热浸镀锌铝的界面反应及熔池的热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热浸镀锌广泛应用于提高钢材的耐蚀性,Zn-55%Al、Zn-5%等锌铝镀层的耐蚀性能要优于单一的锌、铝镀层。由于锌铝熔池中铝的存在,导致钢基与熔池之间发生激烈的放热反应,同时镀层金属间化合物层快速增厚、熔池中产生大量的锌铝渣。为控制钢基与熔池之间的快速反应,在熔池中加入硅和铜等合金元素,针对铁、锌、铝和硅之间的相互反应,测定了相应的相关系,研究了合金元素对镀层的影响,明确热浸镀锌铝中的界面反应和熔池中锌铝渣的形成机理,以利于改善镀层的组织结构。
     试验测定了Zn-Fe-Cu三元体系450°C、620°C和800°C等温截面,在该体系中未发现三元化合物。450°C等温截面中存在8个三相区,试验结果表明铜在Γ和δ_(Fe)相中的溶解度分别为17.9at.%and15.2at.%,而在液相和ζ相中的溶解度很低。这个结论证明了在热浸镀锌熔池中加入的铜含量达到1.0at.%时,将促使Γ和δ_(Fe)相的形成,同时抑制ζ相生长。在该体系620°C和800°C等温截面中分别存在4个三相区和3个三相区。620°C时γ和Γ相形成连续固溶体,该连续固溶体在本研究中被命名为γ/Γ相。620°C等温截面中δ_(Fe)和δ_(Cu)相伸入相图内部,所形成的(γ/Γ+δ_(Fe)+δ_(Cu))三相区成分范围狭小。
     在Zn-Al-Ni三元体系600°C等温截面中存在8个三相区,在该体系中同样未发现三元化合物。镍在液相中的溶解度非常低,最大值未超过0.8at.%。共存在该体系中的二元相AlNi和NiZn伸入相图内部,可以清晰的判断三相区(NiZn+AlNi+Ni_3Zn_(14))和(AlNi_3+AlNi+NiZn)存在于该等温截面中,同时在本研究中确定了AlNi,Al_3Ni_5和AlNi_3相的三相平衡关系。根据实验研究结果显而易见,当少量的镍加入到锌铝熔池中时,熔池成分将无法维持在液相区域,而是进入到两相区或者三相区,从而导致锌铝熔池中形成大量的化合物。
     在热浸镀锌铝中提出了扩散通道的改变对镀层中金属见化合物层形成的控制机理,在热浸镀(扩散偶)化合物层开始形成阶段,扩散通道沿熔池成分与对应的铁铝二元化合物形成的两相区共轭线穿过该相区,对应层状的铁铝二元化合物在铁基上连续形成。随着热浸镀(扩散)时间的延长,扩散通开始向两扩散原始组元的连线移动,一旦扩散通道移动到切割液相和其对应铁铝化合物组成的两相区共轭线时,优先形成在钢基上的铁铝二元化合物层将失稳破裂,同时液相通道在化合物层中形成,将导致熔池液相直接接触钢基而发生界面反应控制的反应过程,镀层金属间化合物层的厚度将显著增厚。
     在锌铝熔池中添加铜能有效的抑制其铁铝之间的反应,铜的加入能促使τ_5的形成,同时控制Fe_2Al_5层的快速增厚。当0.5~1.0wt.%的铜加入到锌铝熔池时,铜能够促使硅在界面反应区域富集,该区域之前熔池液相与FeAl_3相的平衡被液相与τ_5之间的平衡关系所取代,此时界面反应扩散通道为(钢基/Fe_2Al_5/FeAl_3/τ_5/锌铝熔池),镀层金属间化合物外层形成致密的τ_5相层,这种现象避免了熔池液相直接腐蚀钢基,从而控制了钢基与熔池之间的反应,镀层的金属间化合物层厚度明显减薄,Fe_2Al_5相层减薄程度尤为明显。
     试验研究了硅含量在1.0~3.0wt.%范围内,温度580~610°C时熔池中锌铝渣相的形成机理,熔池中所形成的锌铝渣相被鉴别为FeAl_3相和含锌的τ_5相。同时在580~610°C温度范围内建立了Zn-Fe-Al–Si四元体系中(Al_(0.55)Zn_(0.45))_(1-x-y)Fe_xSi_y截面富锌铝侧相平衡关系,可以直观的看出随熔池硅含量和温度的变化,熔池中所含锌铝渣的种类。当硅含量不超过1.3at.%时,熔池中锌铝渣相仅为FeAl_3相,在1.0~1.6wt.%硅含量锌铝池中所形成的FeAl_3相中最大的硅含量为1.93wt.%。当硅含量达到2.0wt.%时,熔池中仅含有τ_5锌铝渣相。在本研究工作中,580~610°C温度范围内1.6wt.%硅含量熔池中均出现FeAl_3相和τ_5相共存的现象。
Hot dip galvanizing is widely used to improve the atmospheric corrosion resistanceof the steel sheet. The corrosion resistance of the hot-dipping Zn-Al coating (for exampleZn-55%Al, Zn-5%Al coating et al.) is superior to a single coating (Zn, Al coating).Because of the presence of aluminum, resulting in the strong and rapid exothermicreaction between the steel matrix and the A1-Zn bath, rapid growth of alloy layer, andlarge amounts of Zn-Al dross forming in the bath. To control the violent reaction occursbetween the iron substrate and bath, the alloying elements, such as Si and Cu, will beadded in the A1-Zn bath. Focusing on the interaction between Fe, Zn, Al and Si, therelated phase diagrams were determined and the effect of alloying elements on coatingswere carried out. The interfacial reaction and forming of intermetallic dross phases inhot-dipping Zn-Al bath have been studied, which is important to control themicrostructure of Zn-Al coating.
     The450°C、620°C and800°C isothermal section of the Zn-Fe-Cu ternary systemwas experimentally determined. No new ternary compound was found in the system.Eight three-phase regions exist in the450°C isothermal section. isothermal section.Experimental results indicated that the solubility of Cu in the Γ (Fe3Zn10) and the δ_(Fe)phase reaches as high as17.9at.%and15.2at.%, respectively, and the solubility of Cu inliquid and ζ phase is lower. The results confirm, in galvanizing, the addition of Cu in bathup to1.0at.%would favor the formation of the Γ phase and δ_(Fe)phases, the other wayround, it inhibits the development of the ζ phase. Four three-phase regions have beenidentified in the Zn-Fe-Cu ternary system at620°C, and three three-phase regions havebeen confirmed in the800°C. The γ (Cu5Zn8) and Γ phases form a continuous solidsolution at620°C, which is designated as the γ/Γ phase. Binary phases δ_(Fe)and δ_(Cu)extendinto the ternary system at620°C, the three-phase triangle of (γ/Γ+δ_(Fe)+δ_(Cu)) is small andnarrow.
