配电网智能故障诊断与谐波源定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
故障诊断是准确故障分析、快速恢复供电的基础,而谐波源定位是谐波治理、谐波污染责任划分的前提。随着科学技术的发展以及社会的进步,配电系统的规模不断扩大,安装的保护、监控等设备越来越多,信息中心接收的数据量越来越大。如何综合利用上送信息,实现配电网的故障诊断和谐波源定位对提高电网运行管理水平有着非常重要的理论和现实意义。本论文从配电网故障诊断和谐波源定位问题的特点出发,挑选有效的电气输入量,利用合理的处理方法,对所涉及的子课题进行了针对性的研究。
     首先,提出了一种基于自适应神经模糊推理系统的小电流接地系统故障分类方法。该方法采用小波变换提取故障特征频带内的暂态信号,利用统计量构造故障特征量,研究所构造特征量在不同故障类型下的规律,利用自适应神经模糊推理系统对特征量进行融合,进而得到分类结果。在PSCAD/EMTDC中建立了配电网仿真模型,通过仿真对分类方法进行了训练和测试。结果表明,该分类方法具有很高的准确性。仿真研究了分类方法在中性点接地方式变化、电弧故障、不同系统等效阻抗变化、系统拓扑结构变化、噪声环境以及不同负荷水平六种工况下的适应性。结果表明,前四种工况下分类方法几乎不受影响;当系统拓扑结构变化不大时,分类方法的适应性良好,但是在拓扑发生剧烈变化时,方法的正确率有所下降;在信噪比较低以及重负荷工况下,分类的正确率大大降低。鉴于此,可通过增加前置滤波器环节和重负荷工况下的故障训练样本提高分类方法的准确性。
     其次,研究了基于S变换的小电流接地系统单相接地故障选线方法。在研究S变换提取幅频特性和相频特性的基础上,提出了一种基于S变换比相原理的故障选线方法。该方法利用S变换提取零序电流在不同频率点的模值和相角信息,通过模值比较,找出了特征频率点;通过相角比较,制定了故障选线投票机制。考虑到特征频率点的模值能刻画该频率点相角信息的可靠性,在投票机制中定义了投票信心度。通过对故障后1/4工频周期内的采样点逐一进行投票,形成投票统计图。利用仙农模糊熵定义的选线信心度对投票统计图进行了融合计算,在选出故障馈线的同时,给出选线信心度。该方法的特点在于通过综合多个采样点的投票结果,大大提高了选线方法的可靠性,并且给出的选线信心度是对当前选线结果可靠性的度量。建立了一个四馈线仿真模型,通过仿真验证表明,定义的选线信心度合理,选线正确率高。后续在研究健全馈线和故障馈线瞬时功率特征区别的基础上,构造了基于S变换的瞬时能量函数,提出了基于S变换瞬时能量函数法的故障选线方法。对以上两种选线方法在电弧故障和噪声环境下的适应性进行了研究。结果表明,两种方法几乎不受电弧故障的影响,并且具有较强的抗噪声能力。最后,通过对两种选线方法进行综合得到了基于仙农模糊熵的综合选线方法。通过仿真测试表明,综合方法的抗噪性比基于单一选线原理的方法有所提升。
     再次,理论分析了S注入法中影响故障定位信号衰减的主要因素,建立仿真模型对这些因素进行了研究。结果表明,定位信号受过渡电阻的影响最大,并且当网络拓扑结构一定时,定位信号的衰减程度主要取决于过渡电阻和故障距离两个因素。以铁路配电网为应用对象,设计实现了一套基于S注入法的铁路电力贯通线路故障定位系统,该系统通过基于无线传感器网络通信思想的无线节点上送定位信号的检测信息,大大提高了信号寻迹的效率。通过在一条实际线路上的试验,结果表明该定位系统定位准确、耗时短。
     最后,针对配电网谐波源定位问题进行了研究。首先改进了基于电流源注入法的谐波潮流直接算法。该谐波潮流算法通过矩阵初等变换对同时含有环网、滤波器和补偿电容器的网络进行求解,通过和IEEE-519中一个配电网模型的计算数据比较,验证了算法的正确性。将该方法和前推回代法进行了对比,结果表明本文的算法速度快、收敛性好,并且随着环路的增加,方法的优势更加明显。研究了基于最小二乘估计和稀疏最大化的两种谐波源定位方法,根据IEEE-123节点测试模型建立了计算模型,对两种方法在测量点个数不同时的定位能力进行了分析。对比分析了两种方法在非主要谐波源存在注入干扰、量测矩阵存在误差、网络存在环路以及接有补偿电容器组四种工况下的适应性。研究表明,基于最小二乘估计的谐波源定位方法对四种工况的适应性最好,但是以测量点的增加为代价;基于稀疏最大化的谐波源定位方法可以用少量测量点实现谐波源定位,并且在谐波注入干扰、网络含有环路以及量测矩阵存在误差时表现良好,但当网络含有补偿电容时,方法的准确性下降甚至失效。因此,应测量补偿电容上流过的谐波电流以减小其影响。
Fault diagnosis is the foundation of precise fault analysis and fast fault restoration. Harmonic source identification is the premise of harmonic treatment and responsibility partition of harmonic pollution. With the development of science and technology and the progress of society, the size of distribution network keeps growing, and protection and monitor devices are more installed. As a result, large amount of data was accepted by information center in nowadays. How to use these data for fault diagnosis and harmonic source identification in distribution network is both theoretically and practically significant for improving operation level in power system. According to the characteristics of fault diagnosis and harmonic source identification in distribution, the effective electrical components are selected, and the reasonable techniques are employed for studying the related issues.
