,建立一套表征材料固氦属性方法来优选性能优异的贮氚材料是推进核聚变技术应用的关键之一。要表征材料固氦属性,就必须要弄清楚材料中He的释放机理,这就要求对材料中He的存在形态及其演化行为进行系统而深入的研究。利用实验手段很难在原子尺度跟踪He原子或He泡的扩散和演变过程,也不能直接观察或据此推测其扩散和演变机制,也就难以完整描述材料中He的扩散聚集和He泡形成及演变规律。计算机模拟是一种能有效研究材料中He行为的方法,能弥补实验的缺陷,从微观尺度探测He的演化行为。
     本文选取几种典型的金属及合金(如Pd,Zr,Ti和ZrV2等)作为研究对象,结合分子动力学方法和改进分析型嵌入原子模型研究了晶体中He的各种行为。结合实验结果,建立了一套有效的量化评价方法来表征材料的固氦属性,为He问题的研究打下了基础,并为贮氚材料的选材提供了理论依据。
     通过对几种典型金属及合金中单个间隙He原子热扩散性质的模拟研究,发现He原子的扩散性质与实验测得的材料固氦能力有关联,即He原子在材料中的扩散越弱,材料的固氦属性就越强。因此,通过计算材料中He原子的间隙扩散性质,可以初步评估材料的固氦属性。
     通过对原子进行跟踪,发现材料中He泡的形核是金属原子的离位和He与空位结合成团共同作用的结果。在不存在离位损伤的情况下,间隙He原子通过与自间隙发射所产生的空位结合形成一系列He-空位团簇,并通过不断吸收附近的He原子或空位,以及通过团簇间的相互合并,排挤出团簇内部的金属原子,最终形成He泡。体系温度的升高可在一定程度加速He泡的形核过程。He泡形成后,将通过吸收He原子等逐渐长大。通过对晶体Pd和LaNi5中He泡合并长大过程的模拟,发现泡间距离是He泡合并发生的关键因子。在晶体内,存在某一临界距离,当He泡间的距离小于临界距离时,He泡间能通过相互作用最终合并,促进He泡的长大。若He泡间的距离大于临界距离,He泡间合并难以发生。温度的升高能有效加速He泡合并,且He泡合并临界距离随系统温度的升高而增加。
     在金属晶体近表面区域存在一个“逃逸区”,一旦He泡进入这个区域,He泡迅速向晶体表面膨胀直至破裂,He原子通过不断排挤金属原子形成一条通向表面的通道,He泡中大量的He原子沿着这条通道扩散至材料表面,最终释放,仅有少量He原子滞留在晶体内。He的释放是一个瞬时过程,大量的He原子通过在表面形成的孔洞如火山喷发似的释放出来。通过对He释放行为进行微观机制分析,发现He泡释放“逃逸区”的厚度与材料表面张力强度密切相关。随着材料中He浓度的不断升高,金属及合金中He的释放大致经历初期释放和加速释放两个阶段。在He初期释放阶段,仅有少量表面区域的He原子及小He泡或团簇从晶体表面中释放。随着浓度的增加,晶体内部He泡相互连通并逐渐合并,从而形成相互连通的通道网络。当He浓度超过临界释放浓度时,He释放突然加速,晶体内大量的He原子通过连通网络从表面最终释放。这些过程与金属及合金中He原子及He团簇的扩散和迁移密切相关,基于此建立了He加速释放临界浓度与He原子扩散系数之间的量化关系以预测材料的固氦属性。
     通过对金属Pd纳米丝的研究,发现He泡的存在对纳米丝力学性质有着重要影响。He泡通过有效抑制金属原子的相对运动,从而抑制纳米丝中滑移面的出现,造成纳米丝延展性能的降低。随着He泡尺寸的增加,抑制作用更明显,从而加速纳米丝的断裂。He释放产生大量的孔洞等缺陷,对材料力学性质也有重要作用。研究表明在拉伸作用下Pd纳米丝首先发生孔洞的填充。随着应变的增加,纳米丝中孔洞尺寸不同对其力学性能的影响不同。若孔洞较小,纳米丝的拉伸行为与完整Pd纳米丝基本相同;孔洞增加到一定尺寸后,能有效抑制层错的滑移,从而加速纳米丝的断裂。对于不同结构金属纳米丝,其形变机制是不同的。V纳米丝在拉伸作用下,主要以孪晶形式发生形变。通过研究含孔洞V纳米丝的拉伸性质,发现孔洞并不发生原子填充。孔洞通过抑制纳米丝中孪晶形变的发生和扩展,加速了纳米丝的断裂。随着孔洞尺寸的增加,孔洞附近区域在拉伸过程中由孪晶形变逐渐向结构无序化转变。
     通过对以上内容的研究,对材料中He行为有了比较深入的了解,为评估材料固氦属性和优选性能优异的贮氚材料提供了理论依据。
Metals and alloys used to store tritium are subjected to extensive interaction with helium atoms produced by transmutation reactions from energetic tritium fusion neutrons. Owing to the extremely low solubility, helium atoms tend to congregate together and form helium nano-bubbles, which leads to the significantly degradation of materials'mechanical properties. The release of helium atoms will decrease the purity of tritium and also influence the plasma performance in fusion environment. Therefore, the theoretic and experimental investigations on the behaviors of helium are the important issues for the tritium-storage materials. In experiments, it successfully determined the evolution processes of helium bubbles in macroscopic, and provided important insights into helium behaviors. However, the atomic-level behaviors, including the diffusion of helium atoms or nano-bubbles etc. is unknown, owing to the limits of experimental instruments and methods. Computation simulations can be considered as the important methods to study the behavior of helium.
