多孔磷酸钙骨组织工程支架的可控制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨组织工程的提出和发展改变了传统的骨缺损修复治疗模式,同时也对支架的制备提出了更高的要求。然而,在当前的骨组织工程陶瓷支架研究中,存在着强度较低、影响支架性能的微细结构的制备不可控,以及烧结与性能之间的矛盾等问题,极大地限制了支架的临床应用。支架作为骨组织工程的关键要素之一,其三维精细结构的成形严重依赖于制备技术。随着自由成形技术的发展,以挤出沉积成形技术为代表的直写技术以其极高的材料适用性和柔性显示了在微纳米生物材料成形方面的巨大优势,结合微波快速烧结技术,为解决上述问题提供了有力的手段。
     为满足骨组织工程支架在结构、力学和生物学等方面的要求,本文以多孔磷酸钙支架为研究对象,建立基于电机助推挤出沉积成形技术与微波快速烧结技术相结合的陶瓷支架可控制备工艺体系。通过材料学测试与生物学评价,结合计算机模拟及理论分析,探讨支架微观结构、烧结工艺等与力学性能、降解性、生物学性能的关系,总结并提出材料微观结构可控制备及其性能优化的途径和方法。
     根据挤出成形工艺对浆料性能的要求,制备了具有良好分散性、稳定性的高浓度纳米羟基磷灰石(HA)浆料,阐述了纳米陶瓷粒子的稳定分散机理。结果表明,在PH=9,分散剂PAA-NH4含量为1%(与粉体质量相比)的条件下,平均粒径为20nm的HA陶瓷颗粒在浆料能够获得良好的分散稳定性,浓度为25-40vo1%的纳米HA浆料具有良好的自支持能力与合适的凝固速度,可用于挤出沉积成形。
     发展了基于电机助推式挤出沉积成形技术与微波快速烧结工艺相结合的支架可控制备技术,建立了浆料在喷嘴内流动的数学模型和工艺参数匹配模型,优化了支架的微波烧结工艺。制备了具有不同解剖外形(立方体、圆柱、胫骨轮廓)与不同内部孔结构(三角形、四边形、六边形等)的多孔HA支架,支架结构可控,孔隙率可调,且连通性良好。经1200℃(40℃/min,30min)微波烧结后,支架收缩均匀,平均收缩率为31.8%,致密度高、晶粒细小均匀(1.12±0.23μm)。强度测试表明,微波烧结有利于提高多孔支架的力学强度,孔隙率约50%的支架平均抗压强度为45.57MPa,远远大于常规烧结工艺所得的支架的强度。
     有限元分析与实验研究结果表明,支架结构特征通过影响支架内应力的大小与分布,从而影响支架的承载能力。结构特征对支架力学性能影响的权重关系为:孔隙率>孔洞大小>孔洞形状。对于孔洞结构均匀的HA支架,抗压强度与孔隙率的关系为:lnσ=ln432.3-4.825p。为进一步提高支架强度,设计并可控制备了带有“微加强筋”的多孔支架,平均抗压强度为84.2MPa(孔隙率约50%),其强度与相同孔隙率条件下未设置加强筋的支架相比提高了约80%,与皮质骨的强度相当。同时,该结构支架在降解过程中保持了良好的力学稳定性,能够为细胞的分化与组织的生长提供更长时间的强度支持。解理是多孔陶瓷支架的主要断裂机理,在拉应力的作用下支架将从挤出丝的搭接处发生断裂。
     体外模拟降解实验与细胞-支架的联合培养实验表明,多孔HA支架在生理盐水中能够缓慢降解释放出Ca2+,并能在SBF中沉积形成类骨磷灰石层,具有良好的生物相容性,细胞能够迅速而紧密地在支架的表面与侧壁形成生物学黏附,并能够进入支架的内部,实现细胞的贴附与生长。微波烧结支架因烧结时间短,升温速率快,晶粒结构细小,其降解速率快于常规烧结支架,有利于成骨细胞的黏附、生长和增殖。
     本文研究表明,以挤出沉积成形技术为代表的直写技术结合微波烧结工艺能够实现植入支架的个性化制造,并能同时提高支架的力学性能与生物学性能,为解决磷酸钙陶瓷支架临床应用瓶颈提供了依据,丰富和发展了生物制造方法。
The statement and development of bone tissue engineering have changed the traditional treatment modes for bone defects, and also put forward higher requirements for scaffolds fabrication. However, the ceramics scaffolds fabricated so far exsit some problems, such as relatively low strength, uncontrollable inner structures and the contradition between sintering and performances, which greatly limit their clinical applications. Scaffold is one of the key elements of bone tissue engineering. The fabrication of its three-dimensional fine structures is largely depended on preparation techniques. With the development of solid freeform fabrication, extrusion deposition technique (EDT), a representative of direct writing, shows great advantages on manufacturing micro-nano bio-devices due to its highly applicability and flexibility. Combined with microwave rapid sintering, EDT provides a powerful mean to solve the above problems in bone scaffolds fabrication.
