含氧燃料颗粒状态特征及前驱体形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物污染是我国最主要的大气污染之一,汽车颗粒排放已成为大气可吸入颗粒物的主要来源,严重危害人类健康。内燃机燃用清洁含氧代用燃料,不仅可以部分替代石油,同时能够降低排放污染物。论文针对乙醇、二甲醚(DME)、碳酸二甲酯(DMC)和生物柴油等含氧燃料,围绕前驱体的形成机理、中间燃烧产物形成过程、颗粒的氧化特性及结构特征等方面,采用同步辐射真空紫外光电离质谱、热重分析、扫描/透射电镜、小角X射线散射、台架试验、数值模拟等方法,测量了中间及最终燃烧产物摩尔分数的变化规律,从化学反应动力学角度,对苯、萘、菲、芘等重要前驱体物质的形成过程进行了数值模拟,探讨了燃料分子结构和含氧量对颗粒氧化特性以及颗粒微观结构、粒径分布、分形维数等结构特征参数的影响规律,提出了颗粒数的测量方法。
     根据碳氢燃料的燃烧特点,在总结苯环形成路径和芳香烃生长机理的基础上,构建了包含芳香烃(PAHs)生成过程的乙醇、DME、DMC和乙醇/正庚烷化学反应动力学模型,采用激波管、预混火焰和内燃机反应模型,运用生成速率和敏感性分析方法,对PAHs的形成过程进行了数值模拟。研究表明,丙炔基聚合环化反应是形成苯环的主要路径,脱氢加乙炔促进了苯环的生长,H和OH自由基消耗了生成的PAHs。对于第三体“M”参与的反应,燃用乙醇可以抑制PAHs的形成,燃用DME对PAHs的形成影响不大,燃用DMC可以促进PAHs的形成。乙醇/正庚烷缸内燃烧过程中,PAHs主要在缸内温度急剧升高的阶段形成,正庚烷和正丙基的分解反应抑制了菲和芘的生成,增加乙醇掺混比例可以减小PAHs的生成速率和循环生成量。
     采用同步辐射光电离质谱与光电离效率谱相结合的方法,确定了乙醇/正庚烷层流预混火焰中的最终燃烧产物以及乙炔、乙烯、丙炔基、甲醛、乙醛等中间燃烧产物,研究了不同当量比和乙醇掺混比条件下,中间及最终燃烧产物摩尔分数的变化规律。测量结果表明,H2、CO的摩尔分数随着当量比的增加而增加,随着乙醇掺混比例的增加,甲醛和乙烯酮等非常规污染物的摩尔分数下降,而乙醛的摩尔分数增加。通过分析乙醇中氧原子的迁移路径,确定了乙醇中的燃料氧一部分进入了最终燃烧产物H2O中,一部分进入了甲醛和乙醛中。结合数值模拟结果,提出掺混乙醇增加了火焰中含氧自由基的浓度,能够显著降低苯、乙炔、乙烯和丙炔基等前驱体物质摩尔分数的观点。
     采集乙醇/柴油、DMC/柴油和生物柴油/柴油的燃烧颗粒,采用热重分析的方法,测量了颗粒的TG和DTG曲线,确定了颗粒脱水干燥、挥发分析出和燃烧、碳烟燃烧三个失重阶段,提出采用起始失重/析出/燃烧温度、最大失重速率和对应温度、活化能等参数评价颗粒的氧化特征。试验结果表明,随着燃料含氧量的增加,碳烟的百分比减小,挥发性有机物的百分比增大。增加燃料的含氧量,挥发性有机物的起始燃烧温度TSOF2降低、碳烟的起始燃烧温度Tsoot升高、最大失重速率增加、颗粒的活化能下降。根据乙醇、DMC和生物柴油的分子结构特点,提出含氧基团促进了C-C和C-H键的断裂,是碳烟中元素碳比例减少的主要原因;此外,缩短碳链长度可以增加颗粒表面吸附的含氧基团,从而促进挥发性有机物的燃烧。
     在YZ4DB3柴油机上,采集了燃用乙醇/柴油的示功图,分析了燃烧过程的变化规律,探讨了燃烧过程与颗粒氧化特性之间的关系。结果表明,掺混乙醇的滞燃期延长、燃烧持续期缩短;小负荷时表现为扩散燃烧的放热率峰值升高,大负荷时表现为预混燃烧的放热率峰值升高。掺混含氧燃料通过影响燃烧过程以及中间和最终燃烧产物的形成过程,改变了颗粒特性,使得燃烧颗粒的粒径减小、有机物组分的比例增加、基本碳粒子内部无序结构减少、团聚程度提高、颗粒的活化能下降。
     采用扫描/透射电镜、同步辐射小角x射线散射的试验方法,考察了乙醇/柴油、DMC/柴油和生物柴油/柴油的颗粒形貌,研究了基本碳粒子的无序和内核-外壳微观结构,探讨了燃料分子结构和含氧量对颗粒粒径分布、界面厚度和分形维数等尺度参数的影响规律,提出了根据拐点和弧长个数确定团聚颗粒中单个颗粒个数的计算方法。研究表明,基本碳粒子的粒径呈高斯分布,粒径范围在14-45nm之间,平均层面间距在0.32-0.44nnm之间,微晶尺寸分布在lnm左右,弯曲度在0.8~2.0之间。增加乙醇和DMC掺混比例,基本碳粒子的平均层面间距增大、微晶尺寸减小、平均弯曲度增加;生物柴油掺混比例增加,燃烧形成基本碳粒子的氧化难度增加。颗粒的回转半径和界面厚度与燃料含氧量近似呈线性关系,燃料含氧量增加1%,颗粒的回转半径约减小2.3%,界面厚度约增加2%。掺混含氧燃料使得颗粒的表面分形维数和质量分形维数增加,颗粒表面粗糙度、不规则度和团聚重叠程度提高。
Particle produced by incomplete combustion is one of the main air pollutants in China. Particles emitted by cars have become the major source of inhalable particles and have serious harm to human health. Internal combustion engine fueled with oxygenated fuels can not only partially replace oil but also reduce the emissions. The soot precursors formation mechanism, intermediate species formation process, and particle state characteristics of ethanol, dimethyl ether (DME), dimethyl carbonate (DMC), and biodiesel were studied. Methods of molecular beam mass spectrometry with tunable synchrotron photoionization, thermogravimetric analysis, scanning electron microscope, transmission electron microscopy, small angle X-ray scattering, bench test, and numerical simulation were used in this dissertation. The mole fraction profiles of major and intermediate flame species were measured and analyzed. The numerical simulation of important soot precursors, such as benzene, naphthalene, phenanthrene, and pyrene, were carried out from the perspective of chemical reaction kinetics. The effects of molecular structure and oxygen content of oxygenated fuels on the oxidation properties, microstructures, size distribution, and fractal dimension of particles were discussed. The measurement of particle number was proposed.