     In our work, we have implemented molecular dynamics (MDs) simulations and modified analytic embedded atom method (MAEAM) to investigate the behaviors of helium in some typical metals and alloys (Pd, Zr, Ti, and ZrV2, etc.). Combined with the experimental results, an effective method is established to evaluate the helium-retention capacity of the materials quantitatively, which provided a feasible instruction for the selection of excellent tritium-storage materials.
     The diffusion of helium atoms is the fundamental behavior in materials, and we firstly studied the thermal diffusion of a helium atom in metals and alloys. The results presented that helium atom diffusion is difficult to arise for the material with the excellent retention capacity. Thus it can be considered as an effective method to evaluate the helium retention capacity of materials via the helium atom diffusion behavior.
     Then helium atoms would congregate together and form some helium bubbles through the diffusion of helium atoms. In Pd and LaNi5crystals without defects, it is found that it firstly emits some self-interstitial atoms (SIA) and forms some vacancies in materials by the accumulation of helium atoms. Then helium clusters are formed by the binding of helium atoms and vacancies, and they further to grow by absorbing some isolated helium atoms and vacancies, or by the interaction of clusters. More and more metallic atoms are pushed out from the clusters, and finally the helium bubbles are formed until no any other metallic atoms in the clusters. Consequently, it is concluded that the formation of helium bubbles is resulted from the emission of metal atoms and the binding of helium atoms and vacancies. It is also found that it facilitates the nucleation of helium bubble with the increase of ambient temperature. We also simulated the growth of helium bubble in the crystals of Pd and LaNi5, it is shown that the strong interaction between the bubbles with a short distance induces the cracks of bubbles and the coalescence of them, facilitating the growth of helium bubbles. The coalescence of helium bubbles are much correlative with the distance between bubbles. There exists a critical distance between each other. Only when distance between bubbles is less than the critical value, the coalescence arises; whereas bubbles are far away from each other, it is much difficult to coalescence. It is also found that the critical-distance is increased as the increase of ambient temperature, implying that high temperature facilitates the coalescence of bubbles.
     Molecular dynamic simulations are also implemented to investigate the escape of helium atoms from a helium-filled nano-bubble near the surface of crystalline palladium. Significant deformation and cracking near the helium bubble occur initially, and then a channel forms between the bubble and the surface, providing a pathway for helium atoms to propagate toward the surface. The helium atoms erupt from the bubble in an instantaneous and volcano-like process, which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. The present simulation results show that, near the palladium surface, there is a helium-bubble-free zone, or denuded zone, with a typical thickness of about3.0nm. Combined with experimental measurements and continuum-scale evolutionary model predictions, the present atomic simulations demonstrate that the thickness of the denuded zone, which contains a low concentration of helium atoms, is somewhat larger than the diameter of the helium bubbles in the metal tritide. The present studies also determine the relationship of the tensile strength and thickness of metal films, and well provide a reasonable explanation for the release of helium nano-bubble. In practical, the materials are filled lots of helium bubbles, and thus it is much necessary to study their release behavior. In materials, helium release experiences early release and accelerated release stages. At the stage of early helium release, only the near-surface helium atoms or bubbles would be released. With the increase of helium concentration, helium bubbles in the interior will link-up and coalescence to produce a network or path linkage towards the materials'surface. Then accelerated helium release occurs as the helium concentration exceeds the critical value, and lots of helium atoms are released as the network is fully established in the materials owing to the inter-bubble fracture. These phenomena result from the diffusion or migration of helium atoms and clusters in materials. The relationship between helium diffusion and critical release concentration is proposed to predict and evaluate the helium retention capacity for the materials.
     He bubble degrades the mechanical properties of materials.The tensile behavior of Pd nanowires containing a He bubble or void is investigated using MD simulation. It is demonstrated that helium bubble reduces the ductility of wire and facilitates its rupture. Increasing the size of He bubble or decreasing wire's cross section width accelerates the rupture of nanwire. He bubble induces the fracture of nanowire at the vicinity of bubble and impedes the relative glide of Pd atoms. There exists a critical value of effective cross section width (~0.56) for Pd nanowires. The stacking fault is difficult to form and the plane-gliding is inhibited as less than the critical width of effective cross section. The formation of voids owing to the release of He also change the materials' mechanical properties. The void is firstly filled during the tensile process. It is known that the size of void is much important on the mechanical behavior of nanowrie. It is much similar with the pure Pd wire as the void is much small as the increasing of tensile strain. As exceeding a critical size, it inhibits the gliding of plane, and accelerates the rupture of wire. During tensile process, the deformation of nanowires is different for the metals with different structure. It is shown that V nanowire deforms in the form of twinning. For V nanowire containing a void, no void-filled-process occurs during tensile process. The void inhibits the nucleation and spread of twinning in V nanowires, and facilitates the rupture of nanowires. BCC-atoms are disordered ones in form of phase transformation rather than twinning deformation, as the increase of void size.