     The objective of this paper is to establish a controllable process for bone scaffold fabrication based on motor assisted microsyringe extrusion deposition technique and microwave sintering, to meet the structural, mechanical and biological requirements of porous calcium phosphate bone scaffolds. The effects of structure and sintering process on the mechanical, degradative and biological properties of scaffold were investaged, according to materials test, biological evaluation, computer simulation and theoretical analysis. Methods for scaffold controllable preparation and performance optimization were proposed.
     According to the requirements of slurry for EDT, nano HA slurry with high concentration, good dispersibility and stability were prepared. The dispersal mechanism of nano particles was expounded. The results showed that the slurry prepared from20nm HA ceramic powder was able to obtain good dispersion stability under the conditions of PH=9.0,1wt%dispersant agent PAA-NH4(compared to the weight of HA). The slurry with volume concentration of25-40vol%has good self-support capability and proper solidification rate, that can be used for extrusion deposition process.
     A new process based on motor assisted microsyringe extrusion deposition technique and microwave sintering was developed for scaffold controllable fabrication. The mathematical model of the slurry flow in the nozzle and the parameters matching model of EDT were established. The sintering process was also optimized. Porous HA scaffolds with different outer shapes like cubic, cylinder and tibia bone, and different pore structures like triangle, square and hexagon were fabricated. The structure features of scaffolds are controllable, and their porosities are adjustable as well. The scaffolds have good connectivity. The microwave sintered scaffolds (1200℃,40℃/min,30min) gain uniform shrinkage with an average shrinkage rate about31.8%. They also gain high density and fine grain size (1.12±0.23μm) in the rods. The compressive strength test shows that microwave sintering is conducive to the improvement of mechanical strength of porous scaffolds. The average compressive strength of microwave sintered scaffolds with porosity of50%is45.57MPa, much higher than that of the conventional sintered ones.
     Finite element analysis and experimental results show that scaffold structure affects the load capacity by changing their stress intensity and distribution. The weight relationship of the impact of structure features on mechanical property is porosity> pore size> pore shape. For a uniform structure scaffold, the quantitative relationship between compressive strength and porosity inσ=ln432.3-4.825p.In order to further improve the mechanical strength, porous scaffold strengthened with micro-ribs was also designed and controllably fabricated. The average compressive strength is84.2MPa (porosity about50%), about80%higher than the scaffolds without micro-rib with the same porosity, and close to the strength of the cortical bone. Moreover, it also exhibits more stable mechanical strength during degradation in vitro, which could provide longer support for cell proliferation and tissue formation. The fracture mechanism of porous ceramic scaffold is cleavage. Scaffold will crack from the rod joint where the tensile stress concentrated.
     In vitro degradation and cell scaffold co-culturing experiments results show that the porous scaffold could slowly dissolve and release Ca2+in saline. It also could generate bone-like apatite layer in SBF. The fabricated scaffold has good biocompatibility. Cells could adhere to the outer surface, side walls and interal surface quickly and form a tightly biological adhesion to promote proliferation and growth. The microwave sintered scaffold possesses finer grains and better degradation ability than conventional sintering scaffold due to short sintering time and high heating rate, which could promote the adhesion and proliferation of osteoblast.
     As a conclusion, extrusion deposition technique, a representative of direct writing, combined with microwave sintering could achieve personalized fabrication of scaffold with improved mechanical and biological properties, which could solve the clinical application problems of calcium phosphate ceramic and enrich the biofabrication methods.
引文
[1]Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States.1st edition. IL:American Academy of Orthopaedic Surgeons,1992.
    [2]Crane GM, Lshaug SL, Mikos AG, et al. Bone Tissue Engineening. Nature Medicine, 1995,1(12):1322~1324.
    [3]陆裕朴,晋少汀,葛宝丰.实用骨科学.第一版.北京:人民军医出版社,1991年.p63-72.
    [4]徐晨.组织学与胚胎学.第一版.北京:高等教育出版社,2009年.p52-61.
    [5]Clemens van Blitterswijk, Peter Thomsen, Anders Lindahl, et al. Tissue Engineering. 1st edtion. Massachusetts:Academic Press,2008. p559-610.
    [6]Hall SJ. Basic Biomechanics. Fifth Edition. Boston:McGraw Hill Higher Education, 2007. p88.
    [7]Mow Van C, Huiskes Rik. Basic Orthopaedic Biomechanics and Mechano-Biology. 3rd Edition. Lippincott Williams & Wilkins,2005. p127.
    [8]Goldstein SA, Bonadio J. Potential role for direct gene transfer in the enhancement of fracture healing. Clinical Orthopaedics and Related Research,1998,355S:154~162.
    [9]孙璐薇.微波烧结含CO32-的多孔β-TCP/HA双相生物陶瓷材料及其性能研究:[博士学位论文],成都:四川大学图书馆,2004.