     The formation paths of benzene and the growth mechanism of polycyclic aromatic hydrocarbon (PAHs) were summarized. According to the combustion characteristics of hydrocarbon fuels, the chemical kinetics model of ethanol, DME, DMC, and ethanol/n-heptane which containing the PAHs formation process were established. The shock tube, premixed flame, and internal combustion engine reaction models were adopted, and both the rate-of-production and sensitivity analysis methods were used to simulate the formation process of PAHs. The results showed that benzene was mainly formed by polymerization of propargyl. Multiple benzene rings were formed by hydrogen abstraction and acetylene addition (HACA) reaction. H and OH radicals consumed most of the PAHs. In the reactions with the third body "M", ethanol can inhibit the PAHs formation, DME had little effect on the PAHs formation, and DMC can promote the PAHs formation. During the combustion process of ethanol/n-heptane, PAHs mainly formed during the phase of rapid increase in cylinder temperature. The decomposition reactions of n-heptane and n-propyl group can inhibit the formation of phenanthrene and pyrene. The formation rate of PAHs and the amount of PAHs during one cycle were reduced by increasing the ethanol blending ratio.
     Major and intermediate species of ethanol/n-heptane premixed flame, such as acetylene, ethylene, propinyl, formaldehyde, and acetaldehyde, were identified using molecular beam mass spectrometry with tunable synchrotron photoionization. The effects of ethanol blending ratio and equivalence ratio on the mole fraction profiles of major and intermediate flame species were studied. Study results showed that the mole fractions of H2and CO increased with the increase of equivalence ratio. With the increase of ethanol blending ratio, the mole fractions of formaldehyde and ketene decreased while the mole fraction of acetaldehyde increased. By analyzing the migration pathways of oxygen from ethanol, it was found that part of the oxygen formed the final combustion product H2O and part of the oxygen formed the formaldehyde and acetaldehyde. According to the simulation results, the oxygen from ethanol led to an easier production of oxygenated intermediates, compared with oxygen from the oxidizer, which can reduce the mole fractions of benzene, acetylene, ethylene, and propinyl effectively.
     Particles produced by ethanol/diesel, DMC/diesel, and biodiesel/diesel combustion process were collected. The thermo gravimetric (TG) and derivative thermo gravimetric (DTG) curves of those particles were measured using thermo gravimetric analysis (TGA). The weight loss of particles mainly included three stages which were water evaporation, precipitation and combustion of volatile organic compounds, and combustion of soot. The initial weight loss temperature, precipitation temperature, ignition temperature, maximum weight loss rate and corresponding temperature, and activation energy were applied to evaluate the oxidation characteristics of particles. Study results showed that with the increase of oxygen content, the percentage of soot decreased and that of volatile organic compounds increased. With the increase of oxygenated fuels blending ratio, the ignition temperature of volatile organic compounds dropped and that of soot rose, the maximum weight loss rate of soot increased, and the activation energy of particles decreased. According to the molecular structure characteristics of ethanol, DMC and biodiesel, the oxygen-containing groups played a role in promoting the break of chemical bond and that resulted in the decrease of the percentage of elemental carbon. The oxygen-containing groups adsorbed in the surface of particles were increased by shortening the carbon chain length of oxygenated fuels. And the oxidization of volatile organic compounds was promoted with the increase of oxygen-containing groups.