     At first, the fault classification technique in neutral non-effectively grounded distribution network based on Adaptive Network-based Fuzzy Inference System (ANFIS) is proposed. The transient signals in fault characteristic frequency band are extracted by wavelet transform. From the transient signals, the fault characteristic quantities are constructed by statistics. Afterward, their performance under different fault types is studied. ANFIS is employed as the fault characteristic quantities fusion tool to obtain the final fault classification result. The proposed fault classification technique is trained and tested in the simulated distribution network in PSCAD/EMTDC environment. The results show its high correctness. The adaptability of the proposed method is studied in six distribution operating conditions, which are neutral grounded style changing, arc fault, different system equivalent impedances, network topology variation, noise interference and different load levels. From the results, the classification method is almost immune in the first four conditions. When nework topology changes slightly, the adaptability is good. But, the correctness of results would decrease if topology changes intensively. The proposed technique is seriously degraded by small signal noise ratio or heavy load in the system. So, adding noise filter and training samples of heavy load should be considered for improving the correctness.
     At second, the fault line selection methods based on S-Transform (ST) in neutral non-effectively grounded distribution network is well studied. Through analyzing the amplitude-frequency and phase-frequency characteristics of ST, the fault line selection technique based on phase-comparison principle is proposed. This technique utilizes the modulus and phase information extracted by ST at different frequencies of zero sequence currents. Through modulus comparison, the characteristic frequency is found. Through phase comparison, the fault line vote mechanism is constructed. Since the modulus at characteristic frequency can reflect the reliability of phase at the corresponding frequency, the vote confidence degree is defined in vote process. Through one by one vote in1/4fundamental cycle after fault, the vote statistic diagram is obtained. The Fault Line Selecting Confidence Degree (FLSCD), which is defined by Shannon Fuzzy Entropy (SFE), is used to calculate the vote statistic diagram. In the proposed fault line selection method, the fault line result is given with FLSCD. Its advantages are that the result reliability is highly enhanced by utilizing multiple-points vote results, and FLSCD is the reliability measument of the suspected fault line. The simulation model with four feeders is established. The simulating results show that the proposed technique possesses high correctness, and the defined FLSCD is rational. Later, the difference between instant power of faulty line and that of healthy lines are studied. The instant power functions for fault line selection based on ST are constructed for proposing the other fault line selection method. The performance of two above methods in arc fault and noise environment is researched. The results show that both of them exibihit good in arc fault, and their anti-noise ability is also strong. In the end, two methods are synthetized for obtaining the fusion method based on SFE. Through simulation, the anti-noise ability of fusion method is improved in comparison with the single principle based methods.