    [10]Kobbe P, Tarkin IS, Frink M, et al. Voluminous bone graft harvesting of the femoral marrow cavity for autologous transplantation:An indication for the "Reamer-Irrigator-Aspirator" (RIA-) technique. Unfallchirurg,2008,111(6):469-472.
    [11]Attias N, Lindsey RW. Case reports:management of large segmental tibial defects using a cylindrical mesh cage. Clinical Orthopaedics and Related Research,2006,450: 259~266.
    [12]Yougrer M.G. Problems of autograft for bone defects. Clinical Orthopaedics and Related Research,1986.208:98-102.
    [13]Chapman TB. Statistics on complications of bone graft. Archives of Orthopaedic and Trauma Surgery,1979,94:135~139.
    [14]裴国献,陆海波.同种异体骨移植.第一版.北京:科学技术文献出版社,2007年.p1-12.
    [15]杨志明,饶书城,项舟,等.吻合血管同种异体肱骨干移植20年随访结果.中国修复重建外科杂志,2001,15(6):354-357.
    [16]Allen T. Bishop, Michael Pelzer. Vascularized Bone Allotransplantation:Current State and Implications for Future Reconstructive Surgery. Orthopedic Clinics of North America,2007,38(1):109~122.
    [17]刘亮,王东.大段同种异体骨移植复合BMP2和TGFβ2对兔桡骨中段骨缺损愈合的影响.中国矫形外科杂志,2007,15(9):702-705.
    [18]Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes:an update. Injury,2005, 36(Suppl 3):20~27.
    [19]戚超,黄富国,杨志明,等.骨髓基质干细胞与生物衍生骨复合修复山羊胫骨缺损的影响学研究.中国修复重建外科杂志,2004,18(2):83-87.
    [20]Lu M., Rabie AB. The effect of demineralized intramembranous bone matrix and basic fibroblast growth factor on the healing of allogeneic intramembranous bone grafts in the rabbit. Archives of Oral Biology,2002,47(12):831~841.
    [21]Jin-Woo Park, Kwang-Bum Park, Jo-Young Suh. Effects of calcium ion incorporation on bone healing of Ti6A14V alloy implants in rabbit tibiae. Biomaterials,2007,28(22):3306~3313.
    [22]Morais S., Sousa J.P., Fernandes M.H., et al. Effects of AISI 316L corrosion products in vitro bone formation. Biomaterials,1998,19:999~1007.
    [23]Frank B. Bagambisa, Ulrich Joos, Wilfried Schilli. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. Journal of Biomedical Materials Research,1993,27(8):1047~1055.
    [24]Jiang Gengwei, Shi Donglu. Coating of hydroxyapatite on highly porous A12O3 substrate for bone substitutes. Journal of Biomedical Materials Research,1998, 43(1):77~81.
    [25]Peter S.J., Miller M.J., Yasko A.W., et al. Polymer concepts in tissue engineering. Journal of Biomedical Materials Research,1998,43(4):422-427.
    [26]梁熙,蒋电明,倪卫东,等.纳米羟基磷灰石/聚酰胺66复合骨填充材料修复良性骨肿瘤骨缺损临床疗效观察.中国重建修复外科杂志,2007,21(8):785-788.
    [27]金岩.组织工程学原理与技术.第一版.西安:第四军医大学出版社,2004年.p1-3.
    [28]Langer R, Vacanti JP. Tissue engineering. Science,1993,260(5110):920~926.
    [29]杨春蓉.骨组织工程支架研究现状及面临的问题.中国组织工程研究与临床康复,2009,13(8):1529-1532.
    [30]Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000,21(24):2529~2543.
    [31]程宇航.人工关节用无机涂层材料.功能材料,1999,30(5):467-469.
    [32]明复.碳质人工关节.航天制造技术,1985,6:25.
    [33]张磊磊,李贺军,李克智,等.人工髋关节假体材料的研究进展.材料导报,2008,22(4):108-111.
    [34]胡明,陈兰田,栾尚文,等.碳-钛组合式人工股骨头临床应用远期随访结果.中华骨科杂志,2002,22:272-275.
    [35]郑学斌,刘宣勇,丁传贤.人体硬组织替代材料的研究进展.物理,2003,32(3):159-164.
    [36]Bonfield W. Composites for bone replacement. Journal of Biomedical Engineering, 1988,10(6):522~526.
    [37]Albee F. H., Morrison H. F. Studies in bone growth:triple calcium phosphate as a stimulus to osteogenesis. Annuals of Surgery,1920,71(1):32~39.
    [38]Racquel Zapanta LeGeros. Calcium Phosphate-Based Osteoinductive Materials, Chemical Reviews,2008,108(11):4742~4753.
    [39]张敏,高家诚,王勇,等.HA生物陶瓷的掺杂改性研究进展.材料导报,2005,19(2):20-22.