     Based on the above investigation, it is much clear for the helium behavior in the metals and alloys, providing a feasible and theoretical instruction to evaluate the helium retention properties.
引文
[1]Thomas G J, Swansiger W A, Baskes M I. Low-temperature helium release in nickel. J. Appl. Phys.,1979,50(11):6942-6947.
    [2]Wilson W D, Bisson C L, and Baskes M I. Self-trapping of helium metals. Phys. Rev. B,1981 24(10):5616-5624.
    [3]Barnes R S. Embrittlement of stainless steels and nickel-based alloys at high temperature induced by neutron radiation. Nature,1965,206(4991):1307-1310.
    [4]Kurtz R J, and Heinisch H L, The effects of grain boundary structure on binding of He in Fe. J. Nucl. Mater.,2004,329-333(Part B):1199-1203.
    [5]Baskes M I, and Vitek V, Trapping of hydrogen and helium at grain-boundaries in nickel:An atomistic study. Met. Trans. A,1985,16(9):1625-1631.
    [6]Ryazanov A, Voskoboinikov R E, and Trinkaus H. Model for the final stage of creep failure due to high temperature helium embrittlement. J. Nucl. Mater., 1996,233-237(Part 2):1085-1088.
    [7]Rodney D, and Martin G. Dislocation pinning by small interstitial loops:A molecular dynamics study. Phys. Rev. Lett.,1999,82(16):3272-3275.
    [8]Rodney D, and Martin G. Dislocation pinning by glissile interstitial loops in a nickel crystal:A molecular dynamics study. Phys. Rev. B,2000,61(13): 8714-8725.
    [9]王佩璇,宋家树.材料中的氦及氚渗透.北京:国防工业出版社,2002.
    [10]王隆保,吕曼祺,李依依.金属氚化物的时效和时效效应.金属学报,2003,39(5):449-469.
    [11]Abell G C, Matson L K, Steinmeyer R H, Bowman R C, and Oliver B M. Helium release from aged palladium tritide. Phys. Rev. B,1990,41(2):1220-1223.
    [12]Thiebaut S, Douilly M, and Contreras S, et al. 3He retention in LaNi5 and Pd tritides:Dependence on stoichiometry, 3He distribution and aging effects. J. Alloys Compd.,2007,446-447():660-669.
    [13]Rimmeb D E and Cottrell A H. The solution of inert gas atoms in metals. Phil. Mag.,1957,2(23):1345-1353.
    [14]Wilson W D, and Johnson R A. Rare gases in metals. In:Gehlen P C, Beeler J R, and Jaffee R I. Interatomic potentials and simulation of lattice defects. New York:Plenum Press,1972,375-390.
    [15]Zu X T, Yang L, and Gao F, et al. Porperties of helium defects in bcc and fcc metals investigated with densitiy functional theory. Phys. Rev. B,2009,80(5): 054104-1-6.
    [16]王永利.金属中He行为及复杂氢化物性质的理论计算.博士论文.沈阳:中国科学院金属研究所,2011.
    [17]Nielsent B B, and Veen A V. The lattice response to embedding of helium impurities in bcc metals. J. Phys. F:Met. Phys.,1982.15(12):2409-2420.
    [18]Whitmore M D. Helium heat of solution in Al and Mg using non-linear self-consistent screening of the nucleus. J. Phys. F:Met. Phys.,1976,6(7): 1259-1268.
    [19]Fu C C, and Willaime F. Ab initio study of helium in a-Fe:Dissolution, migration, and clustering with vacancies. Phys. Rev. B,2005,72(6): 064117-1-6.
    [20]Seletskaia T, Osetsky Y, Stoller R E, and Stocks G M. First-principle theory of the energetic of He defects in bcc transition metals. Phys. Rev. B,2008,78(13): 134103-1-9.
    [21]Becquart C S, and Domain C. Migration energy of He in W revisited by Ab initio calculations. Phys. Rev. Lett.,2006,97(19):196402.
    [22]Chernov V M, Rmanov V A, and Krutskikh A O. Atomic mechanisms and energetic of thermal activated process of helium redistribution in vanadium. J. Nucl. Mater.,1999,271-272():274-279.
    [23]Koroteev Y M, Lopatina O V, and Chernova I P. Structure stability and electronic properties of the Zr-He system:first-principle calculations. Phys. Solid State,2009,51(8):1600-1607.
    [24]Baskes M I and Melius C F. Pair potentials for fcc metals. Phys. Rev. B,1979, 20(8):3197-3204.
    [25]Adams J B, and Wolfer W G. On the diffusion mechanisms of helium in nickel. J. Nucl. Mater.,1988,158():25-29.