     Eight three-phase regions have been identified in the Al-Ni-Zn ternary system at600°C. No new ternary compound was found in the system. The solubility of Ni in theLiq. phase is low, which is no more than0.8at.%. Binary phases AlNi and NiZn extendinto the ternary system, and they co-exist in the Al-Ni-Zn ternary system at600°C. Thethree-phase triangles of (NiZn+AlNi+Ni_3Zn_(14)) and (AlNi_3+AlNi+NiZn) are constructedin this ternary system. As is shown in this research result, the three-phase equilibriumrelationship of the phases AlNi, Al3Ni_5and AlNi_3has been confirmed in the present study.According to this result, when a proper amount of Ni is added into the Al-Zn bath, thebath composition does not remain at Al-Zn liquid region, but enter two-phase orthree-phase region. Consequently, a great many intermetallic compounds in Al-Zn bath reduce the fluidity of melt.
     The interface reaction process between the iron-base and different baths was studied.The controlled mechanism of alloy layer formation by the diffusion path change ingalvanizing was proposed. In the beginning of the alloy layer formation in galvanizing(diffusion layer), the diffusion path crosses the two-phase region of melting bath andrelevant Fe-Al compound following a tie-line. A corresponding continuous lamellarFe-Al compound forms firstly on the iron-based surface. with the immersion(diffusion)time increases, the diffusion path trends to move gradually to the line connecting withtwo diffusion component points. Once the diffusion path cuts the tie-line of the two-phaseregion of melting bath and the relevant Fe-Al compound, the preferential forming Fe-Alcompound layer is steadiness losing and breaking. At the same time, the liquid channelsforms in the alloy layer (diffusion layer) as the diffusion path cut the tie-line, whichleaded Zn-Al liquid to connect with iron-base directly, the reaction is controlled byinterfacial reaction, which brings the thickness of coating alloy layer (diffusion layer)increased rapidly.
     Cu is an effective bath additive for controlling the Fe-Al reactivity in Galvalumeprocess. The addition of Cu in the Galvalume baths promotes the formation of the τ_5phase and hinders the Fe_2Al_5phase. When0.5~1.0wt.%Cu is added in Galvalume baths,the presence of Cu makes Si be enriched in the reaction region during the hot-dipping.The liquid phase becomes in equilibrium with the τ_5phase, initially in equilibrium withFeAl3as the enrichment of Si in the coating. the diffusion path is ironsubstrate/Fe_2Al_5/FeAl3/τ_5/overlay. The compact τ_5will form on the outer intermetalliclayer, this phenomenon of the liquid phase eroding the α-Fe phase directly will beavoided. As a result, the intermetallic layer thickness greatly reduces, and the Fe_2Al_5phase layer becomes very thin.
     The intermetallic dross phases in galvalume baths containing1.0~3.0wt.%Si inthe temperature range of580~610°C have been studied detailedly. The intermetallicdross phases are considered to be the FeAl3phase and the τ_5phase containing Zn. TheAl-Zn-rich corners of (Al_(0.55)Zn_(0.45))_(1-x-y)Fe_xSi_ysection in the Al-Fe-Si-Zn system at580~610°C have been constructed. It is intuitionistic for prediction of the change in the natureof the intermetallic dross phases present in galvalume baths for variations of Si contentand temperature. For Si content dose not exceed1.3wt.%, the dross is the FeAl3phasesolely, and the most Si content in the FeAl3phase is1.93wt.%for1.0~1.6wt.%Si inbaths. When Si content up to2.0wt.%, the intermetallic dross phase is τ_5phase solely. Inour study, FeAl3and τ_5can co-exist when Si content is about1.6wt.%in baths at thetemperature range of580~610°C.
引文
[1]钢铁产品防腐蚀的办法[J].涟钢科技与管理,2004,4F0003.
    [2]陆柱.可持续发展战略与腐蚀防护技术[J].腐蚀与防护,1997,18(2):3-3.
    [3]张建荣,高继轩,吴燕等.热喷涂复合涂层是预防氢鼓包腐蚀破坏的有效手段[J].中国锅炉压力容器安全,2001,17(2):14.
    [4]李九岭.带钢连续热镀锌[M].冶金工业出版社,2001.
    [5]朱立.钢材热镀锌[M].北京:化学工业出版社,2006.
    [6]卢锦堂,许乔瑜,孔纲.热浸镀技术与应用[M].机械工业出版社,2006.
    [7]李鑫,杜鸿雁,魏绪钧等.热海水中热浸镀用锌及锌铝合金的电化学性能[J].东北大学学报:自然科学版,2005,26(011):1099-1102.
    [8]2009-2012年中国镀锌板行业投资分析及深度研究咨询报告[J].2009.
    [9]赵翠云.中国有色金属工业协会铅锌分会.中国锌工业的发展现状与发展趋势[C].带钢连续镀锌发展论坛,中国.2010.
    [10]张启富,刘邦津,黄建中.现代钢带连续热镀锌[M].冶金工业出版社,2007.
    [11]李智.硅反应性及合金元素对热浸镀锌影响的研究.中南大学,2008.
    [12] Marder, A. R. The metallurgy of zinc-coated steel[J]. Prog Mater Sci,2000,45(3):191-271.
    [13]何玉明,王仲槐.热镀锌助镀剂的使用与环保[J].金属制品,2001,27(006):43-45.
    [14]李智,苏旭平,尹付成等.钢基热浸镀锌的研究[J].材料导报,2003,7(012):12-14.
    [15]吴永敏,梅建庭.钢铁基体热浸镀锌助镀剂缓蚀性能的研究[J].电镀与精饰,1997,19(001):13-15.
    [16]闫瑞华.添加钛镁元素对热浸镀锌层性能的影响.中国科学院研究生院(海洋研究所),2006.
    [17]刘秀玉,柴本银,马训强等.助镀剂在热浸镀工艺中的应用[J].山东化工,2004,33(004):20-21.
    [18]蒋鸣.非调质N80钢表面热浸镀及其复合处理层的制备与性能.东北大学,2008.
    [19]朱立.热镀锌钢板生产概述[J].鞍钢技术,1999,6:58-62.
    [20]于红梅.浅谈本钢热镀锌工艺及连续退火炉特点[J].本钢技术,1999,12.
    [21]孙中华,曹晓明,杜安等.钢板热镀锌技术的研究现状与发展趋势[J].天津冶金,2005,6:15-18.
    [22]李九岭.从热镀锌史看美钢联法的发展[J].武钢技术,1995,33(1):10-13.
    [23]唐卫军,陈永弘,郑海燕等.连续热镀锌生产线L形退火炉节能特点[J].河北冶金,2003,(6).
    [24]张益明,马荣贵.耐蚀热镀锌钢板在汽车工业中应用的进展[J].腐蚀与防护,1999,20(011):483-487.
    [25]肖斌,王建华,苏旭平等.连续镀锌板镀层粘附性不良的研究[J].电镀与涂饰,2008,(08).