     The indicator diagram of ethanol/diesel with different ethanol ratios was performed on YZ4DB3diesel engine and the combustion process was studied. The relationship between oxidation characteristics and combustion process was analyzed. The results showed that with the increase of ethanol blending ratio, ignition delay period extended and combustion duration shortened, the peak heat release rate of diffusion combustion increased at light load, and the peak heat release rate of premixed combustion increased at heavy load. After adding oxygenated fuels, the combustion process and the formation process of flame species were changed, the characteristic of particles changed as well. The size of particles decreased, the percentage of organic matter increased, the appearance of disordered structure of elementary particle decreased, the reunion level of particles increased, and the activation energy decreased.
     The particle morphology of ethanol/diesel, DMC/diesel and biodiesel/diesel were studied using scanning electron microscope, transmission electron microscopy, and small angle X-ray scattering. The disordered and shell-core structures of elementary particle were analyzed. The effects of molecular structure and oxygen content of oxygenated fuels on the size distribution, interracial thickness, and fractal dimension of elementary particle were discussed. The measurement of particle number was proposed according to the number of inflection point and arc length. The size distribution of elementary particle followed the Gaussian distribution and the size was between14nm and45nm. The average fringe separation distance was between0.32nm and0.44nm. The fringe length was about1nm and the tortuosity was between0.8and2.0. With the increase of ethanol and DMC blending ratio, the average fringe separation distance of elementary particle increased, the fringe length decreased, and the average tortuosity increased. With the increase of biodiesel blending ratio, it was more difficult for the elementary particle to be oxidized. There was a linear relationship between turning radius, interracial thickness and the oxygen content. After increasing the oxygen content by1%, the turning radius decreased by about2.3%and the interracial thickness increased by2%. The surface and mass fractal dimension surface roughness, irregularity, and aggregation level of particles formed by oxygenated fuels combustion process increased.
引文
[1]中华人们共和国国家统计局[EB/OL].http://data.stats.gov.cn/workspace/index?a=q&type=simple&dimension=zb&dbcode=hgyd&m =hgyd&code=A020801 http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/15138841.html
    [2]中华人们共和国工业和信息化部[EB/OL].http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368277/13873598.html
    [3]环境保护部发布2012年中国机动车污染防治状况[EB/OL].http://www.mep.gov.cn/gkml/hbb/qt/201212/t20121227_244340.htm
    [4]工信部节能司《推进内燃机工业节能减排指导意见》专项课题开题会在京举行[EB/OL].http://www.ciceia.org.cn/News.asp?CD=&vid=274
    [5]林铁坚,苏万华,裴毅强.柴油机HCCI燃烧过程中自燃着火和燃烧速率控制的研究[J].自然科学进展,2003,13(5):518-522.
    [6]韩东,吕兴才,黄震.柴油机低温燃烧的研究进展[J].车用发动机,2008,2:5-9.
    [7]姚春德,段峰,李云强,等.柴油/甲醇组合燃烧发动机的燃烧特性与排放[J].燃烧科学与技术,2005,11(3):214-217.
    [8]黄佐华,卢红兵,蒋德明,等.柴油机燃用柴油/甲醇混合燃料时的燃烧特性研究[J].内燃机学报,2004,21(6):401-410.
    [9]Huang ZH, Wang HW, Chen HY. Study on combustion characteristics of compression ignition engine fueled with dimethyl ether[J]. Journal of Automobile Engineering,2000,213(D3): 647-652.
    [10]Kapus P, Ofner H. Development of fuel injection equipment and combustion system for DI diesels operated on dimethy ether[J]. SAE Transactions,1995,104(4):54-69.
    [11]朱瑞军,王锡斌,冉帆,等.柴油机掺烧DMM的超低排放研究[J].内燃机工程,2010,5:1-6.
    [12]Y. Ren, Z. Huang, H. Miao, et al. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends[J].Fuel,2008,87(12):2691-2697.
    [13]ZH Huang, DM Jiang, K. Zeng, et al. Combustion characteristics and heat release analysis of a direct injection compression ignition engine fuelled with diesel-dimethyl carbonate blends[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2005,217(7):595-605.
    [14]J.P.Szybist, J. Song, M. Alam, et al. Biodiesel combustion, emissions and emission control[J]. Fuel Processing Technology,2007,88(7):679-691.
    [15]王桂华,王钧效,张锡朝,等.柴油机排气微粒中SOF成分的试验研究[J].内燃机学报,2004,22(2):110-115.
    [16]宋崇林,王玉秋,范国梁,等.柴油机排气颗粒中有机组分的分离方法及微量金属的测定[J].天津大学学报,2000,33(6):707-710.
    [17]Feng Tao, Rolf D.Reitz, David E, et al. Nine-step phenomenological diesel soot model validated over a wide range of engine conditions[J]. International Journal of Thermal Sciences,2009,48:1223-1234.
    [18]董素荣.现代柴油机全气缸取样系统开发及缸内微粒理化特性研究[D],天津大学,2007.