     At third, the main factors which attenuate the fault location signal in S-injection method are theoretically studied. Moreover, these factors are researched by simulation. It is found that fault resistance has the most serious influence on the fault location signal. When the network topology is fixed, the attenuation of fault location signal mainly depends on fault resistance and fault distance. To make the railway distribution network as application object, the fault location system based on S-injection method is developed. It employs wireless detectors which are based on the communication idea of wireless sensor network to upload the sensing information of fault location signal. As a result, the efficiency of tracing location signal is highly improved. From the field test on a real feeder, the location system locates fault correctly and quickly.
     At last, the harmonic source identification in power distribution is researched. The harmonic power flow direct algorithm based on current injection idea is modified first. The algorithm can calculate the network with loops, capacitors and filters through matrix initial transform. In comparison with the results of distribution in IEEE-519, the correctness of algorithm is verified. Compared with backward-forward sweep method, the algorithm in this paper shows fast calculation speed and good convergence. Moreover, its advantages are more obvious as the number of loops increases. Then, two harmonic source identification methods based on Least-Square Estimation (LSE) and Sparsity Maximizatioin (SM) respectively are studied carefully. According to IEEE-123test network, the calculation model for testing the two methods is established. The identification ability of two methods is analyzed when there are different numbers of measument devices in network. The adaptability of two techniques is compared when non-main harmonic sources have injecting disturbances, measument matrix has errors, and network has loops or capacitors. From the study results, the LSE method shows better adaptability, however the expense is more measument devices. The SM technique can identify harmonic sources with the small number of measument devices. Also, it has good adaptability under the conditions of harmonic injection distrubance, loops and inaccurate measument matrix. But when capacitors are connected into network, the SM technique is degraded seriously or even invalid. So, the harmonic current flowing in capacitors should be measured in order to avoid their impact.
引文
[1]郑瑞晨.基于地理信息系统的配电网信息管理系统及其关键技术研究与实践[D].武汉:华中科技大学博士学位论文,2006.
    [2]齐郑.小电流接地系统单相接地故障选线及定位技术的研究[D].北京:华北电力大学博士学位论文,2005.
    [3]季涛.基于暂态行波的配电线路故障测距研究[D].济南:山东大学博士学位论文.2006.
    [4]戚宇林.中压配电网单相接地故障定位的研究与实现[D].北京:华北电力大学博士学位论文,2008.
    [5]苗友忠.配电系统馈线整体化暂态保护与分布智能故障定位的研究[D].天津:天津大学博士学位论文,2004.
    [6]R. H. Salim, K. De Oliveira, A. D. Filomena, et al. Hybrid fault diagnosis scheme implementation for power distribution systems automation[J]. IEEE Transactions on Power Deliver, 2008,23(4):1846-1856.
    [7]杨晓辉,蔡旭.分形理论在中压电网故障辨识中的应用[J].电力系统及其自动化,2006,30(4):59-64.
    [8]刘学民.基于Hilbert-Huang变换的配电网电缆接地故障定位研究[D].北京:中国石油大学硕士学位论文.2010.
    [9]张俊芳,刘鹏.基于改进模糊神经网络的配电网故障选线研究[J].电力系统保护与控制,2010,38(22):120-125.
    [10]戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究[J].中国电机工程学报,2003,23(5):44-47.
    [11]薛永端,徐丙垠,李京,等.铁路10kV自闭/贯通线路行波故障测距技术[J].电力系统自动化,2006,30(5):68-73.
    [12]赵晓薇.铁路自闭/贯通线路行波测距的应用研究[D].北京:中国农业大学硕士学位论文,2005.
    [13]Grid 2030:a national vision for electricity's second 100 years office of Elect. Transm. Distrib. [R], Washington, DC:U.S. Dept. Energy,2003.