    [26]张启富,刘邦津.热镀锌技术的最新进展[J].钢铁研究学报,2002,14(004):65-72.
    [27]史良权.热镀铝锌合金钢板[J].世界钢铁,2003,3(3):4-11,15.
    [28]宋加.锌铝合金镀层钢板的发展与前景[J].轧钢,1994,(001):52-55.
    [29] Laverde, D., Zubillaga, J., Gil-Sevillano, J. et al.. The influence of the primer layer on mechanicaldamage and loss of corrosion protection of deformed painted Zn-0.16%Al and Zn-5%Al galvanizedsheet steel[J]. Corros Sci,1995,37(1):79-95.
    [30] Nishimura, K., Kato, K., Shindo, H. Highly Corrosion-resistant Zn-Mg Alloy Galvanized Steel Sheetfor Building Construction Materials[J]. Nippon Steel Technical Report,2000:85-88.
    [31] Yamamoto, S., Kumon, F., Taomoto, T. et al. Corrosion Resistance of pre-painted Zn-6%Al-3%Mgalloy coated steel sheet.
    [32] Schurz, S., Luckeneder, G., Fleischanderl, M. et al.. Chemistry of corrosion products on Zn-Al-Mgalloy coated steel[J]. Corros Sci,2010,52(10):3271-3279.
    [33] Schürz, S., Fleischanderl, M., Mori, G. et al.. Corrosion Behavior of Zn-Al-Mg Coated Steel InDifferent Environments[J]. CORROSION2011,2011.
    [34]山本郷史,公文史城,垰本敏江.溶融Zn-6%Al-3%Mg系合金めっき鋼板を原板とした塗装鋼板の高塩濃度環境における端面耐食性(表面処理特集号)[J].日新製鋼技報,2008,(89):1-8.
    [35] Xiong, W., Kong, Y., Du, Y. et al.. Thermodynamic investigation of the galvanizing systems, I:Refinement of the thermodynamic description for the Fe-Zn system[J]. Calphad,2009,33(2):433-440.
    [36] Gellings, P. J., de Bree, E. W., Gierman, G. Synthesis and Characterization of HomogeneousIntermetallic Fe-Zn Compounds, Part I: The δ1phase[J]. Zeitschrift fuer Metallkunde/MaterialsResearch and Advanced Techniques,1979,70(5):312-314.
    [37] Gellings, P., Gierman, G., Koster, D. et al.. Synthesis and Characterization of HomogeneousIntermetallic Fe-Zn Compounds III-Phase Diagram[J]. Z Metallkd,1980,71(2):70-75.
    [38] Borhan-Tavakoli, A. Synthesis of Pure and Homogeneous Intermetallic Zeta-Phase of the FeZnSystem[J]. Z Metallkd,1985,76(1):37-40.
    [39] Bastin, G. F., van Loo, F. J. J., Rieck, G. D. On the δ phase in the Fe-Zn system[J]. Zeitschrift fuerMetallkunde/Materials Research and Advanced Techniques,1977,68(5):359-361.
    [40] Gellings, P. J., de Bree, E. W., Gierman, G. Synthesis and Characterization of HomogeneousIntermetallic Fe-Zn Compounds, Part II: The ζ phase[J]. Zeitschrift fuer Metallkunde/MaterialsResearch and Advanced Techniques,1979,70(5):315-317.
    [41] Su, X., Tang, N.-Y., Toguri, J. M. Thermodynamic evaluation of the Fe-Zn system[J]. J AlloysCompd,2001,325(1-2):129-136.
    [42]孔纲,卢锦堂.热浸锌浴中少量铝对镀层性能的影响[J].材料保护,2002,35(007):17-19.
    [43] Ghoniem, M. A., Lohberg, K. Metallurgy,1972,26:1026-1030.
    [44] Nakano, J., Malakhov, D. V., Yamaguchi, S. et al.. A full thermodynamic optimization of theZn-Fe-Al system within the420-500℃temperature range[J]. Calphad,2007,31(1):125-140.
    [45]彭梅香,苏旭平,尹付成.连续镀锌过程中有效铝含量的计算及其应用软件的设计[J].金属热处理,2004,29(11):33-36.
    [46] Tang, N.-Y. Determination of liquid-phase boundaries in Zn-Fe-Mx systems[J]. Journal of PhaseEquilibria and Diffusion,2000,21(1):70-77.
    [47] McDermid, J. R., Kaye, M. H., Thompson, W. T. Fe Solubility in the Zn-Rich Corner of theZn-Al-Fe System for Use in Continuous Galvanizing and Galvannealing[J]. Metallurgical andMaterials Transactions B,2007,38(2):215-230.
    [48] Lepretre, Y., Philibert, J. Etude des mécanismes réactionnels de la galvanisation[J].1996.
    [49] Baril, E., L’espérance, G. Studies of the morphology of the Al-rich interfacial layer formed duringthe hot dip galvanizing of steel sheet[J]. Metallurgical and Materials Transactions A,1999,30(3):681-695.
    [50] Price, S., Randle, V., Pichilingi, M. et al.. Formation and development of aluminium inhibition layersduring galvanizing/galvannealing[J]. REVUE DE METALLURGIE CAHIERS D INFORMATIONTECHNIQUES,1999,96:381-394.
    [51] Harvey, G., Mercer, P. Aluminum-rich alloy layers formed during the hot dip galvanizing of lowcarbon steel[J]. Metallurgical and Materials Transactions B,1973,4(2):619-621.
    [52] Vitkin, A., Kokorin, G. Effect of Al in a Zinc Melt on the Formation of a Diffusion Layer in theGalvanizing of Steel[J]. Metallove denie Term Obrabot Metallov,1973,(4):60-62.
    [53] Culcasi, J. D., Ser, P. R., Elsner, C. I. et al.. Control of the growth of zinc-iron phases in the hot-dipgalvanizing process[J]. Surface and Coatings Technology,1999,122(1):21-23.
    [54] Hauttman, A.: Stahl u Eisen:65.
    [55]魏天斌.热浸镀铝带钢的生产[J].武钢技术,1998,12.
    [56] Kattner, U., Burton, B. Phase Diagrams of Binary Iron Alloys[J]. ASM International Materials Park,OH,1993.
    [57] Massalski, T., Okamoto, H., Subramanian, P. et al.. Binary Alloy Phase Diagrams. Vol.3[J]. ASMInternational,1990,1990:1485.
    [58] Heumann, T., Dittrich, N. Structure character of the Fe2Al5intermetallics compound in hot dipaluminizing process[J]. Z Metallk,1959,50:617.
    [59] Pretorius, R. Materials Research Society Symposia Proceedings[J].1984,25:15.
    [60] Pretorius, R., De Reus, R., Vredenberg, A. et al.. Use of the effective heat of formation rule forpredicting phase formation sequence in Al-Ni systems[J]. Mater Lett,1990,9(12):494-499.