    [19]Sheng-Lun Lin, Wen-Jhy Lee, Chia-fon F. Lee, et al. Reduction in emissions of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbon by adding water-containing butanol into a diesel-fueled engine generator[J]. Fuel,2012,93:364-372.
    [20]Arto Sarvi, Jussi Lyyranen, Jorma Jokiniemi, et al. Particulate emissions from large-scale medium-speed diesel engines:1. Particle size distribution[J].Fuel Processing Technology, 2011,92(10):1855-1861.
    [21]M. Frenklach, D.W. Clary, W.C. Gardiner Jr, S.E. Stein. Effect of fuel structure on pathways to soot[J]. Symposium (International) on Combustion,1988,21(1):1067-1076.
    [22]H. Wang, M. Frenklach. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combustion and Flame 1997,110(1):173-221.
    [23]C. Marchal, J.L. Delfau, C. Vovelle, et al. Modelling of aromatics and soot formation from large fuel molecules[J]. Proceedings of the Combustion Institute,2009,32(1):753-759.
    [24]P. Gerhardt, S. Loffler, KH Homann. Polyhedral carbon ions in hydrocarbon flames [J]. Chemical physics letters,1987,137(4):306-310.
    [25]N. Hansen, T.A. Cool, P.R. Westmoreland, et al. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry [J]. Progress in Energy and Combustion Science,2009,35(2):168-191.
    [26]张奎文,郭会军,周忠岳,齐飞.同步辐射真空紫外光电离质谱研究乙烯扩散火焰[J].工程热物理学报,2009,30(10):1795-1799.
    [27]A.T. Wijayanta, S. Alam, K. Nakaso, et al. Optimized combustion of biomass volatiles by varying O2 and CO2 levels:A numerical simulation using a highly detailed soot formation reaction mechanism[J]. Bioresource Technology,2012, Available online.
    [28]钟北京,刘晓飞.层流预混火焰PAHs形成的反应机理模型[J].工程热物理学报,2004,25(1):151-154.
    [29]赵昌普,陈生齐,宋崇林,等.正庚烷预混火焰中PAHs的生成机理[J].燃烧与科学技术,2008,14(5):400-405.
    [30]Dec JE. A conceptual model of DI diesel combustion based on laser-sheet imaging, SAE paper,970873,1997.
    [31]宋雅娜,钟北京,席军,等.直喷式柴油机燃烧过程及碳烟生产的初步计算[J].工程热物理学报.2008,29(2):339-342.
    [32]M. Bonig, C. Feldermann, H. Jander, et al. Soot formation in premixed C2H4 flat flames at elevated pressure[J]. Symposium (International) on Combustion,1991,23(1):1581-1587.
    [33]W. Bartok, AF Sarofim. Fossil Fuel Combustion[M]. Wiley-Interscience, New York,1991.
    [34]Barry EG, McCabe LJ, Gerke DH, Perez JM. Heavy-duty, diesel engine/fuels combustion performance and emissions. SAE Paper 852078,1985.
    [35]C.J. Tighe, M.V. Twigg, A.N. Hayhurst, et al. The kinetics of oxidation of diesel soots by NO2[J]. Combustion and Flame,2012,159:77-90.
    [36]Y. Bedjanian, M.L. Nguyen, G. Le Bras. Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals[J]. Atmospheric Environment,2010,44: 1754-1760.
    [37]许汉君,姚春德,徐广兰,等.甲醇对正庚烷层流预混火焰影响的实验研究[J].工程热物理学报,2011,32(4):715-719.
    [38]R. de Abrantes, J.V. de Assuncao, C.R. Pesquero. E mission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust[J]. Atmospheric Environment, 2004,38(11):1631-1640.
    [39]张延峰,宋崇林,成存玉,等.车用柴油机排气颗粒物中有机组分和无机组分的分析[J].燃烧科学与技术,2004,10(3):197-201.
    [40]高俊华,方茂东,张仲荣,等.柴油机排气微粒中多环芳香烃的色谱质谱分析[J].内燃机学报,2009,27(5):423-429.
    [41]S. Brandenberger, M. Mohr, K. Grob, et al. Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars[J]. Atmospheric Environment,2005,39(37):6985-6994.
    [42]谭建伟,葛蕴珊,何超,等.基于尺寸分布的生物柴油排气微粒组分研究[J].内燃机工程,2010,31(1):17-20,26.
    [43]M. Sharma, A.K. Agarwal, K.V.L. Bharathi. Characterization of exhaust particulates from diesel engine[J].Atmospheric Environment,2005,39(17):3023-3028.
    [44]王桂华,王钧效,黄学政,等.气相色谱-质谱联用测定柴油机排气微粒中的可溶性有机组分[J].色谱,2004,(22)4:243-247.
    [45]王桂华,刘云岗,李国祥.废气冷却对柴油机微粒组分的影响[J].农业机械学报,2005,36(7):8-11.
    [46]D.B. Kittelson. Engines and nanoparticles:a review[J]. Journal of Aerosol Science,1998, 29(5-6):575-588.