    [26]夏吉星.He原子在Ni、Pd金属中行为的原子模拟研究.硕士论文.长沙:湖南大学,2007.
    [27]Gupta R P, and Gupta M. Consequence of helium production from the radioactive decay of tritium on the properties of palladium tritide. Phys. Rev. B, 2002,66(1):014105-014109.
    [28]Henriksson K O E, Nordlund K, Keinonen J, Sundholm D, and Patzschkze M. Simulations of the initial stages of blistering in helium implanted tungsten. Phys. Scr.2004, T108():95-98.
    [29]Amano J, and Seidman D. Diffusivity of 3He atoms in perfect tungsten crystals. J. Appl. Phys.,1984,56(4):983-992.
    [30]Wagner A, and Seidman D. Range profiles of 300- and 475-eV 4He+ ions and the diffusivity of 4He in tungsten. Phys. Rev. Lett.,1979,42(8):515-518.
    [31]Wang Y L, Liu S, Rong L J, and Wang Y M. Atomistic properties of helium in hcp titanium:A first-principles study. J. Nucl. Mater.,2010,402(1):55-59.
    [32]Chen M, Hou Q, and Wang J, et al. Anisotropic diffusion of He in titanium:A molecular dynamics study. Solid State Communications 2008; 148(5-6): 178-181.
    [33]Xia J X, Hu W Y, Yang J Y, et al. Diffusion behaviors of helium atoms at two Pd grain boundaries.Trans. Nonferrous Met. Soc. China,2006,16(Supplement 2): s804-s807.
    [34]Xia J X, Hu W Y, Yang J Y, et al. A study of the behavior of helium atoms at Ni grain boundaries. Phys.stat.sol. (b),2006,243(12):2702-2710.
    [35]Gao F, Heinisch H, and Kurtz R J. Diffusion of He interstitials in grain boundaries in a-Fe. J. Nucl. Mater.,2006351(1-3):133-140.
    [36]Kalin B A, Kirilin N M, Pilsarev A A, Skorov D M, Telkovskii V G, Fedyaev S K, and Shishkin G N. Surface blister bursting. Atomic energy.1976,40(3): 299-300.
    [37]Gusev V M, Guseva M I, Martynenko Yu V, Mansurova A N, Morozov V N, and Chelnokov. Helium blistering at high irradiation doses. J. Nucl. Mater.,1979, 85-86(Part 2):1101-1104.
    [38]Afrikanov I N, Gusev V M, Guseva M I, Mansurova A N,Martynenko Yu V, Morozov V N, and Chelnokov. Helium blistering under high irradiation doses. 1979,46(3):190-196.
    [39]Wolfer W G. The role of gas pressure and lateral stress on blistering. J. Nucl. Mater.,1980,93-94(Part 2):713-720.
    [40]Johnson P B, and Mazey D J. Large bubble-like features ordered on a macrolattice in helium-implanted gold. Nature,1990,347(6290):265-267.
    [41]Sass S L, and Eyre B L. Diffraction from void and bubble arrays in irradiated molybdenum. Phil. Mag.,1973,27(6):1447-1453.
    [42]Wilson W D, Baskes M I, and Bisson C L. Atomistics of helium bubble formation in a face-centered-cubic metal. Phys. Rev. B,1976,13(6):2470-2478.
    [43]Kornelsen E V. The interaction of injected helium with lattice defects in a tungsten crystal. Rad. Eff.,1972,13(3-4):227-236.
    [44]Caspers L M, Fastenau R H, van Veen A, and Heugten W. Mutation of vacancies to divacancies by helium trapping in molybdenum effect on the onset of percolation. Phys.stat.sol. (a),1978,46(2):541-546.
    [45]Ao B Y, Yang J Y, Wang X L, and Hu W Y. Atomistic behavior of helium-vacancy clusters in aluminum. J. Nucl. Mater.,2006,350(1):83-88.
    [46]Yang J Y, Ao B Y, Hu W Y, and Wang X L. The formation energies and binding energies of helium vacancy cluster:Comparative study in Ni and Pd. J. Phys. Conf. Series,2006,29():190-193.
    [47]Morishita K, Sugano R, Wirth B D, and de la Rubia D. Thermal stability of helium-vacancy clusters in iron. Nucl. Instr. Meth. B,2003,202():76-81.
    [48]Lucas G, and Schaublin R. Stability of helium bubbles in alpha-iron:A molecular dynamics study. J. Nucl. Mater.,2009,386-388():360-362.
    [49]Bowman R C. Distribution of helium in metal tritides. Nature,1978,271(5645): 531-533.
    [50]Evans J H, van Veen A, and Caspers L M. Direct evidence for helium bubble growth in molybdenum by the mechanism of loop punching. Scripta Metall., 1981,15(3):323-326.
    [51]Thomas G J, and Mintz J M. Helium bubbles in palladium tritide. J. Nucl. Mater., 1983,116(2-3):336-338.
    [52]Thomas G J, and Bastasz. Direct evidence for spontaneous precipitation of helium in metals. J. Appl. Phys.,1981,52(10):6426-6428.
