钒氧基化合物微纳结构的合成及其水溶液锂离子电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在以目标化合物的结构分析为导向,结合有益的形貌特征,通过设计合适的化学反应路线实现钒氧基化合物微纳结构的可控合成,并考查所获得的钒氧基化合物微纳结构作为水溶液锂离子电池负极材料的电化学性能,对其晶体结构与电化学性能之间的结构-性能相关性进行初步探讨。本论文主要内容归纳如下:
     1.作者利用前驱物热解的方法实现了钒氧化合物新物相多孔微纳结构的制备,扩展了钒氧化合物作为水溶液锂离子电池负极材料的范围。我们利用简易的溶剂热方法合成海胆状微纳结构前驱物,并通过热转化获得了新介稳相V_2O_3多孔海胆状微纳结构。这一途径利用前驱物分子的功能性配体同时实现了新物相的产生和多孔结构的制备。我们将这种新介稳相V_2O_3多孔海胆状微纳结构作为负极材料应用于水溶液锂离子电池,首次实现了+3价钒氧化合物在该领域的利用。
     2.以目标化合物的结构分析为导向,作者利用Kirkendall效应,通过低温水热还原途径获得了具有特征孔道结构的黑铁钒矿VOOH空心海胆状微纳结构,在这种矿物结构被发现60年后首次实现了实验室人工制备。基于进一步结构分析,我们通过简易的低温褪火处理在保持空心海胆状形貌的同时实现了从黑铁钒矿VOOH到次铁钒矿VO_2的拓扑化学结构转化。我们将以上两种产物作为负极材料应用于水溶液锂离子电池,证明孔道状微观结构特征和空心形貌宏观特征对提高电池性能的促进作用,也进一步扩展了低价钒氧基化合物在该领域的应用。
     3.基于大多数钒氧基化合物纳米结构电极材料的电池循环性能不理想这一现象,以目标化合物的结构分析为导向,作者以简易水热途径获得的具有典型层状结构的Ag_2V_4O_(11)纳米带为例,首次研究了水溶液锂离子电池的电极反应机理。我们通过对处于充放电过程中不同阶段的电极材料进行细致的表征和分析,提出了分步反应的电化学机理,并且对电池比容量衰退的原因作了初步的探讨。这一部分的工作在之前工作的基础上,将研究范围从发现和设计合适的水溶液锂离子电池负极材料进一步扩展到考查探知水溶液锂离子电池的电极反应机理,以求能深入了解影响电池性能的因素,从而为将来更好的设计和评估其他电极材料提供一定的参考价值。
     4.受上一工作启发,作者通过针对性地寻找关键的结构单元,从晶体结构的角度对如何提高水溶液锂离子电池的循环性能做了有益的探索。我们提出,在金属钒氧基化合物相邻钒氧层之间引入起支撑作用的结构单元来连接相邻钒氧层,进而将典型的二维层状结构转变为三维孔道结构,这种“支撑效应”将有效抑制层状结构由于锂离子频繁嵌入和脱嵌而导致的结构塌陷,从而可以提高电池的循环稳定性。我们选用具有二维层状结构的Ag_2V_4O_(11)和三维孔道结构的β-钒青铜Ag_(0.33)V_2O_5为例,通过对比这两种负极材料的循环性能阐述了关于“支撑效应”的观点,并进一步通过对另一β-钒青铜Na_(0.33)V_2O_5的电池性能测试证明了这一效应在该结构体系中的普适性。
The goal of this dissertation is to explore the controllable synthesis of vanadium oxides based micro-nanostructures with favorable morphologies by understanding the crystal structural characteristics of the target products and developing novel chemical reaction routes. On the basis of the unique microscopic crystal structures, new application of these vanadium oxides based micro-nanostructures has been further developed as active anode materials for aqueous lithium ion batteries, and the corresponding structure-property relationships have been also investigated in this dissertation. The details are summarized briefly as follows:
     1. We successfully synthesized new-phased metastable V_2O_3 porous urchin-like micro-nanostructures by a simple top-down precursor-pyrolyzation strategy. The generation of new phase and preparation of porous morphology were simultaneously realized by using functional ligand in precursor molecules. We introduced these new-phased metastable V_2O_3 micro-nanostructures as active anode materials for aqueous lithium ion batteries, realizing the application of vanadium (III) oxides in this electrochemical energy storage and conversion system for the first time.