    [47]A. Neer, U.O. Koylu. Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine[J]. Combustion and flame, 2006,146(1):142-154.
    [48]C. H. Cheng, C. S. Cheung, T. L. Chan, et al. Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine[J].Science of the Total Environment,2008,389(1):115-124.
    [49]陈虎,陈文淼,王建听,等.柴油机燃用乙醇-甲酯-柴油时PM排放特性的研究[J].内燃机学报,2007,25(1):47-52.
    [50]G. Blanquart, H. Pitsch. Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model[J]. Combustion and Flame,2009,156:1614-1626.
    [51]Q. Zhang, H. Guo, F. Liu, GJ Smallwood, MJ Thomson. Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model[J]. Proceedings of the Combustion Institute,2009,32(1):761-768.
    [52]F. Inal, G. Tayfur, T.R. Melton, et al. Experimental and artificial neural network modeling study on soot formation in premixed hydrocarbon flames[J]. Fuel,2003,82(12):1477-1490.
    [53]Z. Li, C. Song, J. Song, et al. Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process[J]. Combustion and Flame,2011,158(8):1624-1630.
    [54]T. Ishiguro, Y. Yakatori, K. Akihama. Microstructure of diesel soot particles probed by electron microscopy:first observation of inner core and outer shell[J]. Combustion and flame,1997, 108(1):231-234.
    [55]R.L. Vander Wal, A.J. Tomasek. Soot oxidation:dependence upon initial nanostructure. Combustion and Flame,2003,134:1-9.
    [56]J. Zhu, K.O. Lee, A. Yozgatligil, et al. Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulate [J]. Proceedings of the Combustion Institute.2005,30:2781-2789.
    [57]D.S. Su, R.E. Jentoft, J.O. Miiller, et al. Microstructure and oxidation behaviour of Euro IV diesel engine soot:a comparative study with synthetic model soot substances[J].Catalysis Today, 2004,90:127-132.
    [58]A. Tsolakis. Effects on particle size distribution from the diesel engine operating on RME-biodiesel with EGR[J]. Energy&Fuels,2006,20(4):1418-1424.
    [59]王小臣,葛蕴珊,谭建伟,等.基于尺寸分布的生物柴油排气微粒形态研究[J].车辆与动力技术,2009,04:52-57.
    [60]姚春德,彭红梅,黄钰,等.提高柴油/甲醇组合燃烧尾气排放质量的研究[J].环境科学学报,2006,26(8):1235-1239.
    [61]J. Song, M. Alam, A.L. Boehman, et, al. Examination of the oxidation behavior of biodiesel soot. Combustion and Flame,2006,146:589-604.
    [62]Y. Nakajima, T. Sato. Electrostatic collection of submicron particles with the aid of electrostatic agglomeration promoted by particle vibration[J]. Powder Technology,2003,135/136:266-284.
    [63]魏凤,张军营,郑楚光,等.燃煤超细颗粒团聚模拟研究[J].工程热物理学报,2005,26(3):515-518.
    [64]A.C. Hansen, Q. Zhang, P.W.L. Lyne. Ethanol-diesel fuel blends-a review[J]. Bioresource Technology,2005,96(3):277-285.
    [65]E. Buyukkaya. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics[J].Fuel,2010,89(10):3099-3105.
    [66]王建听,陈虎,帅石金.欧Ⅲ柴油机燃用乙醇-甲酯-柴油时微粒排放的研究[J].工程热物理学报,2007,28(3):511-514.
    [67]姚春德,夏琦,阳向兰,等.柴油/甲醇组合燃烧增压中冷发动机的甲醛及常规排放特性[J].燃烧科学与技术.2010,16(2):155-159.
    [68]宋金瓯,姚春德,许汉君,等.正庚烷裂解及乙醇的影响[J].工程热物理学报,2009,30(8):1434-1436.
    [69]杨广峰,姚春德,庄远,等.利用同步辐射研究乙醇和二甲醚低压预混火焰成分[J].燃烧科学与技术,2010,16(002):170-174.
    [70]倪培永,王忠,王向丽,等.甲醇抑制层流预混火焰中碳烟生成的机理[J].燃烧科学与技术,2011,17(4):321-326.
    [71]李玉阳.芳烃燃料低压预混火焰的实验和动力学模型研究[D].中国科学技术大学,2010.
    [72]C.J. Pope, J.A. Miller. Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels [J]. Proceedings of the Combustion Institute,2000,28(2):1519-1527.
    [73]LV Moskaleva, AM Mebel, MC Lin. The CH3+C5H5 reaction:A potential source of benene at high temperatures[J]. Symposium (International) on Combustion,1996,26(1):512-526.
    [74]C.F. Melius, M.E. Colvin, N.M. Marinov,et al. Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety [J]. Symposium (International) on Combustion,1996,26(1):685-692.
    [75]H. Wang, M. Frenklach. Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals [J]. The Journal of Physical Chemistry,1994,98(44):11465-11489.
    [76]J.A. Miller, C.F. Melius. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels[J]. Combustion and flame,1992,91(1):21-39.