    [61] Pretorius, R., Vredenberg, A., Saris, F. et al.. Prediction of phase formation sequence and phasestability in binary metal‐aluminum thin‐film systems using the effective heat of formation rule[J].Journal of Applied Physics,1991,70:3636.
    [62]韩炜. Si对Fe-Al反应过程中Fe2Al5相生长动力学的影响.湘潭大学,2009.
    [63] Gierek, A., Bajka, L. The Hot Dip Aluminizing of Iron Castings[J]. Giesserei,1977,64(14):391-395.
    [64] Denner, S., Jones, R., Thomas, R. Hot Dip Aluminizing of Steel Strip[J]. Iron Steel Int,1975,48(3):241-252.
    [65] Gittings, D., Rowland, D., Mack, J.(1951). Effect of Bath Composition on Aluminum Coatings onSteel.
    [66]刘邦津.钢材的热浸镀铝[M].冶金工业出版社,1995.
    [67] Horton, J., Borzillo, A., Kuhn, N. et al.(1979). Galvalume and Zincalume-Sheet Steel Coated with55%Al-Zn Alloy.
    [68]刘德仿,陈军.稀土对热浸镀铝件耐腐蚀性能的影响[J].材料保护,2000,33(009):6-7.
    [69]曹莹,崔岗.微量元素对热浸镀铝层的影响[J].电镀与环保,2000,20(004):26-27.
    [70]孙克宁,齐永青.热浸镀铝工艺及稀土添加剂的影响[J].电子工艺技术,2001,22(002):79-80.
    [71]李晓源,文九巴,李全安等.稀土镧对热浸镀铝层耐蚀性的影响[J].机械工程材料,2004,28(007):40-42.
    [72]张伟,文九巴,张金民等. La对热浸镀铝合金层生长动力学的影响[J].稀土,2005,26(006):29-32.
    [73]高秋志,冯彬,杜安等.热浸镀Zn-5%Al-RE合金层形成机理的研究进展[J].热加工工艺,2008,37(006):89-91.
    [74]邢少华.热浸镀钢材在海洋环境中腐蚀行为的对比研究.重庆大学,2005.
    [75]孙海燕,范永哲,马瑞娜等.钢丝热浸镀纯Zn与单镀Galfan合金的对比[J].腐蚀科学与防护技术,2008,20(1):41-43.
    [76] Murray, J. The Al Zn (Aluminum-Zinc) system[J]. Journal of Phase Equilibria,1983,4(1):55-73.
    [77] Peng, Q. F., Chen, F. S., Qi, B. S. et al.. Measurement of Al-Zn phase diagram by acoustic emissionduring solidification[J]. Transactions of the American Foundrymen's Society,1991:199.
    [78] Araki, H., Minamino, Y., Yamane, T. et al.. Partial phase diagrams of the aluminium-rich region ofthe Al-Zn system at0.1MPa and2.1GPa[J]. J Mater Sci Lett,1992,11(3):181-183.
    [79] Chen, S.-L., Chang, Y. A. A thermodynamic analysis of the Al-Zn system and phase diagramcalculation[J]. Calphad,1993,17(2):113-124.
    [80] Skenazi A.F., Davin D., Coutsouradis D., et al.. Proceedings of1st International Conference on ZincCoated Steel, Munich, London. Zinc Development Association,1985.
    [81] Marder, A. Microstructural characterization of zinc coatings[J]. Zinc-Based Steel Coating Systems:Metallurgy and Performance, eds G Krauss, DK Matlock (Warrendale, PA: TMS,1990),1990:55-82.
    [82] Ghuman, A., Goldstein, J. Reaction mechanisms for the coatings formed during the hot dipping ofiron in0to10Pct Al-Zn baths at450℃to700℃[J]. Metallurgical and Materials Transactions B,1971,2(10):2903-2914.
    [83] Caceres, P., Spittle, J. Mechanisms of formation and growth of intermetallic layer during hot dippingof iron in Zn-3Al and Zn-6Al baths[J]. Mater Sci Tech-lond,1986,2:871-877.
    [84] Chen, Z., Gregory, J., Sharp, R. Intermetallic phases formed during hot dipping of Intermetallicphases formed during hot dipping of low carbon steel in a Zn-5Pct Al melt at450C[J]. Metallurgicaland Materials Transactions A,1992,23(9):2393-2400.
    [85] Herrscaft D.C., Radke S.F., Coutsouradis D., et al.. SAE Paper No.830517,Warrendale, PA:SAE,1983.
    [86] Harvey G.J., Richards R.N. Zinc-based coatings for corrosion protection of steel sheet and strip[C].Met Forum.1984.
    [87] Radtke, S. F., Herrschaft, D. C. Role of misch metal in galvanizing with a Zn-5%Al alloy[J]. Journalof the Less Common Metals,1983,93(2):253-259.
    [88] Takahashi A, Kato T, S., F. CAMP-ISIJ,1989,2:1662.
    [89] Beitelman, A. Performance of coatings in seawater: A field study[J]. A Beitelman, V L Van Blaricum,and A Kumar, Paper,1993,(439).
    [90] Willis, D. Developments in hot dipped metallic coated steel processing[J]. Materials Forum,,2005,29(1):9-16.
    [91] Zarechnyuk, O., German, N., Yanson, T. et al.. Some Phase Diagrams of Aluminum With TransitionMetals, Rare Earth Metals and Silicon[J]. Fazouye Ravnovesiya Met Splavakh,1981:69-73.
    [92] Takeda, S., Mutuzaki, K. The equilibrium diagram of the Fe-Al-Si system[J]. Tetsu To Hagane,1940,26:335¨C361.
    [93] Raghavan, V. Al-Fe-Si (Aluminum-Iron-Silicon)[J]. Journal Of Phase Equilibria,1994,15(4):414-416.
    [94] Liu, Z. K., Chang, Y. A. Thermodynamic assessment of the Al-Fe-Si system[J]. Metallurgical andMaterials Transactions A,1999,30(4):1081-1095.
    [95] Raghavan, V. Al-Fe-Si (aluminum-iron-silicon)[J]. Journal Of Phase Equilibria,2002,23(4):362-366.
    [96] Materials Science International Team, M. Al-Fe-Si (Aluminium-Iron-Silicon)[A]. Light MetalSystems. Part2[C].2005.1-51.
    [97] Raghavan, V. Al-Fe-Si (Aluminum-Iron-Silicon)[J]. Journal of Phase Equilibria and Diffusion,2009,30(2):184-188.
    [98] Eleno, L., Vezely, J., Sundman, B. et al.(2010). Assessment of the Al Corner of the Ternary Al-Fe-SiSystem (Trans Tech Publ).
    [99] Raghavan, V. Al-Fe-Si (Aluminum-Iron-Silicon)[J]. Journal of Phase Equilibria and Diffusion,2011:1-3.