     2. We developed an available pathway to accomplish the synthetic montroseite VOOH hollow nanourchins with typical tunneled crystal structure after sixty years of delay. Paramontroseite VO_2 with same morphology was converted from montroseite VOOH through a topochemical transition strategy due to the extreme structural similarity revealed by crystal structure analysis. We investigated their electrochemical properties as anode materials for aqueous lithium ion batteries, further expanding the application of vanadium oxides based compounds with low valence in this research area.
     3. We investigated the charge-discharge reaction mechanism of aqueous lithium ion batteries for the first time by taking a new anode material of single-crystalline Ag_2V_4O_(11) nanobelts as an example on the basis of its typical layered crystal structure. A two-step reaction mechanism was proposed and the reason for rapid capacity fading was also deduced.
     4. We successfully demonstrated the crystallographic pillar effect on cyclability enhancement for aqueous lithium ion batteries by comparing the electrochemical cycle performance of a new anodeβ-vanadium bronze Ag_(0.33)V_2O_5 nanowires with 3D tunneled structure and Ag_2V_4O_(11) nanobelts with 2D layered structure. The significant role of this pillar effect was further verified by an extension of another new anode material of Na_(0.33)V_2O_5 nanowires.
引文
[1] Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
    [2] Watanabe, N.; Fukuba, M. U.S. Patent 3, 1970, 536, 532.
    [3] Ikeda, H.; Saito, T.; Tamaru, H. Denki Kagaku 1977, 45, 314.
    [4] Ikeda, H.; Uena, S.; Saito, T.; Nakaido, S.; Tamaru, H. Denki Kagaku 1977, 45, 391.
    [5] Whittingham, M. S. Science 1976, 11, 1126.
    [6] Whittingham, M. S. Mater. Res. Bull. 1978, 13, 959.
    [7] Dickens, P. G.; French, S. J.; Hight, A. T.; Pye, M. F. Mater. Res. Bull. 1979, 14, 1295.
    [8] Murphy, D. W.; Christian, P. A.; Disalvo, F. J.; Carides, J. N. J. Electrochem. Soc. 1979, 126, 497.
    [9] Whittingham, M. S. J. Electrochem. Soc. 1976, 123, 315.
    [10] Sinha, S.; Murphy, D. W. Solid State Ionics 1986, 20, 81.
    [11] Nassau, K.; Murphy, D. W. J. Non-Cryst. Solids 1982, 44, 297.
    [12] Mitzushima, K.; Johnes, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783.
    [13] Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull. 1983, 18, 461.
    [14] Manthiram, A.; Goodenough, J. B. J. Power Sources 1989, 26, 403.
    [15] Nagaura, T.; Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209.
    [16] Nagaura, T. Deefield Beach, FL. March 5-7, 1990; Florida Educational Seminars, Inc: BocaRaton, FL.
    [17] Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.
    [18] Watzke, H. J.; Fendler, J. H. J. Phys. Chem. 1987, 91, 854.
    [19] Parker, D. W. Adv. Mater. & Proc. 1991, 139, 68.
    [20] Stichlmair, J.; Schmidt, J.; Propleschr, J. Chem. Eng. Sci. 1992, 47, 3015.
    [21] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
    [22] Pereira, N.; Dupont, L.; Tarascon, J. M.; Klein, L. C.; Amatucci, G. J. Electrochem. Soc. 2003, 150, A1273.
    [23] Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878.
    [24] Chen, J.; Xu, L.; Li, W.; Gou, X. Adv. Mater. 2005, 17, 582.
    [25] Du, G. D.; Guo, Z. P.; Wang, S. Q.; Zeng, R.; Chen, Z. X.; Liu, H. K. Chem. Comm. 2010, 46,1106.
    [26] Ohzuku, T.; Takehara, Z.; Yoshizawa, S. Electrochim. Acta 1979, 24, 219.
    [27] Kavan, L.; Fattakhova, D.; Krtil, P. J. Electrochem. Soc. 1999, 146, 1375.
    [28] Jiang, C. H.; Honma, I.; Kudo, T.; Zhou, H. S. Electrochem. Solid-State Lett. 2007, 10, A127.
    [29] Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. Adv. Mater. 2006, 18, 1421.
    [30] Jiang, C. H.; Wei, M. D.; Qi, Z. M.; Kudo, T.; Honma, I.; Zhou, H. S. J. Power Sources 2007, 166, 239.
    [31] Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Carbon 2001, 39, 2211.
    [32] Uchlyama, H.; Hosono, E.; Honma, I.; Zhou, H.; Imai, H. Electrochem. Commun. 2008, 10, 52.
    [33] Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale P.; Scrosati, B. Adv. Mater. 2006, 18, 2597.