    [40]Jarcho M., Bolen C. H., Thomas M. B., et al. Hydroxylapatite synthesis and characterization in dense polycrystalline form. Journal of Materials Science,1976, 11(11):2027~2035.
    [41]Aoki H, Akao M, Shin Y, et al. Sintered hydroxyapatite for a percutaneous device and its clinical application. Medical Progress Through Technology,1987, 12(3-4):213~220.
    [42]Akao M., Aoki H., Kato K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. Journal of Materials Science,1981,16(3):809~812.
    [43]俞耀庭,张兴栋.生物医用材料学.第一版.天津:天津大学出版社,2000年.p2-5.
    [44]廖素三,崔福斋,张伟.组织工程中胶原基纳米骨复合材料的研制.中国医学科学院学报,2003,25(1):36-38.
    [45]Du C, Cui FZ, Zhu XD, et al. Three-dimensional nano-HAP/collagen matrix loading with osteogenic cells in organ culture. Journal of Biomedical Materials Research, 1999,44(4):407~415.
    [46]姚晖,杜昶,杨韶华,等.纳米羟晶/胶原仿生骨修复家兔颅颌骨缺损的实验研究.透析与人工器官,2000,11(2):5-8.
    [47]关凯,孙天胜,时述山,等.纳米晶羟基磷灰石/胶原复合材料在兔腰椎横突间融合中的观察.颈腰痛杂志,2003,24(4):218-222.
    [48]郑玉峰,李莉.生物医用材料学.第一版.西安:西北工业大学出版社,2009年.p189-199.
    [49]Duane E. Cutright, Surindar N. Bhaskar, John M. Brady, et al. Reaction of bone to tricalcium phosphate ceramic pellets. Oral Surgery, Oral Medicine, Oral Pathology, 1972,33(5):850~856.
    [50]William R. Walsh, Frank Vizesi, Dean Michael, et al. β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials,2008,29(3):266~271.
    [51]Sanz-Herrera J.A., Doblare'M., Garc1'a-Aznar J.M.. Scaffold microarchitecture determines internal bone directional growth structure:A numerical study. Journal of Biomechanics,2010,43(13):2480~2486.
    [52]Klawitter J.J., Hulbert S.F.. Applieation of porous ceramics for the attachment of load bearing orthopaedic applications. Journal of Biomedical Materials Research,1971, 5(6):161~229.
    [53]Vassilis Karageorgiou, David Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials,2005,26(27):5474~5491.
    [54]Hollister S. J.. Porous scaffold design for tissue engineering. Nature Materials,2005, 4(7):518~524.
    [55]Ami R. Amini, Douglas J. Adams, Cato T. Laurencin, et al. Optimally Porous and Biomechanically Compatible Scaffolds for Large-Area Bone Regeneration, Tissue Engineering Part A.2012,18(13-14):1376~1388.
    [56]Nade S., Armstrong L., Mccartney E., et al. Osteogenesis after bone and bone marrow transplantation. Clinical Orthopaedics and Related Research,1983, 181(12):255~263.
    [57]Goshima J., Goldberg V.M., Caplan A.L. The osteogneic potential of culture expanded rat marrow mesenchymal cells assayed in vitro in calcium phosphate ceramic blocks. Clinical Orthopaedics and Related Research,1991,262:298~311.
    [58]Fergal J. O'Brien, Brendan A. Harley, Ioannis V. Yannas, et al. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials,2004, 25(6):1077~1086.
    [59]Cao Y., Davidson M.R., O'Connor A.J., et al, Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models. Journal of Biomedical Materials Research Part A, 2004,71(1):81~89.
    [60]Yoon Sung Nam, Tae Gwan Park. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials,1999,20(19): 1783~1790.
    [61]T. Fukasawa, Z.-Y. Deng, M. Ando, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science,2001,36(10):2523~2527.
    [62]Yoshito Ikada. Tissue Engineering:Fundamentals and Applications.1st Edition. Oxford:Academic Press,2006. p282~290.
    [63]Mikos AG, Sarakinos G, Leite SM, et al. Laminated 3-Dimensional Biodegradable Foams for Use in Tissue Engineering. Biomaterials,1993,14(5):323~330.
    [64]Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and Charaeterization of Poly(L-Lactic Acid) Foams. Polymer,1994,35(5):1068~1077.
    [65]Ma Z., Gao C., Gong Y., et al. Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2003, 67(1):610~617.
    [66]Tadic D., Beckmann F., Schwarz K., et al. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials,2004, 25(16):3335~3340.
    [67]韩长菊,叶金凤,陈庆华,等.物理发泡法制备羟基磷灰石/胶原蛋白多孔支架材料.佛山陶瓷,2006,11:8-10.
    [68]Liu Dean-Mo. Preparation and characterisation of porous hydroxyapatite bioceramic via a slip-casting route. Ceramics International,1998,24(6):441~446.