    [77]N. Hansen, J.A. Miller, T. Kasper. Benzene formation in premixed fuel-rich 1,3-butadiene flames[J]. Proceedings of the Combustion Institute,2009,32(1):623-630.
    [78]J.A. Miller, and S.J. Klippenstein. The recombination of propargyl radicals and other reactions on a C6H6 potential[J].The Journal of Physical Chemistry A,2003,107(39):7783-7799.
    [79]H. Richter, S. Granata, W.H. Green. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame[J]. Proceedings of the Combustion Institute,2005,30(1):1397-1405.
    [80]B. Shukla, A. Susa, M. Koshi. Role of Methyl Radicals in the Growth of PAHs[J]. American Society for Mass Spectrometry,2010,21:534-544.
    [81]B. Shukla, A. Susa, A. Miyoshi, et al. Role of Phenyl Radicals in the Growth of Polycyclic Aromatic Hydrocarbons[J]. The Journal of Physical Chemistry A,2008,112(11):2362-2369.
    [82]Wang H. Formation of nascent soot and other condensed-phase materials in flames[J]. Proceedings of the Combustion Institute,2011,33(1):41-67.
    [83]Grieco W J, Lafleur A L, Swallow K C, et al. Fullerenes and PAH in low-pressure premixed benzene/oxygen flames[C].Symposium (International) on Combustion. Elsevier,1998,27(2): 1669-1675.
    [84]Homann K H, Wagner H G. Eleventh Symposium (International) on Combustion[J]. The Combustion Institute, Pittsburgh,1967:371.
    [85]Fernandez-Alos V, Watson J K, Wal R, et al. Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D[J]. Combustion and Flame,2011, 158(9):1807-1813.
    [86]Herdman J D, Miller J H. Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters[J]. The Journal of Physical Chemistry A,2008,112(28):6249-6256.
    [87]Frenklach M, Wang H. Detailed mechanism and modeling of soot particle formation[M]. Soot formation in combustion. Springer Berlin Heidelberg,1994:165-192.
    [88]Pohjola M, Pirjola L, Kukkonen J, et al. Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment[J]. Atmospheric Environment, 2003,37(3):339-351.
    [89]Bessagnet B, Rosset R. Fractal modelling of carbonaceous aerosols-application to car exhaust plumes[J]. Atmospheric Environment,2001,35(28):4751-4762.
    [90]Zhang K M, Wexler A S. Evolution of particle number distribution near roadways-Part Ⅰ: analysis of aerosol dynamics and its implications for engine emission measurement[J]. Atmospheric Environment,2004,38(38):6643-6653.
    [91]Max Zhang K, Wexler A S. Modeling the number distributions of urban and regional aerosols: theoretical foundations[J]. Atmospheric Environment,2002,36(11):1863-1874.
    [92]楼狄明,胡炜,谭丕强,等.发动机燃用生物柴油稳态工况颗粒粒径分布[J].内燃机工程2011,32(5):16-22.
    [93]魏凤,张军营,王春梅,等.煤燃烧超细颗粒物团聚促进技术的研究进展[J].煤炭转化,2003,26(3):27-31.
    [94]Wall T F, Liu G, Wu H, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification[J]. Progress in Energy and Combustion Science,2002,28(5): 405-433.
    [95]向晓东,陈旺生,幸福堂,等.交变电场中电凝并收尘理论与实验研究[J].环境科学学报,2000,20(2):187-191.
    [96]Lind T, Kauppinen E I, Srinivasachar S, et al. Submicron agglomerate particle formation in laboratory and full-scale pulverized coal combustion[J]. Journal of Aerosol Science,1996,27: S361-S362.
    [97]Zhuang Y, Biswas P. Submicrometer particle formation and control in a bench-scale pulverized coal combustor[J]. Energy & fuels,2001,15(3):510-516.
    [98]Tian Lu, C.S. Cheung, Zhen Huang. Effects of engine operating conditions on the size and nanostructure of diesel particles[J]. Journal of Aerosol Science,2012,47:27-38.
    [99]M. Matti Maricq. Chemical characterization of particulate emissions from diesel engines:A review[J]. Journal of Aerosol Science,2007,38(11):1079-1118.
    [100]N. M Marinov. A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation[J]. Int. J. Chem. Kinet.1999(31):183-220.
    [101]E. W. Kaiser, T. J. Wallington, M. D. Hurley, et al. Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames[J]. Journal of Physical Chemistry A.2000,104(35):8194-8206.
    [102]P. A. Glaude, W. J. Pitz, M. J. Thomson. Chemical Kinetic Modeling of Dimethyl Carbonate in an Opposed-Flow Diffusion Flame[J]. Proceedings of the Combustion Institute. 2004,30:1095-1102.
    [103]Pitsch H, Barths H, Peters N. Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flame let Approach [J]. S AE Transactions,1996,105(4):2010-2024.
    [104]Noboru Miyamoto, Hideyuki Ogawa, Masahiko Shibuya, et al. Influence of themolecular structure of hydrocarbon fuels on diesel exhaust emissions [J].SAE Transactions,1994, 103(3):1069-1074.