    [34] Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang Y. M.; Belcher, A. M. Science 2006, 312, 885.
    [35] Kim, D. W.; Hwang, I. S.; Kwon, S. J.; Kang, H. Y.; Park, K. S.; Choi, Y. J.; Choi K. J.; Park, J. G. Nano Lett. 2007, 7, 3041.
    [36] Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Angew. Chem. 2007, 119, 764.
    [37] Armstrong, G.; Canales, J.; Armstrong, A. R.; Bruce, P. G. J. Power Sources 2008, 178, 723.
    [38] Li, B. X.; Xu, Y.; Rong, G. X.; Jing, M.; Xie, Y. Nanotechnology 2006, 17, 2560.
    [39] Liu, H. M.; Wang, Y. G.; Wang, K. X.; Wang, Y. R.; Zhou, H. S. J. Power Sources 2009, 192, 668.
    [40] Takahashi, K.; Limmer, S. J.; Wang, Y.; Cao, G. Z. Jpn. J. Appl. Phys. 2005, 44, 662
    [41] Wang, Y.; Takahashi, K.; Shang, H.; Cao, G. Z. J. Phys. Chem. B 2005, 109, 3085.
    [42] Takahashi, K.; Wang, Y.; Cao, G. Z. J. Phys. Chem. B 2005, 109, 48.
    [43] Guo, Y. G.; Hu, J. S.; Wan, L. J. Adv. Mater. 2008, 20, 2878.
    [44] Wu. C. Z.; Xie, Y.; Lei, L. Y.; Hu, S. Q.; OuYang, C. Z. Adv. Mater. 2006, 18, 1727.
    [45] Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Angew. Chem. 2005, 44, 4391.
    [46] Liu, H. M.; Wang, Y. G.; Wang, K. X.; Hosono, E.; Zhou, H. S. J. Mater. Chem. 2009, 19, 2835.
    [47] Xiao, L. F.; Zhao, Y. Q.; Yin, J.; Zhang, L. Z. Chem. Eur. J. 2009, 15, 9442.
    [48] Maleki, H.; Hallaj, S. A.; Selman, J. R.; Dinwiddie, R. B.; Wang, H. J. Electrochem. Soc. 1999, 146, 947.
    [49] Endo, E.; Ata, M.; Sekai, K.; Tanaka, K. J. Electrochem. Soc. 1999, 146, 49.
    [50] Pasquier, A. D.; Disma, F.; Bowner, T.; Gozdz, A. S.; Amatucci, G.; Tarascon, J. M. J. Electrochem. Soc. 1998, 145, 472.
    [51] Joho, F.; Novak, P.; Spahr, M. E. J. Electrochem. Soc. 2002, 149, 1020.
    [52] Biensan, P.; Simon, B.; Peres, J. P. J. Power Sources 1999, 81-82, 906.
    [53] Zhang, Z.; Fouehard, D.; Rea, J. R. J. Power Sources 1998, 70, 16.
    [54] Dahn, J. R.; Fuller, E. W.; Obrovac, M.; Saeken, U. V. Solid State Ionics 1994, 69, 265.
    [55] Richard, M. N.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 2068.
    [56] Vogdanis, L.; Heitz, W. Macromol. Rapid Commun. 1986, 7, 543.
    [57] Vogdanis, L.; Martens, B.; Uehtmann, H.; Hensel, F.; Heitz, W. Macromol. Chem. 1990, 191, 465.
    [58] Richard, M. N.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 2078.
    [59] Sacken, U.; Nodwell, E.; Sundher, A. Solid State Ionics 1994, 69, 184.
    [60] Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115.
    [61] Li, W.; Mckinnon, W. R.; Dahn, J. R. J. Electrochem. Soc. 1994, 141, 2310.
    [62] Wang, G. J.; Zhang, H. P.; Fu, L. J.; Wang, B.; Wu, Y. P. Electrochem. Commun. 2007, 9, 1873.
    [63] Kumta, P. N.; Gallet, D.; Waghray, A.; Bolmgren, G. E.; Setter, M. P. J. Power Sources 1998, 72, 91.
    [64] Yuan, A. B.; Tian, L.; Xu, W. M.; Wang, Y. Q. J. Power Sources 2010, 195, 5032.
    [65] Bernal, J. D. Proc. Roy. Soc. 1924, A106, 749.
    [66] Tuinstra, F.; Koenig, J. J. Chem. Phys. 1970, 96, 173.
    [67] Wakihara, M. Mater. Sci. Eng. R. 2001, 33, 109.