    [100] Du, Y., Schuster, J., Liu, Z. et al.. A thermodynamic description of the Al-Fe-Si system over thewhole composition and temperature ranges via a hybrid approach of CALPHAD and keyexperiments[J]. Intermetallics,2008,16(4):554-570.
    [101] Miyazaki, T., Kozakai, T., Tsuzuki, T. Phase decompositions of Fe-Si-Al ordered alloys[J]. J MaterSci,1986,21(7):2557-2564.
    [102] Rivlin, V., Raynor, G. Phase Equilibria in Iron Ternary Alloys. IV. Critical Evaluation of Constitutionof Aluminium-Iron-Silicon System[J]. Int Met Rev,1981,26(3):133-152.
    [103] Murav'eva, A., German, N., Zarechnyuk, O. et al.(1974). Ternary compounds of the Fe–Al–Sisystem.
    [104] Munson, D. The ternary phase a-AlFeSi[J]. J Inst Met,1967,95:217-219.
    [105] Corby, R., Black, P. The structure of α-(AlFeSi) by anomalous-dispersion methods[J]. ActaCrystallographica Section B: Structural Crystallography and Crystal Chemistry,1977,33(11):3468-3475.
    [106] Li, Y., Ochin, P., Quivy, A. et al.. Enthalpy of formation of Al–Fe–Si alloys (τ5, τ10, τ1, τ9)[J]. JAlloys Compd,2000,298(1-2):198-202.
    [107] Li, Y., Legendre, B. Enthalpy of formation of Al–Fe–Si alloys II (τ6, τ2, τ3, τ8, τ4)[J]. J AlloysCompd,2000,302(1-2):187-191.
    [108] Li, Y., Legendre, B. Enthalpy of formation of Al-Fe-Si alloys II (τ6, τ2, τ3, τ8, τ4)[J]. J AlloysCompd,2000,302(1-2):187-191.
    [109] Gupta, S. P. Intermetallic compound formation in Fe-Al-Si ternary system: Part I[J]. Mater Charact,2002,49(4):269-291.
    [110] Maitra, T., Gupta, S. P. Intermetallic compound formation in Fe-Al-Si ternary system: Part II[J].Mater Charact,2002,49(4):293-311.
    [111] Roger, J., Bosselet, F., Viala, J. X-rays structural analysis and thermal stability studies of the ternarycompound α-AlFeSi[J]. J Solid State Chem,2011.
    [112] Shah, S., Dilewijns, J., Jones, R. The structure and deformation behavior of zinc-rich coatings onsteel sheet[J]. J Mater Eng Perform,1996,5(5):601-608.
    [113] Selverian, J., Notis, M., Marder, A. The microstructure of55w/o Al-Zn-Si (Galvalume) hot dipcoatings[J]. Journal of Materials Engineering1987,9(2):133-140.
    [114] Selverian, J., Marder, A., Notis, M. The effects of silicon on the reaction between solid iron andliquid55wt pct Al-Zn baths[J]. Metallurgical and Materials Transactions A,1989,20(3):543-555.
    [115] Mercer, P. The Influence of Temperature on the Growth Rate and Composition of the InterfacialAlloy in55%Aluminum,43.5%Zinc,1.5%Silicon Hot-Dipped Coatings[J]. The PhysicalMetallurgy of Zinc Coated Steel,1994:129-135.
    [116] Durandet, Y., Strezov, L., Ebril, N.4th International Conference on Zinc and Zinc Alloy Coated SteelSheet, Galvatech'98, Chiba, Japan. September,1998.
    [117] Phelan, D., Xu, B., Dippenaar, R. Formation of intermetallic phases on55wt.%Al-Zn-Si hot dipstrip[J]. Materials Science and Engineering: A,2006,420(1-2):144-149.
    [118]许秀飞.带钢热镀锌技术问答:北京:化学工业出版社.
    [119]章小鸽,仲海峰,程东妹.锌的腐蚀与电化学[M].冶金工业出版社,2008.
    [120]王云坤,宋东明,闫洪.热浸镀Galvalume合金工艺性能研究[J].湖南有色金属,2007,23(4):31-33.
    [121]袁明生. Galvalume镀层钢板的性能和应用[J].世界钢铁,2004,4(003):70-72.
    [122]杨栋,陈建设,韩庆等(2009).稀土镧添加对galvalume热镀层电化学腐蚀行为的影响. Paperpresented at:第15届全国腐蚀与表面保护技术研讨会暨首届全国腐蚀与表面保护技术青年论坛(中国浙江宁波).
    [123] WEI, Y., ZHU, C., YU, P. et al.. Study on the Corrosion-resistance of Zinc, Galfan and GalvalumeCoating with Transient Linear Galvanostatic Polarization Method[J]. Journal of MaterialsEngineering2003,7:17-19.
    [124] Townsend, H., Zoccola, J. Atmospheric corrosion resistance of55%Al-Zn coated sheet steel:13year test results[J]. Mater Performance,1979,18(10):13-20.
    [125]徐滨士,刘世参,中国机械工程学会等.中国材料工程大典:材料表面工程[M].化学工业出版社,2006.
    [126]顾国成,刘邦津.热浸镀[J].北京:化学工业出版社,1988.
    [127] Selverian, J., Marder, A., Notis, M. The effects of silicon on the reaction between solid iron andliquid55wt pct Al? Zn baths[J]. Metallurgical and Materials Transactions A,1989,20(3):543-555.
    [128] Xu, B., Phelan, D., Dippenaar, R. Role of silicon in solidification microstructure in hot-dipped55wt%Al-Zn-Si coatings[J]. Materials Science and Engineering: A,2008,473(1-2):76-80.
    [129]史良权.热镀铝锌合金钢板[J].世界钢铁,2003,3(003):4-11.
    [130] Y.Durander, L.Strezov, N.Ebril. Galvatech'98, Chiba,Japan. september,1998.
    [131]西北工业大学等二十三所高等院校《热处理化学》编写组.热处理化学[M].辽宁人民出版社,1982.
    [132] Lainer, D., Kurakin, A. translated from Fiz[J]. Metall Metalloved,1964,18:145-148.
    [133] Nicholls, J. E. Hot dipped aluminium coatings[J]. Anti-corros Method M,1964,11(10):16-21.
    [134] Eggeler, G., Vogel, H., Friedrich, J. et al.. Target preparation for the transmission electronmicroscopic identification of the Al3Fe in hot-dip aluminized low alloyed steel[J]. Prakt Metallogr,1985,22:163–170.
    [135] Komatsu, N. Investigation on the bonding of steel and aluminum[J]. J Jpn Met,1981,45:416-420.
    [136] Jones, R., Denner, S. Hot-Dip Aluminising of Steel–Theory and Practice[J]. Proceedings ofInterfinish,1980,80:371-376.
    [137]上田俶完,新家光雄.溶融Al-Si合金による鉄合金の溶損について[J].鋳物,1978,50(8):p506-511.