    [53]Zheng H, Liu S, Yu H B, Wang L B, Liu C Z, and Shi L Q. Introduction of helium into metals by magnetron sputtering deposition method. Mater. Lett., 2005,59(8-9):1071-1075.
    [54]Kornelsen E V, and van Gorkum A A. A study of bubble nucleation in tungsten using thermal desorption spectrometry:clusters of 2 to 100 helium atoms. J. Nucl. Mater.,1980,92(1):79-88.
    [55]van der Kolk G, van Veen A, Caspers L M, and de Hosson J. Binding of helium to metallic impurities in tungsten:experiments and computer simulations. J. Nucl. Mater.,1985,127(1):56-66.
    [56]Evans J H, van Veen A, and Casper L M. Formation of helium platelets in Molybdenum. Nature,1981,291(5813):310-312.
    [57]Trinkaus H. On the modeling of the high-temperature embrittlement of metals containing helium. J. Nucl. Mater.,1983,118(1):39-49.
    [58]Ryazanov A, Braski D, and Schroeder H et al. Modeling the effect of creep on the growth of helium bubbles in metals during annealing. J. Nucl. Mater.,1996, 233-237(2):1076-1079.
    [59]Trinkaus H. Energetics and formation kinetics of helium bubbles in metals. Rad. Eff.,1983,78(1-4):189-211.
    [60]Lasser R. Tritium and helium-3 in metals. Berlin Heidelberg:Springer-Verlag, 1989.
    [61]Mazey D J, Eyre B L, Evans J H, Erents S K, and McCracken G M. A transmission electron microscopy study of molybdenum irradiated with helium ions. J. Nucl. Mater.,1977,64(1-2):145-156.
    [62]Johnson P B, Mazey D J, and Evans J H. Bubble structures in He irradiated metals. Rad. Eff.,1983,78(1-4):147-156.
    [63]Schober T, and Farrell K. Helium bubbles in α-Ti and Ti tritide arising from tritium decay:A TEM study. J. Nucl. Mater.,1989,168(1-2):171-177.
    [64]Schroeder H, and Batfalsky P. The dependence of the high temperature mechanical properties of austenitic stainless steels on implanted helium. J. Nucl. Mater.,1983,117():287-294.
    [65]Rowcliffe A F. The observation of He bubbles in irradiated 20% Cr-25%Ni-Ti stainless steel. J. Nucl. Mater.,1966,18(1):60-65.
    [66]Sumerling R. Formation of itergranular voids and cracks in an irradiated austenitic steel tensile-tested in the temperature range 650-850℃. Nature,1966, 211(5048):512-514.
    [67]Weaver H T, and Camp W T. Detrapping of interstitial helium in metal tritides: NMR studies. Phys. Rev. B,1975,12(8):3054-3059.
    [68]Thomas G J. Exprimental studies of helium in metals. Rad. Eff.1983,78(1-4): 37-51.
    [69]Barnes R S, and Mazey D J. The migration and coalescence of inert gas bubbles in metals. Proc. R. Soc. Lond. A,1963,275(1306):47-57.
    [70]Ullmaier H. Helium in metals. Rad. Eff,1983,78 (1-4):1-10.
    [71]Evans J H, and van Veen A. An electron microscope study of helium bubble diffusion in gold. J. Nucl. Mater.,1989,168(1-2):12-18.
    [72]Vassen R, Trinkaus H, and Jung P. Diffusion of helium in magnesium and titanium before and after clustering. J. Nucl. Mater.,1991,183(1-2):1-8.
    [73]张镭,王佩璇,陶蓉,马如璋,张国光.注入氦不锈钢中氦泡的热形核及长大研究.金属学报,1992,28(12):9-14.
    [74]刘本良.Ti及Ti合金中氦的存在研究.硕士论文.沈阳:中国科学院金属研究所,2007.
    [75]Chernikov V N, Trinkaus H, Jung P, and Ullmaier H. The formation of helium bubbles near the surface and in the bulk in nickel during post-implantation annealing. J. Nucl. Mater.,1990,170(1):31-38.
    [76]Hayashi T, Amano J, Okuno K, and Naruse Y. Release behaviour of decay helium from zirconium-cobalt tritide. Fusion Technol.,1992,21():845-849.
    [77]Hayashi T, Suzuki T, and Okuno K. Long-term measurement of helium-3 release behavior from zirconium-cobalt tritide. J. Nucl. Mater.,1994,212-215(Part B): 1431-1435.
    [78]Beavis L C. Metal tritides helium emission journal announcement:GRAI8020, NSA0500. US:Sandia Labs,1994.
    [79]Bowman R C, and Attalla A. NMR studies of the helium distribution in uranium tritide. Phys. Rev. B,1977,16(5):1828-1843.
    [80]Schober T. Aging induced property changes im metal tritides. Fusion Technol. 1988,14(2):637-642.
    [81]Bambakidis G, and Bowman R C. Hydrogen in disordered and amorphous solids. New York:Plenum,1986.
    [82]Mitchell D J and Provo J L. Irregularities in helium release rates from metal ditritides. J. Appl. Phys.,1985,57(6):1855-1860.