    [68] Rougier, A.; Gravereau, P.; Delmas, C. J. Electrochem. Soc. 1996, 143, 1168.
    [69] Ruffo, R.; Wessells, C.; Huggins, R. A.; Cui, Y. Electrochem. Commun. 2009, 11, 247.
    [70] Wang, H.; Jang, Y. I.; Huang, B.; Sadoway, D. R.; Chiang, Y. M. J. Electrochem. Soc. 1999, 146, 473.
    [71] Arai, H.; Okada, S.; Ohtsuka, H.; Ichimura, M.; Yamaki, J. Solid State Ionics 1995, 80, 281.
    [72] Dutta, G.; Manthiram, A.; Goodenough, J. B.; Grenier, J. C. Solid State Chem. 1992, 96, 123.
    [73] Morales, J.; Prez-Vicente, C.; Tirado, J. L. Mater. Res. Bull. 1990, 25, 623.
    [74] Ohzuku, T.; Ueda, A.; Nagayam, M. J. Electrochem. Soc. 1993, 140, 1862.
    [75] Li, W.; Reimers, J. N.; Dahn, J. R. Solid State Ionics 1993, 67, 123.
    [76] Kohler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochem. Acta 2000, 46, 59.
    [77] Wang, G. J.; Fu, L. J.; Wang, B.; Zhao, N. H.; Wu, Y. P.; Holze, R. J. Appl. Electrochem. 2008, 38, 579.
    [78] Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, 97-98, 503.
    [79] Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Solid State Ionics 2000, 130, 41.
    [80] He, P.; Zhang, X.; Wang, Y. G.; Cheng, L.; Xia, Y. Y. J. Electrochem. Soc. 2008, 155, A144.
    [81] Liu, X. H.; Saito, T.; Doi, T.; Okada, S.; Yamaki, J. I. J. Power Sources 2009, 189, 706.
    [82] Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C. J. Electrochem. Soc. 1997, 144, 1609.
    [83] Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Solid State Ionics 1996, 92, 1.
    [84] Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C. J. Electrochem. Soc. 1997, 144, 2581.
    [85] Andersson, A. S.; Kalska, B.; Haggstrom, L. Solid State Ionics 2001, 130, 41.
    [86] Amine, K.; Yasuda, H.; Yamachi, M. J. Electrochem. Solid-State Lett. 2000, 3, 178.
    [87] Okada, S.; Sawa, S.; Egashira, M. J. Power Sources 2001, 97-98, 430.
    [88]Azuma, H.; Tohda, M. J. Electrochem. Solid-State Lett. 2002, 5, A135.
    [89] Buvaneswari, G.; Varadaraju, U. V. J. Solid State Chem. 1999, 145, 227.
    [90] Wang, H.; Huang, K.; Zeng, Y. Q.; Yang, S.; Chen, L. Q. Electrochem. Acta 2007, 52, 3280.
    [91] Luo, J. Y.; Xia, Y. Y. Adv. Funct. Mater. 2007, 17, 3877.
    [92] Wessells, C.; Mantia, F. L.; Deshazer, H.; Huggins, R. A.; Cui, Y. J. Electrochem. Soc. 2011, 158, A352.
    [93] Norberg, S. T.; Svensson, G.; Albertsson, J. Acta Cryst. 2001, C57, 225.
    [94] Uebou, Y.; Okada, S.; Egashira, M.; Yamaki, J. I. Solid State Ionics 2002, 148, 323.
    [95] Wadsley, A. D. Acta Crystallogram 1957, 10, 261.
    [96] Besenhard, J. O.; Schollhorn, R. J. Power Sources 1976/1977, 1, 267.
    [97] Wang, G. J.; Qu, Q. T.; Wang, B.; Shi, Y.; Tian, S.; Wu, Y. P.; Holze, R. J. Power Sources 2009, 189, 503.
    [98] Wang, G. J.; Fu, L. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. Agnew. Chem. 2007, 119, 299.
    [99] Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526.
    [100] Wang, H. B.; Huang, K.; Zeng, Y. Q.; Zhao, F. G.; Chen, L. Q. Electrochem. Solid-State Lett. 2007, 10, A199.
    [101] Wang, H. B.; Zeng, Y. Q.; Huang, K.; Liu, S. Q.; Chen, L. Q. Electrochem. Acta 2007, 52, 5102.
    [102] Murphy, D. W.; Christian, P. A.; DiSalvo, F. J.; Carides, J. N.; Waszczak, J. V. J. EIectrochem. Soc. 1981, 128, 2053.