    [14]F. Batrinu, G. Chicco, J. Schlabbach, et al. Impacts of grid-connected photovoltaic plant operation on the harmonic distortion[C]. IEEE Electrotechnical, Benalmadena, Spain,2006.
    [15]M. Aiello, A. Cataliotti, S. Favuzza, et al. Theoretical and experimental comparison of total harmonic distortion factors for the evaluation of harmonic and interharmonic pollution of grid-connected photovoltaic systems[J]. IEEE Transaction on Power Delivery,2006,21(3):1390-1397.
    [16]Strategic research agenda for Europe's electricity networks of the future [R]:European Commision,2007 (EUR 22580).
    [17]J. Bebic. Power system planning:emerging parctices suitable for evaluating the impact of high-penetration photovoltaics [R], Niskayuna, New york:GE Global Research,2008 (NREL/SR-581-42297).
    [18]H. Farhangi. The path of the smart grid[J]. IEEE power & energy magzine,2010,8(1): 18-28.
    [19]I. T. Papaioannou, M. C. Alexiadis, C. S. Demoulias, et al. Modeling and field measurements of photovoltaic units connected to LV grid, study of penetration scenarios[J]. IEEE Transaction on Power Delivery,2011,26(2):979-987.
    [20]P. P. Varaiya, F. F. Wu, J. W. Bialek. Smart operation of smart grid:risk limiting dispatch[J]. Proceedings of the IEEE,2011,99(1):40-57.
    [21]R. H. Lasseter. Smart distribution:coupled microgrids[J]. Proceedings of the IEEE,2011, 99(6):1074-1082.
    [22]G. T. Heydt. Electric power quality:a tutorial introductioin[J]. IEEE compu. Appl. Power, 1998,11(1):15-19.
    [23]J. Arrillaga, N. R. Watson. Power System Harmonic Analysis (第2版) [M]. New York: John Wiley and Sons,2003.
    [24]D. G. Infield, P. Onions, A.D.Simmons, et al. Power quality from multiple grid-connected single-phase inverters[J]. IEEE Transaction on Power Delivery,2004,19(4):1983-1989.
    [25]Y. D. Lee, C. S. Chen, C. T. Hsu, et al. Harmonic analysis for the distribution system with dispersed generation systems[C]. Power Con. Power System Technology, Chongqin, China,2006.
    [26]S. A. Papathanassiou, M. P. Papadopoulos. Harmonic analysis in a power system with wind generation[J]. IEEE Transaction on Power Delivery,2006,21(4):2006-2016.
    [27]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8.
    [28]蔡明,唐昆明,张太勤.基于参数辨识方法的谐波源定位[J].电网技术,2011,35(6):134-138.
    [29]车权.基于谐波源检测与定位方法的研究——稳健回归的谐波发射水平评估[D].成都:四川大学硕士学位论文,2004.
    [30]马历,刘开培,雷肖.基于LS-SVM的谐波源定位及谐波源注入电流分解方法[J].电力系统及其自动化,2007,31(18):61-65.
    [31]符玲.基于信息测度的电力系统故障识别方法研究[D].成都:西南交通大学博士学位论文,2006.
    [32]任建交,周明,李庚银.电网故障信息综合分析及管理系统的研究[J].电网技术,2002,26(4):38-41.
    [33]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009,33(17):38-41.
    [34]B. Das. Fuzzy logic-based fault-type identification in unbalanced radial power distribution system[J]. IEEE Transaction on Power Delivery,2006,21(1):278-285.
    [35]曾祥君,尹项根,于永源,等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报,2000,20(1):29-32.
    [36]程路,陈乔夫.小电流接地系统单相接地选线技术综述[J].电网技术,2009,33(18):219-224.
    [37]董新洲,毕见广.配电线路暂态行波的分析和接地选线研究[J].中国电机工程学报,2005,25(4):1-6.
    [38]房鑫炎,郁惟镛,庄伟.模糊神经网络在小电流接地系统选线中的应用[J].电网技术,2002,26(5):15-19.
    [39]张海平.基于QNN-DS的配电网故障选线与扰动识别方法研究[D].成都:西南交通大学硕士学位论文,2010.