    [83]Mitchell D J, and Patrick R C. Temperature dependence of helium release from erbium tritide films. J Vac. Sci. Technol.1981,19(2):236-242.
    [84]Stauffer D, and Aharnoy A. Introduction to percolation theory. London:Taylor & Francis,1992.
    [85]Spulak R G. On helium release from metal tritides. J. Less-Common Met.,1987, 132(2):L17-L20.
    [86]Weaver H T, and Camp W J. Detrapping of interstitial helium in metal tritides—NMR studies. Phys. Rev. B,1975,12(8):3054-3059.
    [87]Camp W J. Helium detrapping and release from metal tritides. J. Vac. Sci. Technol.,1977,14(1):514-517.
    [88]Schober T, Trinkaus H, and Lasser R. A TEM study of the aging of Zr tritides. J. Nucl. Mater.,1986,141-143(Part 1):453-457.
    [89]Schober T, and Lasser R. The aging of zirconium tritides:A transmission electron microscopy study. J. Nucl. Mater.,1984,120(2-3):137-142.
    [90]Zelenskij V F, Neklyudov I M, Ruzhitskij V V, Rybalko V F, Bendikov V I, and Khazan S M. Thermal desorption of helium from polycrystalline Ni irradiated to fluences ranging from 1×1017-1×1018 He/cm2. J. Nucl. Mater.,1987,151(1): 22-23.
    [91]Wang P X, and Li Y P, et al. A study of helium trapping, bubble structures and helium migration in type 316L stainless steel under helium implantation. J. Nucl. Mater.,1989,169():167-176.
    [92]李玉璞,王佩璇,张国光等.中国核科技报告.北京:原子能出版社,1989.CNIC-00543,BSTU-0001.
    [93]Gou C L, Wang P X, Fang Z Z, Xia Z H, Shen D Y, and Wang X M. A microscopic mechanism of low temperature helium release. Acta Physica Sinica, 1997,6(10):771-779.
    [94]Gou C L, Wang P X, Yao Y Q, Fang Z Z, and Zhu P R. A study of thermal desorption of helium from high-pure α-Ti and hydrogenated Ti samples. Acta Physica Sinica,1995,4(5):380-388.
    [95]Vedeneev A I, Lobanov V N, and Starovoitova S V. Radiogenic helium thermodesorption from titanium tritide. J. Nucl. Mater.,1996,233-237(Part 2): 1189-1192.
    [96]Kesternich W, and Ullmaier H. Mechanical properties and microstructure of helium-implanted beryllium. J. Nucl. Mater.,2003,312(2-3):212-223.
    [97]Schroeder H. High temperature embrittlement of metals by helium. Rad. Eff., 1983,78(1-4):297-314.
    [98]Ullmaier H. Helium in fusion materials:High temperature embrittlement. J. Nucl. Mater.,1985, 133-134():100-104.
    [99]Lesser A, and Ullmaier H. Fatigue life of helium-implanted AISI 316 L at 500 and 600℃. J. Nucl. Mater.,1988,155-157(Part 2):968-972.
    [100]Ono K, Arakawa K, and Birtcher R C. Intermittent rapid motion of helium bubbles in Cu during irradiation with high energy self-ions. Nucl. Instr. Meth. B, 2003,206():114-117.
    [101]Yamamoto N, Chuto T, Murase Y, and Nagakawa J. Correlation between embrittlement and bubble microstructure in helium-implanted materials. J. Nucl. Mater.,2004,329-333(B):993-997.
    [102]Thorsen P A, Bilde-S(?)rensem J B, and Singh B N. Bubble formation at grain boundaries in helium implanted copper. Scripta Mater.,2004,51(6):557-560.
    [103]West A J, and Rawl D E. Hydrogen in stainless steels:isotopic effects on mechanical properties. in Tritium technology in fission, fusion and isotopic application,1980, U. S. Department of Energy Document No. Conf-800427: 69-76.
    [104]Caskey G R, Rawl D E, and Mezzanotte D A. Helium embrittlement of stainless steels at ambient temperature. Scripta Metall.,1982,16(8):969-972.
    [105]Caskey G R. Tritium-helium effects in metals. Fusion Technol.,1985,8(2): 2293-2298.
    [106]Honenberg P, and Kohn W. Inhomogeneous electron gas. Phys. Rev.,1964, 136(3B):B864-B871.
    [107]Daw M S, and Baskes M I. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B,1984,29(12): 6443-6453.
    [108]Daw M S, and Baskes M I. Semiermpirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. B,1983,50(17):1285-1288.
    [109]Stott M J, and Zaremba E. Quasiatoms:An approach to atoms in nonuniform electronic systems. Phys. Rev. B,1980,22(4):1564-1583.
    [110]Johnson R A. Analytic nearest-neighbor model for fcc metals. Phys. Rev. B, 1989,37(12):3924-3931.
    [111]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用—原子尺度材料设计理论.长沙:湖南大学出版社,2003.
    [112]Zhang B W, Ouyang Y F, Liao S Z, et al. An analytic MEAM model for all bcc transition metals. Physica B,1999,262(3-4):218-225.