    [103] Evans, H. T. Jr.; Mrose, M. E. Am. Mineral. 1955, 40, 861.
    [104] Zhang, S. D.; Li, Y. M.; Wu, C. Z.; Zheng, F.; Xie, Y. J. Phys. Chem. C 2009, 113, 15058.
    [105] Wu, C. Z.; Hu, Z. P.; Wang, W.; Zhang, M.; Yang, J. L.; Xie, Y. Chem. Commun. 2008, 3891.
    [106] Oka, Y.; Yao, T.; Yamamoto, N. J. Solid State Chem. 1990, 89, 372.
    [107] Chirayil, T.; Zavalij, P. Y.; Whittingham, M. S. Chem. Mater. 1998, 10, 2629.
    [108] Li, H. Q.; Zhai, T. Y.; He, P.; Wang, Y. G.; Hosono, E.; Zhou, H. S. J. Mater. Chem. 2011, 21, 1780.
    [1] Li, W.; Dahn, J. R.; Wainwright, D. Science 1994, 264, 1115.
    [2] Wainwright D. Mater. Tech. 1996, 11, 9.
    [3] Li, W.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 1742.
    [4] Wang, G. J.; Fu, L. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. Angew. Chem. Int. Ed. 2007, 46, 295.
    [5] Wang, H. B.; Huang, K. L.; Zeng, Y. Q.; Yang, S.; Chen, L. Q. Electrochin. Acta 2007, 52, 3280.
    [6] Luo, J. Y.; Yong, Y. X. Adv. Funct. Mater. 2007, 17, 3877.
    [7] Kohler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46, 59.
    [8] Wang, Y. G.; Luo, J. Y.; Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2006, 153, A1425.
    [9] Wu, C. Z.; Hu, Z. P.; Wang, W.; Zhang, M.; Yang, J. L.; Xie, Y. Chem, Commun. 2008, 3891.
    [10] Zhang, S. D.; Li, Y. M.; Wu, C. Z.; Zheng, F.; Xie, Y. J. Phys. Chem. C 2009, 113, 15058.
    [11] Sen, T.; Sebastianelli, A.; Bruce, L. J. J. Am. Chem. Soc. 2006, 128, 7130.
    [12] Sozzani, P.; Bracco, S.; Comotti, A.; Ferretti, L.; Simonutti, R.; Angew. Chem. Int. Ed. 2005, 44, 1816.
    [13] Hu, J. S.; Ren, L. L.; Guo, Y. G.; Liang, H. P.; Cao, A. M.; Wan, L. J.; Bai, C. L. Angew. Chem. Int. Ed. 2005, 44, 1269.
    [14] Skrabalak, S. E.; Suslick, K. S.; J. Am. Chem. Soc. 2005, 127, 9990.
    [15] Suh, W. H.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 12007.
    [16] Cheng, K.; Peng, S.; Xu, C. J.; Sun, S. H. J. Am. Chem. Soc. 2009, 131, 10637.
    [17] Zhang, B.; Ye, X. C.; Wang, C. M.; Xie, Y. J. Mater. Chem. 2007, 17, 2706.
    [18] Yu, Y.; Chen, C. H.; Shi, Y. Adv. Mater. 2007, 19, 993.
    [19] Uchiyama, H.; Hosono, E.; Zhou, H. S.; Imai, H. J. Mater. Chem. 2009, 19, 4012.
    [20] Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Drummond, C. J. Chem. Mater. 2009, 21, 2895.
    [21] Long, J. W.; Dunn, B.; Rolison D. R.; White, H. S.; Chem. Rev. 2004, 104, 4463.
    [22] Roosen, A. R.; Carter, W. C. Physica A 1998, 261, 232.
    [23] Liu, Z. P.; Yang, Y.; Liang, J. B.; Hu, Z. K.; Li, S.; Peng, S.; Qian, Y. T. J. Phys. Chem. B 2003, 107, 12658.
    [24] Sawatzki, G. A.; Post, D. Phys. Rev. B 1979, 20, 1546.
    [25] Mendialdua, J.; Casanova, R.; Barbaux, Y. J. Electron. Spectrosc. Relat. Phenom. 1995, 71,249.
    [26] Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167.
    [27] Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C. J. Mater. Chem. 2004, 14, 3370.
    [28] Feldmann, C. Adv. Funct. Mater. 2003, 13, 101.
    [29] Feldmann, C.; Jungk, H. O. Angew. Chem. Int. Ed. 2001, 40, 359.
    [30] Jiang, X.; Wang, Y.; Herricks, T.; Xia, Y. J. Mater. Chem. 2004, 14, 695.
