长锚杆控制隧道围岩变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长锚杆对隧道围岩的作用研究与数值模拟变形控制研究具有现实的工程应用价值。锚杆设置等加固措施的主要目的是增强围岩薄弱层面的抗剪性能,延缓或抑制层间错动,提高结构的稳定性和安全性。但在支护工程过程中,还普遍存在三个问题:一是支护结构的安全系数过大,过于保守,造成资源及经济上的浪费;二是支护结构安全系数偏小,起不到良好的支护效果,且不安全;三是缺乏研究数据,没有规律对支护技术提供参考。因此,使得本论文的研究有了重要的意义。
     本文分别对锚固设计方法和有限元法进行了详细的阐述,在此基础上设计了长锚杆控制的对比工况以及详细描述了长锚杆的施作工艺,并讨论了围绕隧道支护开展模拟的力学模型的选用,应用大型通用有限元分析软件ANSYS进行长锚杆控制围岩变形的数值模拟仿真研究。
     本文采用基于岩石力学方法的围岩—结构模型进行内力和变形分析,同时可得出围岩开挖后的应力状态、洞周变形以及锚杆轴力等,从而可判断锚杆支护参数的选择是否合理,能否满足围岩开挖后洞室是稳定的,以确保隧道及地下工程施工安全进行。根据本文依托的实际工程的工程概况,建立和其相对应的隧道纵断面模型,分别进行锚杆长度对比工况模拟研究。锚杆长度分别为4m、6m、8m,对三种工况下数值模拟所取得的结果进行比较分析。
     通过ANSYS对三种工况的数值模拟,得到:27根4m锚杆控制拱顶最大变形量为28.02cm,27根6m锚杆控制拱顶最大变形量为24cm,18根8m锚杆控制拱顶最大变形量为18.33cm,可见,18根8m锚杆控制变形最有效:并得到锚杆水平布置时,部分锚杆轴力呈单峰变化规律。同时,对不同埋深及围岩下三种工况的支护效果进行模拟,得到8m锚杆的支护效果均优于4m锚杆和6m锚杆的支护效果。
     通过理论的研究和模拟数据的对比分析,针对具体地形以及隧道围岩的力学性质等因素优化锚杆设置,对于软弱围岩隧道,长锚杆的设置对围岩的加固效果优于普通锚杆设置,为实际的支护工程以及今后进一步的支护研究提供参考数据,具有实际工程应用价值。
Study on controlling the surrounding rock deformation of tunnel by long bolt and controlling the deformation by numerical simulation has real values in engineering applications. The main purpose of anchor settings and other reinforcement methods is to strengthen the weak levels of sheer rock performance, delay or inhibit the dislocation between layers to improve the structure stability and security. However, there are still three questions in support engineering processes:First, if the supporting structure of the safety factor is too large, will resulting in waste of resources and the money; Second, if the supporting structure of the safety factor is too small, would not achieve good supporting effect and security; Third, lack of relevant research data and no law to provide reference for technical support increasing the difficulties in support engineering process. Thus, the study of this paper is important.
     This paper described in detail both in anchorage design method and the finite element method, based on that, designed comparison of the condition controlling by long bolt and described the process facilities of long bolt in detail. Also discussed the selection of the mechanical model in tunnel support simulation, use the large general-purpose finite element analysis software ANSYS to simulation of the deformation in controlling the surrounding rock deformation of tunnel by long bolt.
     This method is based on rock mechanics, analysis the internal force and deformation by surrounding rock-structure model, and can obtain the stress state of rock after excavation and the deformation hole surrounding and the bolt axial force, which can determine the parameters of bolting choice is reasonable and the rock excavation in the tunnel is stable, and ensure the tunnel and underground construction are safety. This paper established the vertical section of the tunnel model based on the actual engineering project survey, simulates and analysis the bolt length. Three conditions of simulation results were compared, there bolt lengths are 4m,6m and 8m.
