Zn-Fe-Al-P四元系相关系的测定及磷对热浸锌镀层组织的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合金化热镀锌钢板具有良好的焊接性、涂着性、耐热性和耐腐蚀性,已广泛应用于汽车制造业。但是合金化镀锌板在冲压过程中,其镀层容易出现粉化等缺陷,严重制约了我国汽车工业的发展。研究表明,钢中存在的微量合金元素磷对镀层合金化过程有较大的影响。为了弄清磷元素对Fe-Zn合金化反应的作用机理,以及深入研究热浸镀锌过程中磷和铝对镀层组织的协同作用,本论文展开了如下几个方面的研究。
     为了准确获得Zn-Fe-Al-P四元系富锌角450℃等温截面相关系,本工作利用扫描电子显微镜、能谱分析仪和X射线衍射仪等手段,采用平衡合金法重新测定了Zn–Al–P三元系在450℃的等温截面相关系,得到的实验结果与已报道的Zn–Al–P三元系的相关系完全不相同。在这一等温截面的富锌部分,存在3个三相平衡区,即η-Zn+AlP+Zn_3P_2、AlP+Zn_3P_2+ZnP_2及η-Zn+AlP+α-Al。AlP相能与所有的其他物相平衡共存,包括η-Zn、α-Al、Zn_3P_2和ZnP_2。磷在η-Zn和α-Al相中的溶解度很低,Zn在AlP相中的溶解度约为1at.%。
     依据以上实验结果,采用平衡合金法测定了含93at.%Zn的Zn-Fe-Al-P四元系450℃等温截面相关系。研究结果表明:在该等温截面上出现了6个四相平衡区,即η-Zn+FeAl_3+Fe_2Al_5+AlP,η-Zn+T+Fe_2Al_5+AlP,η-Zn+FeP+Zn_3P_2+AlP,η-Zn+δ+T+AlP,η-Zn+ζ+δ+AlP和η-Zn+ζ+FeP+AlP。所有的合金样品中没有发现四元新相的存在。AlP相与除Fe_2P之外的所有其它相共存,包括L-Zn、ζ、δ、T、Fe_2Al_5、FeAl_3、FeP及Zn_3P_2。磷在ζ、T、Fe_2Al_5及FeAl_3相中的溶解度都极小,而Zn能够存在于所有的已知化合物中。
     通过Zn/Fe和Zn/Fe-P固液扩散偶实验,发现钢基体中的磷能够延迟或者抑制Г相的形成,但促进镀层中ζ相的生长,且磷含量越高,ζ相的生长速度越快,类似于一般镀锌中的硅反应性。
     热浸镀锌实验结果表明:在0.15wt.%Al-Zn池中浸镀纯铁片时中,由于铝和铁在铁基表面与镀层之间形成一层抑制层,使镀层中先形成δ相,随后形成一层很薄的Г相。在铁基体中添加少量的磷,能显著抑制Fe-Zn反应。
Galvannealed steel sheets are widely used in the automotive industry, due to their excellent weldability, paintability, thermostability and corrosion resistance. However, in the course of stamping, the galvannealed coating may suffer from defects, such as powdering. So it has seriously hampered the development of China's automobile industry. It has been reported that P in steel has great effects on alloying reaction between Fe and Zn during the galvannealing treatment. In order to understand the mechanism of phosphorus on the Fe-Zn alloying reaction, and intensively study the combined effect of P and Al in the hot-dip galvanizing, the following works have been carried out.
     To obtain Zn-rich corner of 450℃isothermal section of the Zn-Fe-Al-P quaternary system, the 450℃isothermal section of the Zn-Al-P ternary phase diagram was investigated experimentally again using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy, and x-ray diffraction. The experimental results are quite different from the reported phase equilibrium relationships of the Zn-Al-P ternary system. (L-Zn+Zn_3P_2+AlP), (L-Zn+α-Al+AlP), and (Zn_3P_2+ZnP_2+AlP) three-phase regions exist in the section. The experimental results reveal that AlP is in equilibrium with L-Zn,α-Al, Zn_3P_2, and ZnP_2, respectively. P solubility in liquid Zn and inα-Al phases is limited.
     Based on the above results, the 450℃isothermal section of the Zn-Fe-Al-P quaternary system with Zn being fixed at 93at.% was determined by the equilibrated alloys approach.η-Zn+T+Fe_2Al_5+AlP,η-Zn+FeAl_3+Fe_2Al_5+AlP,η-Zn+δ+T+AlP,η-Zn+ζ+δ+AlP,η-Zn+FeP+Zn_3P_2+AlP, andη-Zn+ζ+FeP+AlP four-phase regions were found to exist in the section. No quaternary phase was found in all the equilibrium alloys. AlP was found to be in equilibrium with L-Zn,ζ,δ, T, Fe_2Al_5, FeAl_3, FeP and Zn_3P_2, but not with Fe_2P. The solubility of P inζ, T, Fe_2Al_5, and FeAl_3 is very limited; Zn is soluble in all known compounds.