    [31] Wang, Y.; Jiang, X.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 16176.
    [32] Dernier, P. D.; Marezio, M. Phys. Rev. B 1970, 2, 3771.
    [33] Stanek, C. R.; McClellan, K. J.; Uberuaga, B. P.; Sickafus, K. E.; Levy, M. R.; Grimes, R. W. Phys. Rev. B 2007, 75, 134101.
    [34] Dernier, P. D. J. Phys. Chem. Solids 1970, 31, 2569.
    [35] Ben-Dor, L.; Fischbein, E.; Felner, I.; Kalman, Z. J. Electrochem. Soc. 1977, 124, 451.
    [36] Ikeda, Y.; Takano, M.; Bando, Y. Bull. Inst. Chem. Res. Kyoto Univ. 1986, 64, 249.
    [37] Zboril, R.; Mashlan, M.; Krausova, D.; Pikal, P. Hyperfine Interact. 1999, 120/121, 497.
    [38] Glanz, J. Science 1994, 264, 1084.
    [1] Weeks, A. D.; Cisney, E. A.; Sherwood, A. M. U. S. Geological Survey, Washington, D. C.
    [2] Howard, T. E., Jr; Stanley, B. U. S. Geological Survey, Washington, D. C.
    [3] Howard, T. E., Jr; Mary, E. M. U. S. Geological Survey, Washington, D. C.
    [4] Howard, T. E., Jr; Mary, E. M. Am. Mineral. 1955, 40, 861.
    [5] Wu, C. Z.; Hu, Z. P.; Wang, W.; Zhang, M.; Yang, J. L.; Xie, Y. Chem. Commun. 2008, 3891.
    [6] Jiang, C. H.; Zhou, Y.; Honma, I.; Kudo, T.; Zhou, H. S. J. Power Sources 2007, 166, 514.
    [7] Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Angew. Chem., Int. Ed. 2005, 44, 4391.
    [8] Ren, M. M.; Zhou, Z.; Gao, X. P.; Liu, L.; Peng, W. X. J. Phys. Chem. C 2008, 112, 13043.
    [9] Fu, L. J.; Zhang, T.; Cao, Q.; Zhang, H. P.; Wu, Y. P. Electrochem. Commun. 2007, 9, 2140.
    [10] Sawatzki, G. A.; Post, D. Phys. Rev. B 1979, 20, 1546.
    [11] Mendialdua, J.; Casanova, R.; Barbaux, Y. J. Electron. Spectrosc. Relat. Phenom. 1995, 71, 249.
    [12] Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. J. Electron. Spectrosc. Relat. Phenom. 2004, 135, 167.
    [13] Morterra, C.; Chiorino, A.; Borello, E. Mater. Chem. Phys. 1984, 10, 119.
    [14] Vanova, T.; Harizanova, Mater. Res. Bull. 2005, 40, 411.
    [15] Ma, J.; Wu, Q. S.; Chen, Y. J. Materials Research Bulletin 2009, 44, 1142.
    [16] Chen, X.; Wang, X.; Wang, Z.; Wan, J.; Liu, J.; Qian, Y. T. Nanotechnology 2004, 15, 1685.
    [17] Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, 1978.
    [18] Newhouse, W. H. Econ. Geol.1929, 24, 62.
    [19] Sosman, R. B.; Posnjak, E. Washington Acad. Sci. Jour. 1925, 15, 329.
    [20] Wu, Z. C.; Zhang, M.; Yu, K.; Zhang, S. D.; Xie, Y. Chem. Eur. J. 2008, 14, 5346.
    [21] Wu, C. Z.; Xie, Y.; Lei, L. Y.; Hu, S. Q.; OuYang, C. Z. Adv. Mater. 2006, 18, 1727.
    [22] Wu, C. Z.; Wei, H.; Ning, B.; Yang, J. L.; Xie, Y Chem. Comm. 2010, 46, 1845.
    [23] Yin, Y. D.; Rioux, R.M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.
    [24] Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176.
    [25] Zhou, J. S.; Song, H. H.; Chen, X. H.; Zhi, L. J.; Huo, J. P.; Cheng, B. Chem. Mater. 2009, 21, 3730.
    [26] Yin, Y. D.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P. Adv. Funct. Mater. 2006,16, 1389.
    [27] Li, N. C.; Manning, R. A. J. Am. Chem. Soc. 1955, 77, 5225.
    [28] Shindo, H.; Brown, T. L. J. Am. Chem. Soc. 1965, 87, 1904.