     Numerical simulation the three conditions by ANSYS, maximum deformation of the vault controlling by 274m bolts is 28.02cm, maximum deformation of the vault controlling by 276m bolts is 24cm, maximum deformation of the vault controlling by 188m bolts is 18.33cm, controlling by 18.8m bolt is the most effective method; simulation also shown, when the bolts are arrangement horizontally, some bolt's axial force variation of a single peak. Meanwhile, at different levels of depth and rock, simulating the effect of the supporting of three conditions, and the supporting effect of 8m bolt is better than the supporting effect of 4m and 6m anchor bolt.
     Through theoretical research and comparative analysis of simulation data, arrangement the bolt for the specific terrain and mechanical properties of surrounding rock, for soft rock tunnel reinforcement, long bolt is better than the ordinary bolt, and the reference data for the actual support engineering and further research in future is valuable for practical engineering applications.
引文
[1]习小华.分析影响隧道围岩稳定性因素.西部探矿工程,2003,12(3):770-781.
    [2]孙静.锚杆在节理岩体中的加固作用机理和锚固效应分析及应用:(硕土学位论文).中国科学院研究生院(武汉岩土力学研究所),2003.
    [3]李园.大跨度隧道施工力学响应及地表沉陷预计:(硕士学位论文).长沙:中南大学,2008.
    [4]R.C.K, Wong & P. K. Kaiser, Effect of Support Pressure Distribution on Settlement above Tunnels. Tunnels and Tunnelling, Vol.19, No.5,1987,27-29.
    [5]杨典森.锚固岩体等效参数数值模拟研究及应用:(硕士论文).中国科学院研究生院(武汉岩土力学研究所).2004.
    [6]杨会军,王梦恕.隧道围岩变形影响因素分析[J].铁道学报,2006,28(3):92-96.
    [7]程志鹏.特大断面超浅埋暗挖地铁车站隧道施工技术研究:(硕十论文).北京:北京交通大学,2009.
    [8]靳晓光,李晓红.深埋隧道围岩——支护结构稳定性研究[J].岩土力学,,2005.
    [9]谷拴成,姚国圣,刘娟等.锚杆在软岩中作用机理的研究[J].山东科技大学学报(自然科学版),2005.24(4):74-76.
    [10]Gerrard, C. Rock bolting in theory—a keynote lecture. Proc. of the Int. Symp. on rock bolting, Stockholm,1983.
    [11]A. Serrano, C. Olalla. Tensile resistance of rock anchors.1999.36.449-474.
    [12]徐干成等.地下工程支护结构.北京:中国水利水电出版社,2002.
    [13]孙钧.中国岩土工程锚固技术的应用与发展.广州:国际岩土锚固与灌浆新进展会议论文集.1994.27-32.
    [14]邹志晖,汪志林.锚杆在不同岩体中的工作机理,岩土工程学报,1993,15(6):71-79.
    [15]谢圣纲.大跨度隧道施工围岩稳定性及可靠度研究:(硕士论文).重庆:重庆大学,2006.
    [16]彭丽敏,刘小兵.隧道工程.长沙:中南大学出版社,2003.
    [17]郭小红,乔春江.对隧道支护结构承载能力的分析[J].现代隧道技术,2002,39(2):77-81.
    [18]张琼武.基于围岩稳定性的小净距隧道支护结构分析:(硕士论文).武汉:武汉理工大学,2008.
    [19]B. K. Karamete. T. Tokdemior and M. Ger., Unstructared grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming. Intemational Journal for Numerical Methods in Engineering,1997.vol.40,251-268.
    [20]江厚祥.隧道通过断层区围岩稳定性数值模拟:(硕士论文).重庆:重庆大学,2009,6.
    [21]熊亮.层状围岩隧道稳定性及锚杆支护参数优化:(硕士论文).重庆:重庆大学,2010,12.
    [22]赵鹏涛.长距离输水隧洞TBM施工过程数值分析:(硕士论文)西安:西北农林科技大学,2010,5.