    [113]Hu W Y, Zhang B W, Huang B Y, et al. Analytic modified embedded atom potentials for hcp metals. J. Phys.:Conden. Mater.,2001,13(6):1193-1213.
    [114]Hu W Y, and Masahiro F. The application of the analytic embedded atom potentials to alkali metals. Modelling Simul. Sci. Eng.,2002,10(6):707-726.
    [115]Wu Y R, Hu W Y, and Han S C. Theoretical calculation of thermodynamic data for gold-rare earth alloys with the embedded-atom method. J. Alloys Compd. 2006,420(1-2):83-93.
    [116]Wang J, and Hou Q, et al. Defect behavior induced by helium cluster growth in titanium crystals. J. Appl. Phys.,2007,102(9):093510-1-4.
    [117]Reich M, Ewing R C, Ehlers T A, and Becker U. Low-temperature anisotropic diffusion of helium in zircon:Implications for zircon (U,Th)/He thermochronometry. Geochim. Cosmochim. Acta 2007,71(12):3119-3130.
    [118]Alder B J, and Wainwright T E. Phase transition for a hard-sphere system. J. Chem. Phys.,1957,27(5):1208-1209.
    [119]Verlet L. Computer experiments on classical fluids I:Thermodynamical properties of Lennard-Jones Molecules. Phys. Rev. B,159(1):98-103.
    [120]Honeycutt R W. The potential calculation and some applications. Meth. in Compu. Phys.,1970,9(2):136-211.
    [121]Swope W C, and Anderson H C, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:application to small water clusters. J. Chem. Phys.,1982,76(1): 637-649.
    [122]Nose S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.,1984,81(1):511-519.
    [123]Hoover W G. Canonical dynamics:Equilibrium phase-space distributions. Phys. Rev. A,1985,31(3):1695-1792.
    [124]Anderson H C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.,1980,72(4):2384-2393.
    [125]Kakimoto K, Umehara T, and Ozoe H. Molecular dynamics analysis on diffusion of point defects. J. Cryst. Growth,2000,210(1-3):54-59.
    [126]Hu C H, Zhang R J, Shi L Q, Chen D M, Wang Y M, and Yang K. First principles study of the alloying effect on chemical bonding characteristics of helium in La-Ni-M tritides. Mater. Sci. Eng. B,2005,123(1):13-19.
    [127]van Vucht J, Kuijpers F A, and Bruning H. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips. Res. Rep.,1970,25():133-140.
    [128]Zhang R J, Wang Y M, Lu M Q, Xu D S, and Yang K. First-principles study on the crystal, electronic structure and stability of LaNi5-xAlx (x=0,0.25,0.5,0.75 and 1). Acta Mater.,2005,53(12):3445-3452.
    [129]Hong S, and Fu C L. Hydrogen in Laves phase ZrX2 (X=V, Cr, Mn, Fe, Co, Ni) compounds:Binding energies and electronic and magnetic structure. Phys. Rev. B,2002,66(9):094109-1-6.
    [130]Morishita K, Wirth B D, Diaz de la Rubia T, and Kimura A. Effects of helium on radiation damage processes in iron.4th Pacific Rim international conference on advanced materials and processing, UCRL-JC-144458,2001.
    [131]Walters R T. Helium dynamics in metal tritides I. The effect of helium from tritium decay on the desorption plateau pressure for La-Ni-Al tritides. J. Less-Common Met.,1990,157(1):97-108.
    [132]Shanahan K L, Holder J S, Bell D R, and Wermer J R. Tritium aging effects in LaNi4.25Al0.75. J. Alloys Compd.,2003,356-357(),382-385.
    [133]Limacher B, Leroy D, Arnoux C, and Caspard F. Aging effects in La-Ni-Mn tritides. J. Alloys Compd.,1995,231(1-2):792-797.
    [134]Ishiyama Y, Kodama M, Yokota N, Asano K, Kato T, and Fukuya K. Post-irradiation annealing effects on microstructure and helium bubbles in neutron irradiated type 304 stainless steel. J. Nucl. Mater.,1996,239():90-94.
    [135]Stoller R E, and Odette G R. The effects of helium implantation on microstructural evolution in an austenitic alloy. J. Nucl. Mater.,1988,154(2-3): 286-304.
    [136]Vassen R, Trinkaus H, and Jung P. Helium desorption from Fe and V by atomic diffusion and bubble migration. Phys. Rev. B,1991,44(9):4206-4213.
    [137]Deo C S, Okuniewski M A, and Srivilliputhur S G, et al. Helium bubble nucleation in bcc iron studied by kinetic Monte Carlo simulation. J. Nucl. Mater., 2007,361(2-3):141-148.
    [138]Morishita K, Sugano R, and Wirth B D. MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe. J. Nucl. Mater., 2003,323(2-3):243-250.
    [139]van Huis M A, van Veen A, and Labohm F, et al. Formation, growth and dissociation of He bubbles in Al2O3. Nucl. Instr. Meth. B,2004,216():149-155.