    [29] Tapramaz, R.; Karabulut, B.; Koksal, F. J. Phys. Chem. Solid. 2000, 61, 1367.
    [30] Mamedova, N. N.; Kotov, N. A.; Rogach, A. L.; Studer, J. Nano Lett. 2001, 1, 281.
    [31] Cornell, R. M.; Schneider, W.; Giovanoli, R. Clay Miner. 1989, 24, 549.
    [32] Cornell, R. M.; Schneider, W. Polyhedron 1989, 8, 149.
    [33] Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, 5, 567.
    [34] Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987.
    [35] Guo, Y. G.; Hu, J. S.; Wan, L. J. Adv. Mater. 2008, 20, 2878.
    [36] Kumar, R. V.; Elgamiel, R.; Diamant, Y.; Gedanken, A.; Norwig, J. Langmuir 2001, 17, 1406.
    [1] Liu, W. R.; Wang, J. H.; Wu, H. C.; Shieh, D. T.; Yang, M. H.; Wu, N. L. J. Electrochem. Soc. 2005, 152, A1719.
    [2] Wachtler, M.; Winter, M.; Besenhard, J. O. J. Power Sources 2002, 105, 151.
    [3] Zhou, S.; Wang, D. W. ACS nano 2010, 4, 7014.
    [4] Nyten, A.; Kamali, S.; Haggstrom, L.; Gustafsson, T.; Thomas, J. O. J. Mater. Chem. 2006, 16, 2266.
    [5] Chernova, J. B.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526.
    [6] Wang, Y.; Cao, G. Z. Adv. Mater. 2008, 20, 2251.
    [7] Zavalij, P. Y.; Whittingham, M. S. Acta Cryst. 1999, B55, 627.
    [8] Leising, R. A.; Thiebolt, W. C.; Takeuchi, E. S. Inorg. Chem. 1994, 33, 5733.
    [9] Lee, J. W.; Popov, B. N. J. Power Sources 2006, 161, 565.
    [10] Ramasamy, R. P.; Feger, C.; Strange, T.; Popov, B. N. J. Appl. Electrochem. 2006, 36, 487.
    [11] West, K.; Crespi, A. M. J. Power Sources 1995, 54, 334.
    [12] Ramasamy, R. P.; Feger, C.; Strange, T.; Popov, B. N. J. Appl. Electrochem. 2006, 36, 487.
    [13] Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. Adv. Mater. 2006, 18, 2597.
    [14] Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.
    [15] Kim, D. W.; Hwang, I. S.; Kwon, S. J.; Kang, H. Y.; Park, K. S.; Choi, Y. J.; Choi, K. J.; Park, J. G. Nano Lett 2007, 7, 3041.
    [16] Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Angew. Chem. 2007, 119, 764.
    [17] Mao, C. J.; Wu, X. C.; Pan, H. C.; Zhu, J. J.; Chen, H. Y. Nanotechnology 2005, 16, 2892.
    [18] Zhang, S. Z.; Li, W. Y.; Li, C. S.; Chen, J. J. Phys. Chem. B 2006, 110, 24855.
    [19] Xiong, C. R.; Aliev, A. E.; Gnade, B.; Balkus, K. J. Jr. Acs Nano 2008, 2, 293.
    [20] Sauvagea, F.; Bodenezb, V.; Vezinc, H.; Morcretteb, M.; Tarasconb, J. M.; Poeppelmeier, K. R. J. Power Sources 2010 ,195 ,1195.
    [21] Shannon, R. D. Acta Cryst. 1976, A32, 751.
    [22] Sakurai, Y.; Ohtsuka, H.; Yamaki, J. I. J. Electrochem. Soc. 1988, 135, 32.
    [23] Ilic, D.; Neumann, D. J. Power Sources 1993, 43, 589.
    [24] Dimitriev, Y.; Dimitrov, V.; Amaudov, M. J. Mater. Sci. 1979, 14, 723.
    [25] Zhang, H. L.; Zhong, W.; Duan, X.; Fu, X. C. J. Catalysis 1991,129, 426.
    [26] Liu, X.; Huang, C.; Qiu, J.; Wang, Y. Appl. Surf. Sci. 2006, 253, 2747.
    [27] Huang, F.; Fu, Z. W.; Chu, Y. Q.; Liu, W. Y.; Qin, Q. Z. Electrochem. Solid State Lett. 2004, 7, A180.
    [28] Frederickson, L. D.; Hausen, D. M. Anal. Chem. 1963, 35, 818.
    [29] Laruelle, S.; Poizot, P. ; Baudrin, E.; Briois, V.; Touboul, M.; Tarascon, J. M. J. Power Sources 2001, 97, 251.