    [40]张仲孝,苗世洪,林湘宁,等.基于多频带分量重构的小电流接地系统自适应选线新方法[J].电网技术,2011,35(9):210-215.
    [41]庞清乐.基于智能算法的小电流接地故障选线研究[D].济南:山东大学博士学位论文,2007.
    [42]张大波,刘志刚,张亚军,等.基于相差统计的小电流单相接地选线新判据[J].电力系统自动化,2007,31(11):77-80.
    [43]邵明,黄彦全,韩花荣,等.基于Prony算法的小电流接地系统单相接地故障选线研究[J].继电器,2005,33(24):6-9.
    [44]束洪春,彭仕欣.基于短窗数据S变换能量的缆-线混合配电网络故障选线方法[J].电工技术学报,2009,24(10):152-159.
    [45]郑罡.基于注入法的小电流接地系统单相接地故障定位方法[D].济南:山东大学硕士学位论文,2007.
    [46]桑在中,潘贞存,李磊.“S注入法”与选线测距定位[J].电力系统及其自动化学报1998(4):35-39.
    [47]彭敏放,谭享波.利用GSMSMS通信的馈线接地故障定位系统[J].湖南大学学报,2004,31(4):41-44.
    [48]徐志向.基于奇异值分解算法的谐波状态估计及谐波源定位的研究[D].重庆:重庆大学硕士学位论文,2006.
    [49]H. W. Liao. Power system harmonic state Estimation via sparsity maxization[C]. Power Engineering Society General Meeting, Montreal, Que.,2006.
    [50]H. W. Liao. Power system harmonic state estimation and observability analysis via sparsity maximization[J]. IEEE Transaction on Power Systems,2007,22(1):15-23.
    [51]E. Gursoy, D. Niebur. Harmonic load identification using complex independent component analysis[J]. IEEE Transaction on Power Delivery,2009,24(1):285-292.
    [52]C. S. Cheng, D. Shirmohammadi. A three-phase power flow method for real-time distribution system analysis[J]. IEEE Transaction on Power systems,1995,10(2):671-679.
    [53]J. H. Teng. A direct approach for distribution system load flow solutions[J]. IEEE Transaction on Power Delivery,2003,18(3):882-887.
    [54]段建东,张保会,周艺,等.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6.
    [55]潘露,吕艳萍,于芳,等.基于相频特性与多频带分析的小电流接地系统故障选线[J].电力系统自动化,2007,31(4):76-79.
    [56]黄少锋 王兴国,刘千宽.一种利用电压模故障分量的选相元件[J].电力系统自动化,2008,32(9):42-46.
    [57]D. Hou, N. Fischer. Deterministic high-impedance fault detection and phase selection on ungrounded distribution systems[C]. Power Systems Conference:Advanced Metering, Protection, Control, Communication, and Distributed Resources, Clemson. SC,2006.
    [58]范春菊,郁惟镛.专家系统方法在配电网输电线故障测距中的应用[J].继电器,2001,29(10):5-8.
    [59]杨明玉,王世旭,张举.基于数学形态学梯度的快速选相方案[J].电网技术,2006,30(7):64-68.
    [60]Y. Zhang, Q. Zhou, C. X. Sun, et al. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment[J]. IEEE Transaction on Power systems, 2008,23(3):853-858.
    [61]D. Thukaram, H. P. Khincha, H. P. Vijaynarasimha. Artificial neural network and support vector Machine approach for locating faults in radial distribution systems[J]. IEEE Transaction on Power Delivery,2005,20(2):710-721.
    [62]符玲,何正友,麦瑞坤,等.小波熵证据的信息融合在电力系统故障诊断中的应用[J].中国电机工程学报,2008,28(13):64-69.
    [63]M. Reddy, D. K. Mohanta. Performance evaluation of an adaptive-network-based fuzzy inference system approach for location of faults on transmission lines using montecarlo simulation [J]. IEEE Transaction on Fuzzy Systems,2008,16(4):909-919.