    [140]Amarendra G, Viswanathan B, Bharathi A, and Gopinathan K P. Nucleation and growth of helium bubbles in nickel studied by positron-annihilation spectroscopy. Phys. Rev. B,1992,45(18):10231-10241.
    [141]Rajaraman R, Viswanathan B, Valsakumar M C, and Gopinanthan K P. Anomalous helium-bubble growth in palladium. Phys. Rev. B,1994,50(1): 597-600.
    [142]Shanahan K L, and Holder J S. Helium release behavior of aged titanium tritides. J. Alloy Compd.,2005,404-406():365-367.
    [143]Porker D B, and Williams J M. Low-temperature release of ion-implanted helium from nickel. Appl. Phys. Lett.,1982,40(9):851-853.
    [144]Peterson D E, Early J W, Starzynski J S, and Land C C. Helium release from radioisotopic heat sources. Los Alamos Scientific Laboratory Report No. LA-1OO23 (Los Alamos, NM,1984).
    [145]Snow C S, Brewer L N, and Gelles D S, et al. Helium release and microstructural changes in Er(D, T)2-x3Hex films. J. Nucl. Mater.,2008,374(1-2):147-157.
    [146]Cowgill D F. Helium nano-bubble evolution in aging metal tritides. Fusion Sci. Technol.,2005,48(1):539-544.
    [147]Wang L, Hu W Y, and Deng H Q, et al. Helium nano-bubble release from Pd surface:An atomic simulation. J. Mater. Res.,2011,26(03):416-423.
    [148]Forman A J E, and Singh B N. Bubble nucleation in grain interior and its influence on helium accumulation at grain boundaries. J. Nucl. Mater.,1985, 133-134():451-454.
    [149]Barber C B, Dobkin D P, and Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw.1996,22(4):469-483.
    [150]Allen M P, and Tidesley D J. Computer simulation of liquids. Oxford:Oxford science publications,1987.
    [151]Cerny M, and Pokluda J. Influence of superimposed biaxial stress on the tensile strength of perfect crystals from first principles. Phys. Rev. B,76(2): 024115-1-5.
    [152]Knapp J A, Follstaedt D M, and Myers S M. Hardening by bubbles in He-implanted Ni. J. Appl. Phys.,2008,103(1):013518-1-9.
    [153]Dawson P H. Quadrupole mass spectrometry and its applications. Amsterdam: Elsevier,1976.
    [154]Emig J A, Garza R G, Christensen L D, Coronado P R and Souers P C. Helium release from 19-year-old palladium tritide. J. Nucl. Mater.,1992,187(3): 209-214.
    [155]Shaltiel D, Jacob I, and Davidov D. Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds. J. Less-Common Met. 1977,53(1):117-131.
    [156]Cowgill D F. Helium bubble linkage and transition to rapid He release in aging Pd tritide. Sandia Report, SAND2006-7779,2007.
    [157]Rothaut J, and Schroeder H. Influence of temperature, stress and time on the formation of helium bubbles in type 316 stainless steel. J. Nucl. Mater.,1981, 104():1023-1027.
    [158]李嵘,蒋国强,薛炎,张义涛.LaNi5合金长期贮氚的老化效应.核技术,2002,25(2):103-106.
    [159]Orowan E. Symposium on internal stress in metals and alloys. London:Institute of metal,1948.
    [160]Knapp J A, and Browning J F. Nanoindentation characterization of ErT2 thin films. J. Nucl. Mater.,2005,350(2):147-152
    [161]Knapp J A, Myers S M, Follstaedt D M, and Petersen G A. Extreme precipitation strengthening in ion-implanted nickel. J. Appl. Phys.,1999,86(11):6547-6556.
    [162]Knapp J A, Follstaedt D M, Myers S M, Barbour J C. and Friedmann T A. Finite-element modeling of nanoindentation. J. Appl. Phys.,85(3):1460-1474.
    [163]Basinski Z B, Duesbery M S, and Taylor R. Influence of shear stress on screw dislocations in a model sodium lattice. Can. J. Phys.,1971,49(16):2160-2180.
    [164]Chen D L, and Chen T C. Mechanical properties of Au nanowires under uniaxial tension with high strain-rate by molecular dynamics. Nanotech.,2005,16(12): 2972-2981.
    [165]Sankaranarayannan K R S, Bhethanabotla V R, and Joseph B. Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires. Phys. Rev. B,2007,76(13): 134117-1-13.
    [166]Koh S, Lee H, Lu C, and Cheng Q H. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain:Temperature and strain-rate effects. Phys.Rev. B,2005,72(8):085414-1-11.
    [167]Todorov T N, and Sutton A P. Force and conductance jumps in atomic-scale metallic contacts. Phys. Rev B,1996,54(20):14234-14237.
    [168]Mehrez H, and Ciraci S. Yielding and fracture mechanisms of nanowires. Phys. Rev. B,1997,56(19):12632-12642.
    [169]Honeycutt J D, and Anderson H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.,1987,91(19): 4950-4963.
    [170]Li S Z, Ding X D, and Deng J K, et al. Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys. Rev. B,2010,82(20):205435-1-12.