    [138] Eggeler, G., Auer, W., Kaesche, H. On the influence of silicon on the growth of the alloy layer duringhot dip aluminizing[J]. Journal of Materials Science,1986,21(9):3348-3350.
    [139]孟荣祥,杨熙珍.热浸镀55%Al-Zn合金过程中化合物层生长动力学分析[J].中国腐蚀与防护学报,1987,(01):8-18.
    [140]肖纪美.合金热力学[J].下册,北京钢铁学院,1982.
    [141]杜鹏翔,蒙继龙.稀土元素对热浸镀55%铝锌合金的影响[J].西南工学院学报,1998,(02).
    [142]彭日升,刘杰,刘智勇.稀土对高铝锌合金抗蚀性的影响[J].稀土,1993,(05).
    [143] Willis, D., Ilinca, F., Ajersch, F. et al.. Fluid flow modelling in a55%Al-Zn coating metal pot[J].Progress in Computational Fluid Dynamics, an International Journal,2007,7(2):183-194.
    [144] Bélisle, S., Lezon, V., Gagné, M. The Solubility of Iron in Continuous Hot-Dip Galvanizing Baths[J].Journal of Phase Equilibria,1991,12(3):259-265.
    [145] Kim, Y., Kung, S., Sievert, W. et al.. Surface Defects in Exposed Quality Hot-Dip GalvanizedSteel[J]. The Iron and Steel Institute of Japan,1989:120-129.
    [146] Tang, N., Dubois, M., Goodwin, F. Progress in development of galvanizing bath management tools.
    [147] Saunders, N., Miodownik, A. P. CALPHAD (calculation of phase diagrams): a comprehensiveguide[M]. A Pergamon Title,1998.
    [148]金展鹏.相图计算在材料设计中的应用[J].
    [149] Zhao, J. C. Methods for phase diagram determination[M]. Elsevier Science Ltd,2007.
    [150]郝士明.局域平衡原理与相图的扩散偶法测定[J].材料与冶金学报,2003,2(3):203-209.
    [151]金展鹏.三元扩散偶及其在相图研究中的应用[J].中南大学学报(自然科学版),1984.
    [152]高小威. Nb-15W-5Mo-Zr-C系富Nb角及Nb-Mo-Zr系1100℃相关系研究.中南大学,2005.
    [153] Su, X. P., Tang, N.-Y., Toguri, J. M.450°C Isothermal Section of the Fe-Zn-Si Ternary PhaseDiagram[J]. Canadin Metallurgcal Quarter,2001,40(3):377-384.
    [154]谷祝平.光学显微镜[M].甘肃人民出版社,1985.
    [155]廖乾初,蓝芬兰.扫描电镜原理及应用技术[M].冶金工业出版社,1990.
    [156]朱宜,电子,汪裕苹等.扫描电镜图象的形成处理和显微分析[M].北京大学出版社,1991.
    [157] Sundman, B., Jansson, B., Andersson, J. O. The thermo-calc databank system[J]. Calphad,1985,9(2):153-190.
    [158] Andersson, J. O., Guillermet, A. F., Hillert, M. et al.. A compound-energy model of ordering in aphase with sites of different coordination numbers[J]. Acta Metallurgica1986,34(3):437-445.
    [159] Katiforis, N., Papadimitriou, G. Influence of copper, cadmium and tin additions in the galvanizingbath on the structure, thickness and cracking behaviour of the galvanized coatings[J]. Surface andCoatings Technology,1996,78(1-3):185-195.
    [160] Radeker, W., Peters, F. K., Friehe, W. The effect of alloy additions on the properties of hot-dipgalvanized coatings[C]. Proceedings of6th International Conference on Hot Dip Galvanizing,Interlaken. London:Zinc Development Association,1961.
    [161] Showak, W., Dunbar, S.(1982). Effect of1percent copper addition on atmospheric corrosion ofrolled zinc after20years' exposure (ASTM International).
    [162] Gittings, D., Rowland, D., Mack, J. Effect of bath composition on aluminum[J]. Transactions of theASM,1951,43:587-610.
    [163] Miettinen, J. Thermodynamic description of the Cu-Fe-Zn system[J]. Calphad,2008,32(3):514-519.
    [164] Avettand-Fèno l, M., Hadadi, A., Reumont, G. et al.. Experimental Zn-rich corner of the Fe-Zn-Cuternary phase diagram at460℃[J]. J Mater Sci,2008,43(5):1740-1744.
    [165] Budurov, S. The Physical and Chemical Metallurgy of Iron-Zinc, Cobalt-Zinc, and Nickel-ZincAlloys[J]. Izv po Khimiya, Sofia,,1978,11(3):517-559.
    [166] Reumont, G., Perrot, P., Fiorani, J. et al.. Thermodynamic assessment of the Fe-Zn system[J]. Journalof Phase Equilibria and Diffusion,2000,21(4):371-378.
    [167] Nakano, J., Malakhov, D. V., Purdy, G. R. A crystallographically consistent optimization of the Zn-Fesystem[J]. Calphad,2005,29(4):276-288.
    [168] Spencer, P. A thermodynamic evaluation of the Cu-Zn system[J]. Calphad,1986,10(2):175-185.
    [169] Kowalski, M., Spencer, P. Thermodynamic reevaluation of the Cu-Zn system[J]. Journal Of PhaseEquilibria,1993,14(4):432-438.
    [170] Gierlotka, W. Thermodynamic descriptions of the Cu-Zn system[J]. J Mater Res,2008,23(1):258-263.
    [171] Kubaschewski, O., Smith, J., Bailey, D. A Thermodynamic Analysis of Phase Relationships in theIron-Copper System[J]. Z Metallkd,1977,68(7):495-499.
    [172] Lindqvist, P. A., Uhrenius, B. On the Fe-Cu phase diagram[J]. Calphad,1980,4(3):193-200.
    [173] Hasebe, M., Nishizawa, T. Further study on phase diagram of the iron-copper system[J]. Calphad,1981,5(2):105-108.
    [174] Chuang, Y. Y., Schmid, R., Chang, Y. A. Thermodynamic analysis of the iron-copper system I: Thestable and metastable phase equilibria[J]. Metallurgical and Materials Transactions A,1984,15(10):1921-1930.
    [175] Chen, Q., Jin, Z. The Fe-Cu system: A thermodynamic evaluation[J]. Metallurgical and MaterialsTransactions A,1995,26(2):417-426.
    [176] Cook, D., Grant, R. Identification of the Iron-Zinc Phases in Galvanneal Steel Coatings byMossbauer Spectroscopy and X-Ray Diffraction. Phase I: Characterization of the Fe-Zn IntermetallicPhases[R]. International Lead Zinc Research Organization Report,1993.
    [177] Liu, Y., Su, X. P., Yin, F. C. et al.. Experimental Determination and Atomistic Simulation on theStructure of FeZn13[J]. Journal of Phase Equilibria and Diffusion,2008,29(6):488-492.