    [30] Leifer, N. D.; Colon, A.; Martocci, K.; Greenbaum, S. G.; Alamgir, F. M.; Reddy, T. B.; Gleason, N. R.; Leising, R. A.; Takeuchi ,E. S. J. Electrochem. Society 2007, 154, A500.
    [31] Yao, T.; Zhang, X. D.; Sun, Z. H.; Liu, S. J.; Huang, Y. Y.; Xie, Y.; Wu, C. Z.; Yuan, X.; Zhang, W. Q.; Wu, Z. Y.; Pan, G. Q.; Hu, F. C.; Wu, L. H.; Liu, Q. H.; Wei, S. Q. Phys. Review Lett. 2010, 105, 226405.
    [32] Laruelle, S.; Poizot, P.; Baudrin, E.; Briois, V.; Touboul, M.; Tarascon, J. M. J. Power Sources 2001, 97-98, 251.
    [33] Daishu, H.; Junichi, S.; Hiromasa, I.; Yoshiharu, U.; Masataka, W.; Takafumi, M.; Iwao, W. J. Mater. Chem. 2002, 12, 3717.
    [34] Daishu, H.; Junichi, S.; Hiromasa, I.; Yoshiharu, U.; Masataka, W.; Takafumi, M.; Iwao, W. J. Mater. Chem. 2003, 13, 897.
    [1] Wang, H. B.; Zeng, Y. Q.; Huang, K. L.; Liu, S. Q.; Chen, L. Q. Electrochim. Acta. 2007, 52, 5102.
    [2] Kohler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta. 2000, 46, 59.
    [3] Sellier, C.; Boucher, F.; Janod, E. Solid State Sci. 2003, 5, 591.
    [4] Weaver, J. F.; Hoflund, G. B. Chem. Mater. 1994, 6, 1693.
    [5] Sawatzky, G. A.; Post, D. Phys. Rev. B: Condens. Matter 1979, 20, 1546.
    [6] Mendialdua, J.; Casanova, R.; Barbaux, Y. J. Electron Spectrosc. Relat. Phenom. 1995, 71, 249.
    [7] Liu, Y.; Zhang, Y. G.; Zhang, M.; Qian, Y. T. J. Crystal Growth 2006, 289, 197.
    [8] Li, H. Q.; Zhai, T. Y.; Ping, H.; Wang, Y. G.; Hosono, E.; Zhou, H. S. J. Mater. Chem. 2011, 21, 1780.
    [9] Yu, J. G.; Yu, J. C. Materials and Physics 2007, 104, 362.
    [10] Ruzmetov, D.; Senanayake, S. D.; Narayanamurti, V.; Ramanathan, S. Phys. Rev. B 2008, 77, 195442.
    [11] Whittaker, L.; Jaye, C.; Fu, Z. G.; Fischer, D. A.; Banerjee, S. J. Am. Chem. Soc. 2009, 131, 8884.
    [12] Eyert, V.; Hock, K. H. Phys. Re .B 1998, 57, 12727.
    [13] Goering, E.; Muller, O.; Klemm, M.; denBoer, M. L.; Horn, S. Philos. Mag. B 1997, 75, 229.
    [14] Tsang, C.; Manthiram, A. J. Electrochem. Soc. 1997, 144, 520.
    [15] Wang, G. J.; Fu, L. J.; Wang, B.; Zhao, N. H.; Wu, Y. P.; Holze, R. J. Appl. Electrochem. 2008, 38, 579.
    [16] Liu, X. H.; Saito, T.; Doi, T.; Okada, S.; Yamaki, J. J. Power Sources 2009, 189, 706.
    [17] Zhang, S. D.; Li, Y. M.; Wu, C. Z.; Zheng, F.; Xie, Y. J. Phys. Chem. C 2009, 113, 15058.
    [18] Wang, G. J.; Fu, L. J.; Zhao, N. H.; Yang, Li. C.; Wu, Y. P.; Wu, H. Q. Angew. Chem. 2007, 119, 299.
    [19] Stojkovic, I.; Cujeticanin, N.; Pasti, I.; Mitric, M.; Mentus, S. Electrochem. Commun. 2009, 11, 1512.
    [20] Shannon, R. D. Acta Cryst. 1976, A32, 751.
    [21] Sauvagea, F.; Bodenezb, V.; Vezinc, H.; Morcretteb, M.; Tarasconb, J. M.; Poeppelmeier, K.R. J. Power Sources 2010, 195, 1195.