    [69]Harris LD,Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Researeh,1998,42(3):396~402.
    [70]Barbucci R., Leone G. Formation of defined microporous 3D structures starting from cross-linked hydrogels. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2004,68B(2),117~126.
    [71]Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. Journal of Biomedical Materials Research,2000,53(1):1-7.
    [72]王立,左奕,邹琴,等.组分对含羟基磷灰石/脂肪族聚氨酯复合骨组织工程支架的理化性能及生物学性能的影响.高等学校化学学报,2011,32(10):2453-2459.
    [73]高亚萍,田贵山,唐竹兴.多孔羟基磷灰石的制备与性能研究.硅酸盐通报,2006,25(6):209-211.
    [74]Mikos AG, Bao Y, Cima LG, et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research,1993,27:183-189.
    [75]Wettergreen M. A., Bucklen B. S., Sun W., et al. Computer-Aided Tissue Engineering of a Human Vertebral Body. Annals of Biomedical Engineering,2005, 33(10):1333~1343.
    [76]Lam CXF, Mo XM, Teoh SH, et al. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C,2002,20(1-2):49~56.
    [77]Sherwood Jill K, Riley Susan L, Palazzolo Robert, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials,2002, 23(24):4739~4751.
    [78]Lee M, Dunn JCY, Wu BM. Scaffold fabrication by indirect three-dimensional printing, Biomaterials,2005,26(20):4281-4289
    [79]Zein I, Hutmacher DW, Tan KC, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials,2002, 23(4):1169~1185.
    [80]Cao T., Ho K.H., and Teoh S.H. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Engineering,2003,9(suppl 1):103~112.
    [81]陈中中,李涤尘,卢秉恒.用于人工骨制造的新型快速成型系统的开发及其工艺参数研究.机床与液压,2003,3:91-94.
    [82]Williams J.M., Adewunmi A., Schek R.M., et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials,2005, 26(23):4817~4827.
    [83]Lee G, Barlow JW. Selective laser sintering of bioceramic materials for implants. Proceedings of Solid Freeform Fabrication. Austin.1993:376~380.
    [84]Vail N.K., Swain L.D., Fox W.C., et al. Materials for biomedical applications. Materials & Design,1999,20(2-3):123~132.
    [85]李祥,李涤尘,苏燕平,等.基于快速成形的p-磷酸三钙人工骨结构设计及制造.西安交通大学学报,2005,39(1):13-16.
    [86]王林,王臻,李祥,等.构建大段可控微结构组织工程骨的实验研究.中国骨与关节外科,2008,1(3):210-216.
    [87]王筋,裴国献.快速成型技术在骨组织工程支架制备中的应用.国际骨科学杂志,2007,28(5):278-280.
    [88]Hon K.K.B., Li L., Hutching I.M. Direct writing technology-Advances and developments. CIRP Annals-Manufacturing Technology,2008,57(2):601-620.
    [89]Li B, Roy TD, Smith CM, et al. A Robust True Direct-Print Technology for Tissue Engineering. Proceedings of the International Conference on Manufacturing Science and Engineering. Georgia.2007.1-6.
    [90]Nahmias Y, Schwartz RE, Verfaillie CM, et al. Laser-guided Direct Writing for Three-dimensional Tissue Engineering. Biotechnology and Bioengineering.2005, 92(2):129~136.
    [91]Klinni A, Mourka A, Dinca V, et al. ZnO Nano rod Micropatterning via Laser-induced Forward Transfer. Applied Physics A,2007,87(1):17~22.
    [92]de Gans BJ, Duineveld PC, Schubert US. Inkjet Printing of Polymers:State of the Art and Future Developments. Advanced Materials,2004,16(3):203~213.
    [93]王运赣,张祥林.微滴喷射自由成形.第一版.武汉:华中科技大学出版社,2009.p86-87.
    [94]Khalil S., Nam J., Sun W.. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping Journal,2005,11(1):9~17.
    [95]S. Khalil, W. Sun. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science and Engineering C,2007,27 (3):469-478.
    [96]Xiong Zhuo, Yan Yongnian, Wang Shenguo, et al. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Materialia,2002, 46(11):771~776.
    [97]Yongnian Yan, Zhuo Xiong, Yunyu Hu, et al. Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Materials Letters,2003,57:2623-2628.
    [98]Shor L., Gordon J., An Y., et al. Precision Extruding Deposition of Polycaprolactone and Composite Polycaprolactone/Hydroxyapatite Scaffolds for Tissue Engineering. Proceedings of IEEE 32nd Annual Northeast Bioengineering Conference, 2006:73~74.
    [99]金乐,熊卓,刘利,等.基于活塞挤出的组织工程支架低温沉积制造工艺.清华大学学报(自然科学版),2009,49(5):652-655,659.
    [100]Woodfield TB, Malda J, de Wijn J, et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials,2004,25 (18):4149-4161.