    [105]Seiser R, Pitsch H, Seshadri K, et al. Extinction and autoignition of n-heptane in counterflow configuration[J]. Proceedings of the Combustion Institute,2000,28(2):2029-2037.
    [106]Mehl M, Pitz W J, Westbrook C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute,2011,33(1): 193-200.
    [107]M. Mehl, W. J. Pitz, M. Sjoberg, et al. Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine[C]. SAE 2009 International Powertrains, Fuels and Lubricants Meeting, SAE Paper No.2009-01-1806, Florence, Italy,2009.
    [108]Gregory P, Smith D G. Gri-Mech 3.0 [EB/OL]. (2002-10-30) [2011-1-16]. http://www.me.berkeley.edu/gri_mech/.
    [109]Noorani K E, Akih-Kumgeh B, Bergthorson J M. Comparative high temperature shock tube ignition of C1-C4 primary alcohols[J]. Energy & Fuels,2010,24(11):5834-5843.
    [110]Cook R D, Davidson D F, Hanson R K. Measurements of ignition delay times and OH species concentrations in DME/02/Ar mixtures[M]//Shock Waves. Springer Berlin Heidelberg,2009: 763-767.
    [111]Peukert S L, Sivaramakrishnan R, Michael J V. High Temperature Shock Tube and Theoretical Studies on the Thermal Decomposition of Dimethyl Carbonate and its Bimolecular Reactions with H and D-Atoms[J]. The Journal of Physical Chemistry A,2013,117(18):3718-3728.
    [112]Smyth K C, Crosley D R. Detection of minor species with laser techniques[J]. Applied combustion diagnostics,2002:9-68.
    [113]Melton L A. Soot diagnostics based on laser heating[J]. Applied optics,1984,23(13): 2201-2208.
    [114]Frank J H, Kalt P A M, Bilger R W. Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV[J]. Combustion and Flame,1999,116(1): 220-232.
    [115]Tanahashi M, Murakami S, Choi G M, et al. Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames[J]. Proceedings of the Combustion Institute,2005, 30(1):1665-1672.
    [116]McIlroy A, Jeffries J B. Cavity ringdown spectroscopy for concentration measurements[M]. Taylor & Francis,2002:98-127.
    [117]Dreier T, Ewart P. Coherent techniques for measurements with intermediate concentrations[J]. Applied Combustion Diagnostics (eds. Kohse-Hoinghaus, K., Jeffries, JB), New York:Taylor & Francis,2002:69-97.
    [118]Akhter M S, Chughtai A R, Smith D M. The structure of hexane soot I:Spectroscopic studies[J]. Applied Spectroscopy,1985,39(1):143-153.
    [119]Oltmann H, Reimann J, Will S. Wide-angle light scattering (WALS) for soot aggregate characterization[J]. Combustion and Flame,2010,157(3):516-522.
    [120]Li Y, Qi F. Recent applications of synchrotron VUV photoionization mass spectrometry:insight into combustion chemistry [J]. Accounts of chemical research,2009,43(1):68-78.
    [121]杨锐,王晶,黄超群,等.同步辐射单光子电离在燃烧研究中的应用[J].科学通报,2005,50(15):1570-1574.
    [122]McEnally C S, Pfefferle L D, Atakan B, et al. Studies of aromatic hydrocarbon formation mechanisms in flames:Progress towards closing the fuel gap[J]. Progress in Energy and Combustion Science,2006,32(3):247-294.
    [123]Cain J P, Gassman P L, Wang H, et al. Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces[J]. Physical Chemistry Chemical Physics,2010,12(20):5206-5218.
    [124]Cool T A, McIlroy A, Qi F, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J]. Review of scientific instruments,2005,76(9): 094102-094102-7.
    [125]Linstrom PJ, Mallard WG.2008. NIST Chemistry Webbook[EB/OL]. Number 69,
    [126]T.A. Cool, K. Nakajima, C.A. Taatjes, et al. Studies of a fuel-rich propane flame with photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2005,30(1):1681-1688.
    [127]O.P. Korobeinichev, S.A. Yakimov, D.A. Knyazkov, et al. A study of low-pressure premixed ethylene flame with and without ethanol using photoionization mass spectrometry and modeling[J].Proceedings of the Combustion Institute,2011,33:569-576.
    [128]Maricq M M, Chase R E, Xu N, et al. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions:Light duty diesel vehicles[J]. Environmental Science & Technology,2002,36(2):283-289.
    [129]ROnkkO T, Virtanen A, Kannosto J, et al. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle[J]. Environmental science & technology,2007, 41(18):6384-6389.
    [130]Di Y, Cheung C S, Huang Z. Experimental study on particulate emission of a diesel engine fueled with blended ethanol-dodecanol-diesel[J]. Journal of Aerosol Science,2009,40(2): 101-112.
    [131]Boehman A L, Song J, Alam M. Impact of biodiesel blending on diesel soot and the regeneration of particulate filters[J]. Energy & Fuels,2005,19(5):1857-1864.