     The experimental results of Zn/Fe and Zn/Fe-P liquid-solid diffusion couple indicate that P in steel can delay or inhibit the formation ofГphase. But P in steel has been found to promote the growth of theζphase, and the higher phosphorus content, the faster the growth speed of theζphase. Obviously, the role of phosphorus on the alloy layer is similar to silicon reactivity of the general galvanizing.
     The experimental results of pure iron hot-dip galvanizing show that total Fe-Zn alloy layer growth in the 0.15wt.%Al-Zn bath was inhibited by the initial formation of an Fe-Al intermetallic layer at the steel/coating interface in a very short time. With the increase of dipping time,δphase was found to form at first, and then a thinГphase layer formed at the steel/delta-phase interface. A small amount of phosphorus added to the substrate steel can significantly inhibit the Fe-Zn reaction by the hot-dip galvanizing.
引文
[1]潘邻.化学热处理应用技术[M].北京:机械工业出版社, 2004: 350-370.
    [2] W.E. Hoare, E.S. Hedges, B.T.K. Barry. The technology of tinplate[M]. St. Martin's Press, 1965: 242-243.
    [3]陈冬,金向雷.中国热镀锌技术及发展动向[J].河北冶金, 2004, (3): 3-7.
    [4]苏旭平,李智,尹付成,贺跃辉.热浸镀中硅反应性研究[J].金属学报, 2008, 44 (6): 718-722.
    [5] O. Kubaschewski, T. Massalski. Binary Alloy Phase Diagrams[J]. in-Chief: Massalski, TB American, 1986.
    [6] Massalski T B. Phase Diagrams[M]. Ohio: ASM Metals Handbook, 1992: 206-207.
    [7] Gf Bastin, Fjj Vanloo, Gd Rieck. New Compound in the Fe-Zn System[J]. Z. Metallkunde, 1974, 65 (10): 656-660.
    [8] Zw Chen, Rm Sharp, Jt Gregory. Fe-Al-Zn ternary phase diagram at 450℃[J]. Materials science and technology, 1990, 6 (12): 1173-1176.
    [9] M. Urednicek, Js Kirkaldy. Mechanism of Fe Attack Inhibition Arising From Additions of Al to Liquid Zn (Fe) During Galvanizing at 450℃[J]. Z. Metallkd., 1973, 64 (12): 899-910.
    [10] N.Y. Tang. Practical applications of phase diagrams in continuous galvanizing[J]. Journal of Phase Equilibria and Diffusion, 2006, 27 (5): 462-468.
    [11]孔纲,卢锦堂,陈锦虹等.钢中元素对钢结构件热浸镀锌的影响[J].腐蚀科学与防护技术, 2004, 16 (3): 162-164.
    [12] R.W. Sandelin. Galvanizing Characteristics of Different Types of Steel[M]. American Hot Dip Galvanizers Association, 1941.
    [13]李金桂.防腐蚀表面工程技术[M].化学工业出版社, 2003: 182.
    [14] T. Gladman, B. Holmes, Fb Pickering. Some Effects of Steel Composition on the Formation and Adherence of Galvanized Coatings[J]. J. Iron Steel Inst., 1973, 211 (11): 765-777.
    [15] J. Pelerin, H. Hoffmann, L. Leroy. The influence of silicon and phosphorus on the commercial galvanization of mild steels[J]. Metallwissensch Technik, 1981, 9 870-873.
    [16] Rw Richards, H. Clarke, Fe Goodwin. Analysis of galvanized coatings[C]. Proc.17th Inter.Galva.Conf.Paris:ZDA, 1994, GC1998/1991.
    [17] Kato C Tobiyama Y. Effect of the substrate compositions on the growth of Fe-Al interfacial layer formed during hot dip galvanizing[J]. Journal of the Iron and Steel Institute of Japan, 2003, 89 (1): 38-45.
    [18] Ce Jordan, Ar Marder. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450℃: Part II 0.20 wt% Al-Zn baths[J]. Journal of Materials Science, 1997, 32 (21): 5603-5610.
    [19] M. Urai, M. Arimura, H. Sakai. Effect of phosphorus content in ultra low C-Ti steel on galvannealing behavior[J]. Tetsu-to-Hagane(J. Iron Steel Inst. Jpn.)(Japan), 1994, 80 (7):545-550.
    [20] M. Guttmann, Y. Lepretre, A. Aubry, et al. Mechanism of the galvanizing reaction: influence of Ti and P contents in steel and of its surface microstructure after annealing[J]. The Use and Manufactrue of Zinc and Zinc Alloy Coated Sheet Steel Products into 21ST Century, 1995, 295-307.