    [178] Shimizu, S., Murakami, Y., Kachi, S. Lattice Softening and Martensitic Transformation in Cu-Ni-Znbeta Phase Alloys[J]. J Phys Soc Jpn,1976,41:79.
    [179] Owen, E., Pickup, L. The Relation between Mean Atomic Volume and Composition in Copper-ZincAlloys[J]. Proceedings of the Royal Society of London Series A, Containing Papers of aMathematical and Physical Character,1933,140(840):179-191.
    [180] Gourdon, O., Gout, D., Williams, D. et al.. Atomic distributions in the gamma-brass structure of theCu-Zn system: a structural and theoretical study[J]. Inorg Chem,2007,46(1):251-260.
    [181] Lenz, J., Schubert, K. über einige Leerstellen-und Stapelvarianten der Beta-MessingStrukturfamilie[J]. Z Metallkd,1971,62(11):810-816.
    [182] Zhu, Y. Phase Equilibria in Zn-Al-Cu-Si System at285℃[J]. J Mater Sci Technol,1989,1(5):113-118.
    [183] Brandon, J. K., Brizard, R. Y., Chieh, P. C. et al.. New refinements of the γ brass type structuresCu5Zn8, Cu5Cd8and Fe3Zn10[J]. Acta Crystallographica Section B,1974,30(6):1412-1417.
    [184] Raynor, G. V., Faulkner, C. R., Noden, J. D. et al.. Ternary alloys formed by aluminium, transitionalmetals and divalent metals[J]. Acta Metallurgica,1953,1(6):629-648.
    [185] Bhan, S., Lal, A. Aluminium-Nickel-Zinc[J]. Ternary Alloys,1993, VCh8:64-70.
    [186] Kuriki, Y., Ochiai, S., Yodogawa, M. et al.. The Effect of Zinc Addition on the Mechanical Propertiesof Ni3Al[J]. Transactions of the Japan Institute of Metals,1985,26:213-214.
    [187] Nash, P. Phase diagrams of binary nickel alloys[J]. ASM International(USA),1991,1991:394.
    [188] Vassilev, G. P., Gomez-Acebo, T., Tedenac, J. C. Thermodynamic optimization of the Ni-Znsystem[J]. Journal Of Phase Equilibria,2000,21(3):287-301.
    [189] Su, X., Tang, N.-Y., Toguri, J. M. Thermodynamic assessment of the Ni-Zn system[J]. Journal ofPhase Equilibria,2002,23(2):140-148.
    [190] Xiong, W., Xu, H., Du, Y. Thermodynamic investigation of the galvanizing systems, II:Thermodynamic evaluation of the Ni-Zn system[J]. Calphad,2011,35(3):276-283.
    [191] Liang, W., Franks, J., Chang, Y. Thermodynamic activity of β′-NiZn phase by the dew-pointmethod[J]. Metallurgical and Materials Transactions B,1972,3(9):2555-2556.
    [192] Ansara, I., Dupin, N., Lukas, H. L. et al.. Thermodynamic assessment of the Al-Ni system[J]. JAlloys Compd,1997,247(1-2):20-30.
    [193] Huang, W., Chang, Y. A. A thermodynamic analysis of the Ni-Al system[J]. Intermetallics,1998,6(6):487-498.
    [194] Chrifi-Alaoui, F. Z., Nassik, M., Mahdouk, K. et al.. Enthalpies of formation of the Al-Niintermetallic compounds[J]. J Alloys Compd,2004,364(1-2):121-126.
    [195] Heike, W., Schramm, J., Vaupel, O. Zu dem System Nickel-Zink[J]. Metallwirtschaft,Metallwissenschaft, Metalltechnik,1936,15:655-662.
    [196] Johansson, A., Ljung, H., Westman, S. X-Ray and Neutron Diffraction Studies on r-Ni, Zn and r-Fe,Zn[J]. Acta chem scand,1968,22(9).
    [197] Bradley, A., Taylor, A. The crystal structures of Al3Ni and Al3Ni2[J]. Phil Mag,1937,23:1049.
    [198] Ellner, M., Kattner, U., Predel, B. Konstitutionelle und strukturelle untersuchungen imaluminiumreichen teil der systeme Ni-Al und Pt-Al[J]. Journal of the Less Common Metals,1982,87(2):305-325.
    [199] B nnemann, H., Brijoux, W., Hofstadt, H. W. et al.. Wet Chemistry Synthesis of β‐NickelAluminide NiAl[J]. Angewandte Chemie International Edition2002,41(4):599-603.
    [200] Enami, K., Nenno, S. A New Ordered Phase in Tempered63.8Ni-1Co-Al Martensite[J]. Trans JpnInst Met,1978,19(10):571-580.
    [201] Rao, P., Murthy, K. S., Suryanarayana, S. et al.. Effect of Ternary Additions on the RoomTemperature Lattice Parameter of Ni3Al[J]. physica status solidi (a),1992,133(2):231-235.
    [202] Perrot, P., Dauphin, J. Y. Calculation of the Fe-Zn-Si phase diagram between773and1173K[J].Calphad,1988,12(1):33-40.
    [203] Uwakweh, O., Jordan, A., Maziasz, P. Thermal transformations in mechanically alloyed Fe-Zn-Simaterials[J]. Metallurgical and Materials Transactions A,2000,31(11):2747-2754.
    [204] Su, X., Yin, F., Li, Z. et al.. Thermodynamic calculation of the Fe-Zn-Si system[J]. J Alloys Compd,2005,396(1-2):156-163.
    [205] Raghavan, V. Al-Fe-Zn (Aluminum-Iron-Zinc)[J]. Journal Of Phase Equilibria,2003,24(6):546-550.
    [206] Raghavan, V. Al-Fe-Zn (Aluminum-Iron-Zinc)[J]. Journal of Phase Equilibria and Diffusion,2008,29(5):431-433.
    [207]宋卫东.解析几何[M].高等教育出版社,2003.
    [208] Sundman, B., Jansson, B., Anderson, J. The Thermodynamic Databank System[J]. Calphad,1985,2(9):153-190.
    [209] Du, Y., Schuster, J. C., Liu, Z. K. et al.. A thermodynamic description of the Al-Fe-Si system overthe whole composition and temperature ranges via a hybrid approach of CALPHAD and keyexperiments[J]. Intermetallics,2008,16(4):554-570.
    [210] Sha, C., Liu, S., Du, Y. et al.. Experimental investigation and thermodynamic reassessment of theFe-Si-Zn system[J]. Calphad,2010.
    [211] Jacobs, M. H. G., Spencer, P. J. A critical thermodynamic evaluation of the systems Si-Zn andAl-Si-Zn[J]. Calphad,1996,20(3):307-320.
    [212]苏旭平,李智,尹付成等.热浸镀中硅反应性研究[J].金属学报,2008,44(06):718-722.