    [132]王忠,黄慧龙,许广举,等.柴油机单环芳香烃类污染物的试验研究[J].内燃机学报,2010(1):42-46.
    [133]王忠,黄慧龙,许广举,等.柴油机芳香烃类污染物的测量方法研究[J].环境工程学报,2010(9):2053-2056.
    [134]王忠,安玉光,许广举,等.柴油机多环芳香烃类污染物的测量方法[J].农业工程学报,2011,27(4):174-178.
    [135]王忠,安玉光,许广举,等.不同燃料柴油机多环芳烃排放特征的试验研究[J].环境科学,2011,32(7):1.
    [136]宋崇林,王亚权,范国梁,等.热重法测量柴油机排气微粒中有机可溶成分的研究[J].汽车技术,2000,11:20-22.
    [137]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2008:54-55.
    [138]姜光军,张煜盛,余敬周,等.乙醇/柴油混合燃料喷雾粒度分布特性研究[J].内燃机工程,2011,32(1):39-42,48.
    [139]Stratakis G A, Stamatelos A M. Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel[J]. Combustion and Flame,2003,132(1):157-169.
    [140]Yehliu K, Vander Wal R L, Boehman A L. Development of an HRTEM image analysis method to quantify carbon nanostructure[J]. Combustion and Flame,2011,158(9):1837-1851.
    [141]Virtanen A, Marjamaki M, Ristimaki J, et al. Fine particle losses in electrical low-pressure impactor[J]. Journal of Aerosol Science,2001,32(3):389-401.
    [142]Maricq M M, Podsiadlik D H, Chase R E. Size distributions of motor vehicle exhaust PM:A comparison between ELPI and SMPS measurements [J]. Aerosol Science & Technology,2000, 33(3):239-260.
    [143]Wang J, Storey J, Domingo N, et al. Studies of diesel engine particle emissions during transient operations using an engine exhaust particle sizer[J]. Aerosol science and technology,2006, 40(11):1002-1015.
    [144]Sorensen C M, Cai J, Lu N. Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames[J]. Applied Optics,1992,31(30): 6547-6557.
    [145]Lapuerta M, Martos F J, Herreros J M. Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates[J]. Journal of Aerosol Science,2007, 38(4):455-466.
    [146]Lee K O, Zhu J, Ciatti S, et al. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates[J]. SAE transactions,2003,112(4):2363-2372.
    [147]Van Gulijk C, Marijnissen J C M, Makkee M, et al. Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor:performance assessment with a model for fractal-like agglomerates [J]. Journal of Aerosol Science,2004,35(5):633-655.
    [148]王忠,安玉光,许广举,等.柴油机多环芳香烃类污染物的测量方法[J].农业工程学报,2011,27(4):174-178.
    [149]汪冰,荆隆,丰伟悦,等.同步辐射X射线小角散射法研究纳米ZnO和Fe2O3颗粒在分散介质中的尺寸和形[J].核技术,2007,30(7):576-579.
    [150]P. Debye, AM Bueche. Scattering by an inhomogeneous solid[J]. Journal of Applied Physics, 1949,20(6):518-525.
    [151]孟昭富.小角X射线理论及应用[M].长春:吉林科学技术出版社,1995.
    [152]Goel A, Hebgen P, Vander Sande JB, et al. Combustion synthesis of fullerenes and fullerenic nanostructures[J]. Carbon,2002,40(2):177-182.
    [153]Palotas AB, Rainey LC, Feldermann CJ, et al. Sootmorphology:An application of image analysis in high-resolution transmission electron microscopy[J]. Micros-copy Research and Technique,1996,33(3):266-278.
    [154]Vander WRL. Soot nanostructure:Definition, quantification and implications[C]. SAE Paper. De-troit,MI,USA,2005,2005-01-0964.
    [155]Lapuerta M, Ballesteros R, Martos F J. A method to determine the fractal dimension of diesel soot agglomerates [J]. Journal of colloid and interface science,2006,303(1):149-158.
    [156]Van Gulijk C, Marijnissen J C M, Makkee M, et al. Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor:performance assessment with a model for fractal-like agglomerates[J]. Journal of aerosol science,2004,35(5):633-655.
    [157]汪云,魏明锐,孔亮.分形理论在柴油机排气微粒生成机理研究方面的应用[J].合肥工业大学学报(自然科学版),2006,29(5):559-563.
    [158]Brasil A M, Farias T L, Carvalho M G. A recipe for image characterization of fractal-like aggregates[J]. Journal of Aerosol Science,1999,30(10):1379-1389.
    [159]高芳亮,陈宏基,吴忠华,等.聚硅氧烷基纳米多孔薄膜双分形结构的同步辐射小角X射线散射分析[J].理化检验(物理分册),2011,47(3):133-136,171.
    [160]李志宏,孙继红,吴东,等.小角X射线散射方法测定二氧化硅干凝胶的平均孔径[J].物理学报,2000,49(7):1312-1315.
    [161]李志宏,赵军平,吴东,等.小角X射线散射中Porod正偏离的校正[J].化学学报,2000,58(9):1147-1150.