    [21] Cs Lin, M. Meshii. The effect of steel chemistry on the formation of Fe-Zn intermetallic compounds of galvanneal-coated steel sheets[J]. Metallurgical and Materials Transactions B, 1994, 25 (5): 721-730.
    [22] C. Coffin, Sw Thompson. Galvannealing of interstitial-free sheet steels strengthened by manganese, silicon, or phosphorous: an initial study[J]. The physical metallurgy of zinc coated steel, 1994, 181-195.
    [23]陈树江.相图分析及应用[M].冶金工业出版社, 2007: 6-12.
    [24] F.N. Rhines. Phase diagrams in metallurgy: their development and application[M]. McGraw-Hill, 1956: p305-306.
    [25]左演声.材料现代分析方法[M].北京工业大学出版社, 2000: 101-105.
    [26] X. Su, N.Y. Tang, J.M. Toguri. Thermodynamic evaluation of the Fe-Zn system[J]. Journal of Alloys and Compounds, 2001, 325 (1-2): 129-136.
    [27] S. An Mey. Reevaluation of the Al-Zn system[J]. Z. Metallkd., 1993, 84 (7): 451-455.
    [28] J. Dutkiewlcz. The P-Zn (Phosphorus-Zinc) system[J]. Journal of phase equilibria, 1991, 12 (4): 435-438.
    [29] Ur Kattner, Bp Burton. Phase Diagrams of Binary Iron Alloys[J]. ASM International Materials Park, OH, 1993.
    [30] H. Okamoto. Fe-P (Iron-Phosphorus)[J]. Journal of Phase Equilibria and Diffusion, 2007, 28 (6): 588-588.
    [31] Aj Mcalister. The Al- P (Aluminum-Phosphorus) system[J]. Journal of phase equilibria, 1985, 6 (3): 222-224.
    [32] N.Y. Tang, X. Su. On the ternary phase in the zinc-rich corner of the Zn-Fe-Al system at temperatures below 450℃[J]. Metallurgical and Materials Transactions A, 2002, 33 (5): 1559-1561.
    [33] P. Perrot, J.C. Tissier, J.Y. Dauphin. Stable and metastable equilibria in the Fe-Zn-Al system at 450℃[J]. Z. Metallkd., 1992, 83 (11): 786-790.
    [34] S. Yamaguchi, H. Makino, A. Sakatoku, et al. Phase Stability of Dross Phases in Equilibrium with Liquid Zn Measured by the Al Sensor[C]. City: Chicago, Galvatech?95, 1995, Year: 787-794.
    [35] S. Yamaguchi. Thermochemical Stability and Precipitation Behavior of Dross Phases in CGL Bath[J]. Proc. Galvatech?98, 1998, 84-88.
    [36] R. Vogel and D. Horstmann. Conversion of Iron Phosphides with Liquid Zinc[J]. Arch. Eisenhuttenwes., 1953, 24 (5-6): 247-249.
    [37] Z. Li, X. Su, Y. He. Ternary Phase Equilibria at 450℃in the Zn-Fe-P System[J]. Journal of Phase Equilibria and Diffusion, 2008, 29 (1): 11-19.
    [38]唐先慧. Zn-Fe-Ti和Zn-Al-P三元系450℃等温截面的实验测定[硕士学位论文].湘潭:湘潭大学机械工程学院, 2006.
    [39] H. Tu, F. Yin, X. Su, et al. Experimental investigation and thermodynamic modeling of the Al-P-Zn ternary system[J]. Calphad, 2009, 33 (4): 755-760.
    [40] H.Klose R.Vogel. The Iron-Iron Phosphide-Aluminium Phosphide-Aluminium Phase Diagram [J]. Arch. Eisenhuettenwes., 1952, 23 (7-8): 287-291.
    [41] H. Kaneko, Nishizawa, T., Tamaki, K., Tanifuji, A. Solubility of Phosphorus inαandγIron[J]. Nippon Kinzoku Gakkai Shi, 1965, 29 (2): 166-177.
    [42] K. Yamada, Kato, E. Mass Spectrometric Determination of Activities of Phosphorus in Liquid Fe-P-Si, Al, Ti, V, Cr, Co, Ni, Nb and Mo Alloys[J]. Tetsu-to-Hagane (J. Iron Steel Inst. Jap.), 1979, 65 (2): 273-280.
    [43] K. Yamada, Kato, E. Effect of Dilute Concentrations of Si, Al, Ti, V, Cr, Co, Ni, Nb and Mo on the Activity Coefficient of P in Liquid Iron[J]. Trans. Iron Steel Inst. Jap., 1983, 23 (1): 51-55.