    [101]Wai-Yee Yeong, Chee-Kai Chua, Kah-Fai Leong, et al. Rapid prototyping in tissue engineering:challenges and potential. Trends in biotechnology,2004, 22(12):643~652.
    [102]Franco J., Hunger P., Launey M.E., et al. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomaterialia,2010,6 (1): 218-228.
    [103]Pedro Miranda, Eduardo Saiz, Karol Gryn, et al. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomaterialia, 2006,2 (4):457-466.
    [104]陈友强,张新霓,陈沙鸥,等.共聚物型分散剂对α-Al2O3水悬浮体系分散性能的影响.硅酸盐学报,2005,33(2):170-174.
    [105]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.第一版.北京:化学工业出版社,2004.p144-145.
    [106]Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials,2005,26(28):5632-5639.
    [107]李登好,郭露村.吸附途径对α-Al2O3-H2O-PAA悬浮液流变性影响.无机材料学报,2004,19(4):948-952.
    [108]宋贤良.利用淀粉原位凝固胶态成型高性能陶瓷的研究:[博士学位论文].广州:华南理工大学,2003.
    [109]Lewis JA. Colloidal Processing of Ceramics. Journal of the American Ceramic Society,2000,83(10):2341~2359.
    [110]Suntako R, Laorat anakul P, Traiphol N. Effects of dispersant concentration and pH on properties of lead zirconate titanate aqueous suspension. Ceramics International,2009,35(3):1227-1233.
    [111]Naing M.W., Chua C.K., Leong K.F., et al. Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques, Rapid Prototyping Journal,2005,11(4):249~259.
    [112]柳和生,熊洪槐,涂志刚,等.聚合物挤出胀大进展研究.塑性工程学报,2001,8(1):13-18.
    [113]梁基照.聚合物短口型挤出胀大方程.合成橡胶工业,1995,18(3):171-173.
    [114]梁基照.混炼胶长口型挤出胀大比的预测.合成橡胶工业,1997,20(3):44-45.
    [115]赵良知,唐国俊,郑融.混炼胶熔体的挤出膨胀研究.橡胶工业,1996,43(11):649-651.
    [116]Meek T.T., Holcomb C.E., Dykes N. Microwave sintering of some oxide materials using sintering aids. Journal of materials science letters,1987,6(9):1060~1062.
    [117]Samuels J., Brandon J.R. Effect of composition on the enhanced microwave sintering of alumina-based ceramic composites. Journal of Materials Science,1992, 27 (12):3259~3265.
    [118]Panneerselvam M., Agrawal A., Rao K.J.. Microwave sintering of MoSi2-SiC composites, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing,2003,356(1):267~273.
    [119]Goldstein A., Travitzky N., Singurindy A., et al. Direct microwave sintering of yttria-stabilized zirconia at 2.45 GHz, Journal of The European Ceramic Society, 1999,19(12):2067~2072.
    [120]Kim K.S., Shim S.H., Kim S., et al. Low temperature and microwave dielectric properties of TiO2/ZBS glass composites. Ceramics International,2010,36 (5):1571~1575.
    [121]Gao F., Liu J.J., Hong R.Z., et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceramics International,2009, 35(7):2687~2692.
    [122]郝洪顺,徐利华,黄勇,等.陶瓷材料微波烧结动力学机理研究.中国科学E辑:技术科学,2009,39(1):146-149.
    [123]Wang P.E., Chaki T.K. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. Journal of Materials Science:Materials in Medicine,1993,4(2):150~158.
    [124]Zhou Jiming, Zhang Xingdong, Chen Jiyong, et al. High temperature characteristics of synthetic hydroxyapatite. Journal of Materials Science:Materials in Medicine,1993,4(1):83-85.
    [125]胡志刚,李洪波.仿真环境下医学器官的三维有限元建模方法.中国组织工程研究与临床康复,2011,15(48):8951-8954.
    [126]Ramay H.R.R, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials,2004,25(21): 5171~5180.
    [127]Li Shihong, de Wijn J.R., Li Jiaping, et al. Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio. Tissue Engineering, 2003,9(3):535~548.
    [128]Sandra Sanchez-Salcedo, Isabel Izquierdo-Barba, Daniel Arcos, et al. In vitro Evaluation of Potential Calcium Phosphate Scaffolds for Tissue Engineering. Tissue Engineering,2006,12(2):279~290.
    [129]Qi Xiaopeng, He Fupo, Ye Jiandong. Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering. Journal of Wuhan University of Technology-Materials Science Edition,2012,27(1):92~95.
    [130]He LH, Huang TY, Latella BA, et al. Mechanical behaviour of porous hydroxyapatite. Acta Biomaterialia,2008,4(3):577~586.
    [131]Chu T.M.G., Orton D.G., Hollister S.J., et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials,2002, 23(5):1283~1293.