    [64]M. J. Reddy, D. K. Mohanta. Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location incorporating effects of power swings[J]. IET Generation, Transmission & Distribution,2008,2(2):235-244.
    [65]曾祥君,尹项根,张哲.配电网接地故障负序电流分布及接地保护原理研究[J].中国电机工程学报,2001,21(6):84-89.
    [66]曾祥君,尹项根,张哲,等.零序导纳法馈线接地保护的研究[J].中国电机工程学报,2001,21(4):5-10.
    [67]庞清乐,孙同景,钟麦英,等.基于粗集理论的小电流接地系统故障选线[J].中国电机工程学报,2007,27(4):60-64.
    [68]张帆,潘贞存,张慧芬,等.基于零序电流暂态极大值的小电流接地选线新判据[J].电力系统自动化,2006,30(4):45-48.
    [69]束洪春,刘娟,王超,等.谐振接地电网故障暂态能量自适应选线新方法[J].电力系统自动化,2006,30(11):72-76.
    [70]林湘宁,翁汉琍,吴科成,等.小电流接地系统自适应单相接地保护新原理[J].中国电机工程学报,2006,26(2):52-57.
    [71]张海平,何正友,张钧,等.基于量子神经网络和证据融合的小电流接地选线方法[J].电工技术学报,2009,24(12):171-178.
    [72]潘贞存.消弧线圈自动跟踪补偿与接地选线定位技术的研究[D].济南:山东大学博士学位论文,2006.
    [73]王耀南,霍百林,王辉,等.基于小波包的小电流接地系统故障选线的新判据[J].中国电机工程学报,2004,24(6):54-58.
    [74]张保会,赵慧梅,张文豪,等.基于特征频带内暂态零序电流特点的配电网单相接地故障选线方法[J].电力系统保护与控制,2008,36(13):5-10.
    [75]李森,宋国兵,康小宁,等.基于时域下相关分析法的小电流接地故障选线[J].电力系统保护与控制,2008,36(13):15-20
    [76]O. Chaari, M. Meunier, F. Brouaye. Wavelets:a new tool for the resonant grounded power distribution system relaying[J]. IEEE Transaction on Power Delivery,1996,11(3):1301-1308.
    [77]X. Z. Dong, S. X. Shi. Identifying single-phase-to-ground fault feeder in neutral noneffectively grounded distribution system using wavelet transform[J]. IEEE Transaction on Power Delivery,2008,23(4):1829-1837.
    [78]张帆,潘贞存,张慧芬,等.基于方向行波的小电流接地系统故障选线[J].中国电机工程学报,2007,27(34):70-75.
    [79]贾清泉,刘连光,杨以涵,等.应用小波检测故障突变特性实现配电网小电流故障选线保护[J].中国电机工程学报,2001,21(10):78-82.
    [80]贾清泉,杨奇逊,杨以涵.基于故障测度概念与证据理论的配电网单相接地故障多判据融合[J].中国电机工程学报,2003,23(12):6-11.
    [81]薛永端,徐丙垠,冯祖仁,等.小电流接地故障暂态方向保护原理研究[J].中国电机工程学报,2003,23(7):51-56.
    [82]束洪春,彭仕欣.利用全频带综合小波能量相对熵的配网故障选线方法[J].高电压技术,2009,35(7):1559-1564.
    [83]张艳霞,王清亮.应用故障暂态特性实现配电网故障选线的新方法[J].电力系统自动化,2009,33(16):76-80.
    [84]庞清乐,陈生银.基于人工免疫算法的小电流接地故障选线[J].电力系统保护与控制,2009,37(24):27-31.
    [85]束洪春,彭仕欣,李斌,等.配电网缆-线混合线路故障选线的可拓融合方法[J].电工技术学报,2008,23(11):146-152.
    [86]陈寅,林良明,颜国正.D-s证据推理在信息融合应用中的存在问题及改进[J].系统工程与电子技术,2000,22(11):69-71.
    [87]R. Dashti, J. Sadeh. A new method for fault section estimation in distribution network[C]. International Conference on Power System Technology, Hangzhou, CN.2010.