    [44] X. Ding, Wang, W., Han, Q. Thermodynamic Calculation of Fe-P-j System Melt[J]. Acta Metall. Sin., 1993, 29 (12): B527-B532.
    [45] R. Schmid-Fetzer, V.A. Tomashik. Aluminium-Iron-Phosphorus[J]. Landolt-B?rnstein: Group IV Physical Chemistry, 2008, Vol.11D1 172-183.
    [46]王丹虹张守魁,赵红,苗华明.石英玻璃与铝液的反应[J].机械工程材料, 2001, 25 (1): 28-30.
    [47] X. Su, N.Y. Tang, J.M. Toguri. 450 C Isothermal Section of the Fe-Zn-Si Ternary Phase Diagram[J]. Canadian metallurgical quarterly, 2001, 40 (3): 377-384.
    [48] J.R.V. Wazer. Phosphorus and its Compounds[M]. New York: Interscience, 1958: 954.
    [49] V. Furdanowicz, C.R. Shastry. Distribution of aluminum in hot-dip galvanized coatings[J]. Metallurgical and Materials Transactions A, 1999, 30 (12): 3031-3044.
    [50] L. Allegra, Rg Hart, He Townsend. Intergranular zinc embrittlement and its inhibition by phosphorus in 55 pct Al-Zn-coated sheet steel[J]. Metallurgical and Materials Transactions A, 1983, 14 (2): 401-411.
    [51] M. Saito, Y. Uchida, T. Kittaka, et al. Formation Behavior of Alloy Layer in Initial Stages of Galvanizing[J]. Tetsu-to-Hagane(Journal of the Iron and Steel Institute of Japan), 1991, 77 (7): 947-954.
    [52] Pd Mercer. Factors which affect the alloy growth rate in galvannealed coatings[C]. Galvatech’92, 1992: 204-208.
    [53]刘全坤.材料成形基本原理[M].机械工业出版社, 2005.
    [54]李运刚,陈国发.相图原理和冶金相图[M].北京:冶金工业出版社, 2002: 219-225.
    [55]潘世文. Zn-Fe-Si-Al四元体系富锌角450℃等温截面的测定及高温镀锌组织的研究[硕士学士论文].湘潭:湘潭大学机械工程学院, 2006.
    [56]刘春梅. Zn-Bi-Fe-Ni四元系相关系的测定及Bi对镀层组织和耐蚀性的影响[硕士学士论文].湘潭:湘潭大学机械工程学院, 2009.
    [57] J.M. Mataigne, Y. Lepretre. Reaction mechanisms during hot dip galvanizing:effect of phosphorous on coating development[J]. Tetsu-to-Hagane(J. Iron Steel Inst. Jpn.)(Japan), 1998,133.
    [58] Ce Jordan, Ar Marder. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450℃: Part I 0.00 wt% Al-Zn baths[J]. Journal of Materials Science, 1997, 32 (21): 5593-5602.
    [59] Ce Jordan, R. Zuhr, Ar Marder. Effect of phosphorous surface segregation on iron-zinc reaction kinetics during hot-dip galvanizing[J]. Metallurgical and Materials Transactions A, 1997, 28 (12): 2695-2703.
    [60] Ar Marder. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45 (3): 191-271.
    [61] J. Mackowiak, Nr Short. Metallurgy of galvanized coatings[J]. International Materials Reviews, 24, 1979, 1 (19): 19.
    [62] P.J. Gellings, Ew De Bree, G. Gierman. Synthesis and characterization of homogeneous intermetallic Fe-Zn compounds[J]. Z Metallkde, 1979, 70 (5): 312.
    [63]张启富,刘邦津. IF钢合金化镀锌板镀层相结构对其性能影响研究的新进展[J].钢铁, 2002, 37 (12): 65-72.
    [64]郝晓东,程东妹,张启富.超轻汽车车体用钢热镀锌的研究及应用现状[J].中国冶金, 2006, 16 (12): 5-8.
    [65] Cs Lin, M. Meshii. The effect of phosphorus in base steel on the forming characteristics of galvannealed sheet steels: New average iron content range of galvannealed IFP steel[J]. Metallurgical and Materials Transactions A, 1995, 26 (6): 1602-1605.
    [66] M. Abe, S. Kanbara, T. Okuyama. Iron--Zinc Alloying Behaviour in Galvannealing of P and P--Si Containing Steel.(Synopsis)[J]. Trans. Iron Steel Inst. Jpn., 1985, 25 (1): B15.
    [67]李九龄.带钢连续热镀锌[M].北京:冶金工业出版社, 1981: 5-10.
    [68]汤酞则.热浸镀锌及其工艺[J].新技术新工艺, 1994, (4): 35-36.