    [132]毕振宇,刘阳,黄文华.有限元分析法在口腔生物力学领域的应用.解剖科学进展,2009,15(4):427-431.
    [133]Wu W, Wang WQ, Yang DZ, et al. Stent expansion in curved vessel and their interactions:a finite element analysis. Journal of Biomechanics,2007,40(11):2580 ~2585.
    [134]Rice RW. Evaluation and extension of physical property-porosity models based on minimum solid area. Journal of Materials Science,1996,31 (1):102-118.
    [135]Lu G, Lu GQ, Xiao ZM. Mechanical properties of porous materials. Journal of Porous Materials,1999,6(4):359~368.
    [136]罗德福,赵康,苏波,等.球形多孔羟基磷灰石支架的孔结构特征与力学性能.硅酸盐学报,2007,35(9):1205-1209.
    [137]Hench L, Wilson J. An Introduction to Bioceramics.1st Edition. Singapore:World Science Publishing Co., Pte. Ltd.,1993. p24~25.
    [138]汤顺清.无机生物材料学.第一版.广州:华南理工大学出版社,2008年,p102-106
    [139]张俊善.材料强度学.第一版.哈尔滨:哈尔滨工业大学出版社,2004年.p111-115.
    [140]Pilliar RM, Filiaggi MJ, Wells JD, et al. Porous calcium polyphosphate scaffolds for bone substitute applications-in vitro characterization. Biomaterials,2001, 22(9):963~972.
    [141]Martinez-Vazquez FJ, Perera FH, Miranda P, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomaterialia,2010,6(11):4361~4368.
    [142]Yook SW, Kim HE, Yoon BH, et al. Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials letters,2009,63(11):955~958.
    [143]Ebrahimian-Hosseinabadi M, Ashrafizadeh F, Etemadifar M, et al. Preparation and mechanical behavior of PLGA/nano-BCP composite scaffolds during in-vitro degradation for bone tissue engineering. Polymer Degradation and Stability, 2011,96(10):1940~1946.
    [144]Komlev VS, Barinov SM, Rustichelli F. Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation. Journal of Materials Science Letters,2003,22(17):1215~1217.
    [145]Miao X, Lim WK, Huang X, et al. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Materials Letters,2005, 59:4000-4005.
    [146]Li XM, Feng QL, Cui FZ. In vitro degradation of porous nano-hydroxyapatite /collagen/PLLA scaffold reinforced by chitin fibres. Materials Science and Engineering:C,2006,26(4):716~720.
    [147]Le Huec J, Schaeverbeke T, Clement D, et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials,1995,16(2):113~118.
    [148]Liu D. Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic Ceramics International.1997,23(2):135~139.
    [149]Yao X, Tan S, Jiang D. Improving the properties of porous hydroxyapatite ceramics by fabricating methods. Journal of Materials Science,2005,40(18):4939-4942.
    [150]Pramanik S, Agarwal AK, Rai K. Development of high strength hydroxyapatite by solid-state-sintering process. Ceramics International,2007,33(3):419~426.
    [151]Cordell J, Vogl M, Johnson A. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. Journal of The Mechanical Behavior of Biomedical Materials,2009,2(5):560~570.
    [152]Chang-Jun Bae, Hae-Won Kim, Young-Hag Koh, et al. Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores. Journal of Materials Science-materials in Medicine,2006,17(6):517-521.
    [153]Amy J. Wagoner Johnson, Brad A. Herschler. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia,2011,7(1):16~30.
    [154]Chu T, Orton D, Hollister S, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials,2002,23(5): 1283-1293.
    [155]Guo D, Xu K, Han Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. Journal of Biomedical Materials Research Part A,2009,88A(1):43~52.
    [156]Francisco J. Martinez-Vazquez, Fidel H. Perera, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomaterialia,2010,6(11):4361~4368.
    [157]Brown O., McAfee M., Clarke S., et al. Sintering of biphasic calcium phosphates. Journal of Materials Science:Materials in Medicine,2010,21(8):2271~2279.
    [158]Chanda A., Dasgupta S., Bose S., et al. Microwave sintering of calcium phosphate ceramics. Materials Science and Engineering C,2009,29(4):1144-1149.
    [159]裴国献,魏宽海,金丹.组织工程学实验技术.第一版.北京:人民军医出版社,2006年.p173.
    [160]Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials,2006,27(15):2907~2915.
    [161]http://en.wikipedia.org/wiki/Osteostimulation#cite_note-0.
    [162]平其能.现代药剂学.第一版.北京:中国医药科技出版社,1998年.p13-17.
    [163]L休哈,S.柯特尔.分析化学中的溶解平衡.第一版.周锡顺译.北京:人民教育出版社,1979年.p244.
    [164]Maxian SH, Zaswadsky JP, Dunn MG. Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. Journal of Biomedical Materials Research,1993,27(6): 717~728.