    [88]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [89]A. A. Girgis, C. M. Fallon. Fault location techniques for radial and loop transmission system using digital fault recorded data[J]. IEEE Transaction on Power Delivery,1992,7(4):1936-1945.
    [90]M. S. Choi, S. L. Lee, et al. A new fault location algorithm using direct circuit analysis for distribution systems[J]. IEEE Transaction on Power Delivery,2004,29(2):524-532.
    [91]何正友,杨建维,周超,等.铁路自闭贯通线架空线-电缆混合线路行波测距[J].大连海事大学学报,2007,33(3):46-50.
    [92]和敬涵,季英业,毛志芳,等.基于小波变换的行波测距方法在铁路信号电源系统中的应用研究[J].铁道学报,2005,27(1):70-74.
    [93]陈平,葛耀中,索南加乐,等.输电线路故障开断暂态行波的传播特性研究[J].中国电机工程学报,2000,20(7):75-78.
    [94]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用——A型原理[J].继电器,2004,32(2):13-15.
    [95]覃剑,陈祥训,郑健超,等.利用小波变换的双端行波测距新方法[J].中国电机工程学报,2000,20(8):6-10.
    [96]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用——D型原理[J].继电器,2004,32(3):4-7.
    [97]陈平,葛耀中,索南加乐,等.基于故障开断暂态行波信息的输电线路故障测距研究[J].中国电机工程学报,2000,20(8):56-59.
    [98]张兆宁,毛鹏,郁惟铺,等.时间序列小波神经网络在故障测距中的应用[J].中国电机工程学报,2001,21(6):66-71.
    [99]S. Hanninen, M. Lenhtonen. Earth fault distance computation with artificial neural network trained by neutral voltage transients[C]. IEEE PES. Summer Meeting,2001.
    [100]M. A. Al-shaher, M. M. Sabry, A. S. Saleh. Fault location in multi-ring distribution network using artificial neural network[J]. Electric Power Systems Research,2003,64(2):87-92.
    [101]Y. L Cao T. Y. Xu, W. Zheng. Study of fault location by algorithm of rough sets for distribution network[C].2009 International Conference on Sustainable Power Generation and Supply,2009.
    [102]赵静,何正友,钱清泉.中性点脉宽注入法在铁路自闭贯通输电线路故障定位中的应用[J].电网技术,2006,30(16):59-63.
    [103]X. Long, W. Xu, Y. W. Li. A new technique to detect faults in de-energized distribution feeders-Part I:scheme and asymmetrical fault detection[J]. IEEE Transaction on Power Delivery, 2011,26(3):1893-1901.
    [104]张慧芬,潘贞存,桑在中.基于注入法的小电流接地系统故障定位新方法[J].电力系统自动化,2004,28(3):64-66.
    [105]李伟华.S注入法在铁路自闭/贯通输电线路故障定位中的适应性研究[D].成都:西南交通大学硕士学位论文,2006.
    [106]李伟华,何正友,赵静.应用于铁路自闭/贯通线路故障定位的线上节点设计[J].电力系统自动化,2006,30(23):79-84.
    [107]张庆雷.中低压配电网单相接地故障自动定位系统与应用技术研究[D].济南:山东大学硕士学位论文,2008.
    [108]孙波,孙同景,薛永端,等.基于暂态信息的小电流接地故障区段定位[J].电力系统自动化,2008,32(3):52-55.
    [109]郑伟杰,孙嫒媛,徐文远.用用非线性元件耦合矩阵模型的谐波潮流算法[J].中国电机工程学报,2008,28(10):117-122.
    [110]J. H. Teng, C. Y. Chang. Backward/Forward sweep-based harmonic analysis method for distribution systems[J]. IEEE Transaction on Power Delivery,2007,22(3):1665-1672.
    [111]L. L. Kuo, T. Noda. A time-domain harmonic power-flow algorithm for obtaining nonsinusoidal steady-state solutions[J]. IEEE Transaction on Power Delivery,2010,25(3):1888-1898.