    [213]李发国,尹付成,苏旭平等.钴对含硅钢镀锌层的组织和生长动力学的影响[J].中国有色金属学报,2010,(01):86-91.
    [214] Guttman, H., Niessen, P. Reactivity of Silicon Steels in Hot-Dip Galvanizing[J]. CanadinMetallurgcal Quarter,1972,11(4):609-615.
    [215] ChenR M, Z., Gregory, J. The effect of silicon in steel on the growth of intermetallic phases duringhot dipping in a Zn-5%Al melt[J]. Surface and Coatings Technology1992,53(3):283-287.
    [216] Tang, N. Y., Liu, Y. Discussion of “Interfacial layer in coatings produced in molten Zn-Al eutectoidalloy containing Si”[J]. Metallurgical and Materials Transactions A,2005,36(9):2541-2544.
    [217] Ranjan, M., Tewari, R., van Ooij, W. J. et al.. Effect of Ternary Additions on the Structure andProperties of Coatings Produced by a High Aluminum Galvanizing Bath: Google Patents.
    [218] Toussaint, P., Segers, L., Winand, R. et al.. Intermetallic particles in continuous hot dip galvanisingbaths at aluminium concentrations between0.1and4.5wt-%[J]. Ironmak Steelmak,1995,22(6):498-501.
    [219]吕家舜,李锋,文伟等.铝锌硅热浸镀液的侵蚀性及镀层结构与性能研究[J].材料保护,2008,41(08):67-68+74+82.
    [220] Selverian, J., Marder, A., Notis, M. The Reaction between Solid Iron and Liquid AI-Zn Baths[J].Metallurgical Transactions A1988,19:1193-1203.
    [221] Guttmann, M., Lepretre, Y., Aubry, A. et al.. Mechanisms of the galvanizing reaction. Influence oftitanium and phosphorus contents in steel and of its surface microstructure after annealing[J].Galvatech'95The Use and Manufacture of Zinc and Zinc Alloy Coated Sheet Steel Products Into the21st Century,1995:295-307.
    [222] Adachi, Y., Arai, M. Transformation of Fe-Al phase to Fe-Zn phase on pure iron duringgalvanizing[J]. Materials Science and Engineering A,1998,254(1-2):305-310.
    [223] Ghosh, G. Aluminium-Iron-Zinc[M].2008.
    [224]杨帆,张捷宇,李谦等. Al-Zn-Fe三元系相平衡优化及实验验证[J].上海金属,2010,(05):8-13+34.
    [225] Kato, T., Nunome, K., Kaneko, K. et al.. Formation of the ζ phase at an interface between an Fesubstrate and a molten0.2mass%Al-Zn during galvannealing[J]. Acta Mater,2000,48(9):2257-2262.
    [226] Vourlias, G., Pistofidis, N., Stergioudis, G. et al.. The effect of alloying elements on thecrystallization behaviour and on the properties of galvanized coatings[J]. Cryst Res Technol,2004,39(1):23-29.
    [227] Pavlidou, E., Pistofidis, N., Vourlias, G. et al.. Modification of the growth-direction of the zinccoatings associated with element additions to the galvanizing bath[J]. Mater Lett,2005,59(13):1619-1622.
    [228] Fratesi, R., Ruffini, N., Malavolta, M. et al.. Contemporary use of Ni and Bi in hot-dipgalvanizing[J]. Surface and Coatings Technology,2002,157(1):34-39.
    [229] Lee, H. J., Kim, J. S. Effect of Ni addition in zinc bath on formation of inhibition layer duringgalvannealing of hot-dip galvanized sheet steels[J]. J Mater Sci Lett,2001,20(10):955-957.
    [230] Su, X., Wu, C., Liu, D. et al.. Effect of vanadium on galvanizing Si-containing steels[J]. Surface andCoatings Technology2010,205(1):213-218.
    [231] Yang, D., Chen, J., Han, Q. et al.. Effects of lanthanum addition on corrosion resistance ofhot-dipped galvalume coating[J]. J Rare Earth,2009,27(1):114-118.
    [232] Gao, H. Y., Tan, J., Ju, C. et al.. Effect of rare earth metals on microstructure and corrosion resistanceof Zn-0.18Al coatings[J]. Mater Sci Tech-lond,2011,27(1):71-75.
    [233] Che, C., Lu, J., Kong, G. et al.. Role of silicon in steels on galvanized coatings[J]. Acta MetallurgicaSinica (English Letters),2009,22(2):138-145.
    [234] Krendelsberger, N., Weitzer, F., Schuster, J. C. On the reaction scheme and liquidus surface in theternary system Al-Fe-Si[J]. Metallurgical and Materials Transactions A,2007,38(8):1681-1691.
    [235] Ooi, T., Sugimoto, Y., Fujita, S. Influence of Si Content in Hot Dip Bath on Structure andFormabiltty of55%Al-Zn Coatings[J]. GALVATECH'07,2007:562-567.
    [236] Bandyopadhyay, N., Jha, G., Singh, A. K. et al.. Corrosion behaviour of galvannealed steel sheet[J].Surface and Coatings Technology,2006,200(14-15):4312-4319.
    [237] Zhang, L., Luck, R. Phase diagram of the Al-Cu-Fe quasicrystal-forming alloy system:Ⅲ. IsothermalSections[J]. ZMetallkunde,2003,94(2):108-115.
    [238] Chen, H. L., Yong, D., Honghui, X. et al.. Experimental investigation and thermodynamic modelingof the ternary A-Cu-Fe system[J]. J Mater Res,2009,24(10):3154-3164.
    [239] Chen, Q. Y., Xu, M., Zhou, H. P. et al.. First-principles calculation of electronic structures andoptical properties of wurtzite InxAl1-xN alloys[J]. Physica B: Condensed Matter,2008,403(10-11):1666-1672.
    [240] Selverian, J., Marder, A., Notis, M. The reaction between solid iron and liquid Al-Zn baths[J].Metallurgical And Materials Transactions A,1988,19(5):1193-1203.
    [241] Sritharan, T., Murali, S., Hing, P. Synthesis of aluminium-iron-silicon intermetallics by reaction ofelemental powders[J]. Materials Science and Engineering A2000,286(2):209-217.
    [242] García, F., Salinas-Rodriguez, A., Nava, E.(2007). The role of ti inoculation of Al-Zn-Si coatingalloys on the formation of intermetallic compounds by interaction with solid steel (Trans Tech).
    [243] Grin, J., Burkhardt, U., Ellner, M. et al.. Refinement of the Fe4Al13structure and its relationship tothe quasihomological homeotypical structures[J]. Zeitschrift f¨1r Kristallographie,1994,209(6):479-487.
    [244] Shawki, S., Abdel Hamid, Z. Effect of aluminium content on the coating structure and drossformation in the hot-dip galvanizing process[J]. Surf Interface Anal,2003,35(12):943-947.