    [165]Hats K., Kokubo T., Yamamuro T. Growth of a bonelike apatite layer on a substrate by a biomimetic process. Journal of the American Ceramic Society.1995, 78(4):1049~1053.
    [166]崔福斋.生物矿化.第一版.北京:清华大学出版社,2007年.p54-64.
    [167]赵婧.骨组织工程网化生物陶瓷支架制备及性能优化:[博士学位论文].成都:西南交通大学,2008.
    [168]Kikuchi M., Suetsugu Y., Tanaka J., et al. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. Journal of Materials Science: Materials in Medicine,1997,8(6):361~364.
    [169]Nakamura T, Neo M, Kokubo T. Bone bonding of biomaterials and apatite formation on biomaterials. MRS Proeeedings,1999,599:15~258.
    [170]马克昌,冯坤,朱太咏,等.骨生理学.第一版.郑州:河南医科大学出版社,2000.p306.
    [171]Huan Zhiguang, Chang Jiang. Calcium-phosphate-silicate composite bone cement: self-setting properties and in vitro bioactivity. Journal of Materials Science: Materials in Medicine,2009,20(4):833~841.
    [172]Kim HM, Himeno T, Kawashita M, et al. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite:an in vitro assessment. Journal of The Royal Society Interface,2004,1(1):17~22.
    [173]Heymann D., Pradal G., Benahmed M. Cellular mechanisms of calcium phosphate ceramic degradation. Histology and Histopathology,1999,14(3):871~877.
    [174]Oliver G., Bouler J.M., Weiss P., et al. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. Journal of Biomedical Materials Research, 1999,47(1):28~35.
    [175]Lu J., Descamps M., Dejou J., et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. Journal of Biomedical Materials Research,2002, 63(4):408~412.
    [176]Wenisch S., Stahl J.P., Horas U., et al. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts:fine structural microscopy. Journal of Biomedical Materials Research Part A,2003,67(3):713~718.
    [177]Doi Y, Iwanaga H., Shibutani T., et al. Osteoclastic responses to various calcium phosphates in cell cultures. Journal of Biomedical Materials Research,1999,47 (3): 424~433.
    [178]Yamada S, Heymann D., Bouler J.-M., et al. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials,1997,18 (15):1037~1041.
    [179]DeBruijn J., Bovell Y.P., Vanblitterswijk C. Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. Biomaterials, 1994,15 (7):543~550.
    [180]Leeuwenburgh S., Layrolle P., de Bruijn J., et al. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. Journal of Biomedical Materials Research,2001,56 (2):208~215.
    [181]Gomi K., Lowenberg B., Shapiro G., et al. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials,1993,14(2):91-96.
    [182]Redey S.A., Razzouk S., Rey C., et al. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate:relationship to surface energies. Journal of Biomedical Materials Research,1999,45(2):140~147.
    [183]Clemens Van Blitterswijk, Peter Thomsen, Anders Lindahl, et al. Tissue Engineering.1st Edition. Oxford:Academic Press,2008. p231-234.
    [184]陶凤娟,余优成,陈万涛,等.钛表面塑性变形纳米化对MC3T3细胞黏附的影响.复旦学报(医学版),2009,36(2):206-211.
    [185]Jin-Woo Park, Youn-Jeong Kim, Je-Hee Jang, et al. MC3T3-E1 cell differentiation and in vivo bone formation induced by phosphoserine. Biotechnology Letters, 2011,33(7):1473~1480.
    [186]Jin Woo Lee, GeunSeon Ahn, Dae Shick Kim, et al. Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering,2009,86(4):1465~1467.
    [187]郑雄飞,翟文杰,梁迎春,等.低温沉积制造壳聚糖纳米羟基磷灰石支架.无机材料学报,2011,26(1):12-16.
    [188]熊建文,肖化,张镇西.MTT法和CCK-8法检测细胞活性之测试条件比较.激光生物学报,2007,16(5):559-562.
    [189]侯春梅,李新颖,叶伟亮,等.MTT法和CCK -8法检测悬浮细胞增殖的比较.军事医学科学院院刊,2009,33(4):400-401.
    [190]Amaral M., Lopes M.A., Santos J.D., et al. Wettability and surface charge of Si3N4-bioglass composites in contact with simulated physiological liquids. Biomaterials,2002,23(20):4123~4129.
    [191]Nakamura S, Matsumoto T, Sasaki J, et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Engineering Part A.2010,16(8):2467~2473.
    [192]Shinichi Maeno, Yasuo Niki, Hideo Matsumoto, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials,2005,26(23):4847~4855.
    [193]Melita M. Dvorak, Ashia Siddiqua, Donald T. Ward, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. PNAS,2004,101(14):5140~5145.
    [194]Susmita Bose, Sudip Dasgupta, Solaiman Tarafder, et al. Microwave-processed nanocrystalline hydroxyapatite:Simultaneous enhancement of mechanical and biological properties. Acta Biomaterialia,2010,6(9):3782~3790.