    [112]Task Force on Harmonics Modeling and Simulation. The modeling and simulation of the propagation of harmonics in electric power networks Part I:concepts, models and simulation techniques[J]. IEEE Transaction on Power Delivery,1996,11(1):452-465.
    [113]IEEE Industry Applications Society. IEEE519-1992 IEEE recommended practices and requirements for harmonic control in electrical power systems [S]. America:the Institute of Electrical and Electronics Engineers, Inc.,1993.
    [114]Assessment of emission limits for the connection of distorting installation to MV, HV and EHV power systems [R], Geneva, Switzerland:International Electrotechnical Commission,2008.
    [115]A. Semlyen, E. Acha, J. Arrilaga. Newton-type algorithms for harmonic phasor analysis of non-linear power circuits in periodical steady state with special reference to magnetic non-linearities[J]. IEEE Transaction on Power Delivery,1998,3(3):1090-1098.
    [116]A.Ramirez, A. Semlyen, R. Iravani. Representation of PV buses in a Newton-type harmonic power flow program[J]. IEEE Transaction on Power Delivery,2004,19(3):1355-1359.
    [117]M. Valcarel, J. G. Mayordomo. Harmonic power flow for unbalanced systems[J]. IEEE Transaction on Power Delivery,1993,8(4):2052-2059.
    [118]丁明,郭学凤.含多种分布式电源的弱环配电网三相潮流计算[J].中国电机工程学报,2009,29(13):35-40.
    [119]车权,杨洪耕.基于稳健回归的谐波发射水平估计方法[J].中国电机工程学报,2004,24(4):39-42.
    [120]G. T. Heydt. Identification of harmonic sources by a state estimation technique[J]. IEEE Transaction on Power Delivery,1989,4(1):569-575.
    [121]马历,刘开培,雷肖.配电网谐波源定位的支持向量机估计算法[J].中国电机工程学报,2008,28(10):111-116.
    [122]Y. Y. Hong, Y. C. Chen. Application of algorithms and artificial-intelligence approach for locating multiple harmonics in distribution systems[J]. IEE Proceedings-Generations, Transmission and Distribution,1999,146(3):325-329.
    [123]E. Gursoy, D. Niebur. Harmonic load identification using complex independent component analysis[J]. IEEE Transaction on Power Delivery,2009,24(1):285-292.
    [124]汪瑶.基于相量量测的电力系统谐波状态估计算法研究[D].重庆:重庆大学硕士学位论文,2009.
    [125]D Stefanoiu, F Ionescu. A fuzzy-statistical reasoning model for bearings fault diagnosis[C]. IEEE International Conference on Systems, Man and Cybernetics.2002.
    [126]W. H. Kersting. Radial distribution test feeders [C]. Power Engineering Society Winter Meeting. Columbus, America.2001.
    [127]A. Borghetti, M. Bosetti, M. Di Silvestro, et al. Continuous-wavelet transform for fault location in distribution power networks:definition of mother wavelets inferred from fault originated Transients [J]. IEEE Transaction on Power systems,2008,23(2):380-388.
    [128]M. Kizilcay, P. Seta. Digital simulation of fault arcs in medium-voltage distribution networks[C].15th Power Systems Computation Conference. Belgium,2005.
    [129]R. G. Stockwell, L. Mansinha, R. P. Lowe. Localization of the complex spectrum:the S transform[J]. IEEE Transaction on Signal Processing,1996,44(4):998-1001.
    [130]韩祯祥.电力系统分析(第3版)[M].杭州:浙江大学出版社,2009.
    [131]谭金超,谭学知,谢晓丹.10kV配电工程设计手册[M].北京:中国电力出版社,2004.
    [132]J. J. Zamora, A. J. Mazon, K. J. Sagastabeitia. New method for detecting low current faults in electrical distribution systems[J]. IEEE Transaction on Power Delivery,2007,22(4):2072-2079.
    [133]D. L. Donoho, M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via (?)l minimization[J]. Proceedings of National Academic Society,2003,100(5): 2197-2202.