    [23]方俊.隧道洞口段施工弹塑性数值模拟及变形监测的数据分析:(硕士论文).浙江:浙江大学,2007.
    [24]贾倩.分层黄土中隧道结构与周围土体的相互作用特征研究:(硕士论文).西安:西安建筑科技大学,2010,5.
    [25]徐晨.软弱围岩隧道中锁脚锚杆支护效果研究:(硕士论文).西安:西安大学,2010,4.
    [26]漆泰岳.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002.
    [27]梁庆华.厚冲积层地表沉陷数值模拟及应用研究:(硕十论文).山东:山东科技大学,2006,6.
    [28]王齐林.地下结构失稳及可靠度研究:(硕十论文).武汉:武汉理工大学.2007,4.
    [29]琚海明.层状岩体地下洞室稳定性评价理论与支护设计方法研究:(硕十论文).贵州:贵州大学,2009,6.
    [30]余学鹏.地铁暗挖法施工数值模拟方法研究:(硕十论文).北京:北京地质大学,2009,5.
    [31]严涛.地铁隧道开挖引起的地表沉降及地铁运行引起的环境振动研究:(硕十论文).成都:西南交通大学,2010,6.
    [32]尚岳全,孙红月.岩土力学数值模拟结果应用中应注意的问题.地质灾害与环境保护,1997,12(3):337-381.
    [33]李晓军.基于有限单元法的高拱坝体形优化设计:(硕士论文).西安:西北农林科技大学,2008,4.
    [34]赵尘银.大跨度高边墙地下洞室超长锚杆施工技术.隧道建设.2005.2.
    [35]黄莉.岩土力学数值模拟中力学参数探讨.科协论坛(下半月),2008,11.
    [36]李焕强.李渝生,刘涛,陈智强.三维数值分析在岩土工程应用中的误差问题.岩土力学,2005.12.
    [37]李焕强,李渝生.数值分析模拟开挖卸荷变形的误差分析探讨.工程地质学报,2005,6.
    [38]傅鹤林,郭磊,欧阳刚杰,闻生.大跨隧道施工力学行为及衬砌裂缝产生机理,北京:科技出版社,2009.
    [39]邓荣贵,付小敏,邵江,邓林.泥巴山深埋特长隧道岩体工程问题研究.成都:西南交通大学出版社.2010,4.
    [40]铁路隧道设计规范(TB10003-2001)[s].北京:中国铁道出版社,2001.
    [41]刘涛,杨风鹏.精通ANSYS北京:清华大学出版社,2001.
    [42]叶先磊.史亚杰ANSYS工程分析软件应用实例.北京:清华大学出版社,2003.
    [43]D. J. Curtis, Visco-elastic Tunnel Analysis. Tunnels & Tunnelling, Vol.6, No.6,1974,38-40.
    [44]R. A. Mayville, R. G. String fellow. "Numerical analysis of a railroad hole fracture problem."[J]. Theoretical and Applied Fracture Mechanics 24(1995)1-12.
    [45]李围等.隧道及地下工程ANSYS实例分析.北京:中国水利水电出版社.2008.
    [46]程良奎等.岩土加固实用技术.北京:地震出版社.1994.
    [47]陈洪凯等.锚固岩体参数的等效方法研究.应用数学和力学.2001.22:862-868.
    [48]C. Sagaseta, J. M. Sanchez. J. Canizal. A general analytical solution for the required anchor force in rock slopes with toppling failure. International Journal of Mechnics & Mining Scences 38(2001)421-435.
    [49]Ratcliffe C P, Bagaria WJ. Vibration technique for locating delamination in a composite beam. AIAA JOURNAL,1998,36(6):1074-1077.
    [50]D. Song. Non-linear Viscoplastic Creep of Rock Surrounding an Underground Excavation [J]. Int. J. Rock Mech. Sci.& Geomech. Abstr,1993,30(6):653-658.
    [51]Barton Netal, Bolt design based on shear strength, Proc. of the inter sym on rock bolting. 1983:367-376.