汉坦病毒复合型多表位重组腺病毒的构建及免疫学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾综合征出血热(HFRS)是一种由汉坦病毒引起的急性传染病,临床上以发热、出血和急性肾功能损害为主要特征。我国是HFRS危害最严重的国家,年发病人数为5~10万人,其流行范围广、发病人数多、病死率较高。临床上尚缺乏特异有效的治疗方法。国内外近年来虽已研制出HFRS的灭活疫苗,但从部分人群试用的情况来看,该类疫苗还存在明显不足,尤其是不能有效地刺激细胞免疫应答。因此仍需针对灭活疫苗存在的不足,进一步研究更为有效的HFRS新型疫苗。
     汉坦病毒是一种有囊膜的单股负链RNA病毒,基因组分为L、M、S三个节段,分别编码病毒的RNA依赖的RNA聚合酶、包膜糖蛋白(G1和G2)以及核衣壳蛋白(NP)。以往研究表明,汉坦病毒的M基因编码的包膜糖蛋白(GP)可刺激机体产生中和抗体,而对感染动物和人体起到保护作用;但GP免疫原性较弱,刺激产生的抗体出现晚,滴度不高。NP是该病毒结构蛋白中免疫原性最强的,其刺激机体产生的特异性抗体出现早、滴度高、维持时间长,并且还有诱导机体细胞免疫应答的作用。由于汉坦病毒中和抗原表位主要存在于病毒GP上,目前HFRS基因工程疫苗的基础研究主要集中于GP。该方面的研究虽已取得较大进展,但由于GP相对较弱的免疫原性,故免疫效果仍不理想。国内外研究表明,汉坦病毒GP和NP在诱导机体免疫应答中可能均起重要作用,因此,如何发挥其不同结构蛋白在诱导机体免疫应答中的优势互补作用,是HFRS基因工程疫苗研究中亟待解决的问题。
     本室前期曾将汉滩病毒(HTNV)76-118株的M基因分别与编码NP氨基端aa1~247的S基因片段(S0.7,编码NP主要抗原区段)拼接,利用杆状病毒和腺病毒表达系统进行融合表达以及表达产物的免疫学分析。结果证实HTNV 76-118株G1S0.7和G2S0.7嵌合基因均能刺激机体的体液免疫和细胞免疫应答。然而在研究中我们也发现了一些问题,如尽管免疫小鼠后各表达系统均能刺激机体产生体液及细胞免疫应答,且腺病毒表达系统的效果要优于其他系统,但是整体的免疫水平还不十分理想,特别是刺激机体细胞免疫应答的水平不高。国内外已证实汉坦病毒感染后以CTL为主的T细胞应答对于机体保护有重要作用,因此利用汉坦病毒CTL表位结合结构蛋白构建疫苗可能是一种可行的方案。
     本研究在前期工作基础上,利用基因重组技术,构建了含有HTNV M基因(编码糖蛋白G1、G2)和部分S基因(编码NP主要抗原区段)以及S基因的多个CTL表位的多种重组腺病毒,在对这些重组腺病毒进行系统鉴定的基础上,观察了其刺激小鼠体液免疫和细胞免疫应答的能力。
     1、将HTNVG1S0.7和G2S0.7嵌合基因片段分别与合成的CTL表位串联基因CTL1(表位间加间隔序列AAY)及CTL2(表位间不加间隔序列AAY)以不同组合方式克隆到腺病毒转移载体pShuttle中,CTL表位拼接于S0.7 3’端,通过酶切鉴定选取阳性克隆,分别命名为pG1S0.7CTL1、pG1S0.7CTL2、pG2S0.7CTL1、pG1S0.7CTL2。
     2、通过特异性的I-Ceu I和PI-Sce I酶切后将重组转移载体与Adeno-X载体病毒DNA相连,电转化E.coli JM109,并用PCR方法进行了筛选和鉴定,获得重组腺病毒的DNA,转染HEK293细胞得到重组腺病毒原种,分别命名为AG1S0.7CTL1、AG1S0.7CTL2、AG2S0.7CTL1、AG1S0.7CTL2。
     3、将各重组腺病毒经CsCl密度梯度离心纯化及测定滴度后分别感染HEK293和Vero-E6细胞。IFA和ELISA检测结果显示,各重组腺病毒均可在细胞中表达相应HTNV抗原,表明CTL表位的插入并没有影响相应抗原的表达及其与特异性单克隆抗体(mAb)的结合活性。Western-blot分析结果显示,各重组腺病毒组在HEK293细胞中均可表达能与特异性mAb产生反应、相对分子质量(Mr)分别约为97KDa和80KDa的融合蛋白,与预期融合蛋白大小相符,表明重组腺病毒在HEK293细胞中表达的为完整的融合蛋白。
     4、以各重组腺病毒分别经腹腔注射免疫Balb/c小鼠,通过IFA、ELISA、微量细胞中和试验、T淋巴细胞增殖试验、CTL杀伤试验、细胞因子检测等方法观察免疫效果。结果表明,各重组腺病毒免疫小鼠均可刺激机体产生低滴度的抗NP(1∶160~1∶320)和抗GP抗体(1∶20~1∶40),同时也可产生效价约1∶5~1∶40的低滴度中和抗体。各重组腺病毒均可诱导小鼠体内特异的细胞免疫应答,其中AG2S0.7CTL1免疫组小鼠脾细胞对NP及GP的增殖指数明显高于对照组;AG1S0.7CTL2、AG2S0.7CTL1、AG2S0.7CTL2组增殖指数也都略高于AG1S0.7和AG2S0.7组,表明加有CTL多表位的重组腺病毒能更有效地刺激小鼠的细胞免疫应答。CTL杀伤试验的结果表明,各重组腺病毒免疫组在不同的效/靶比条件下均可诱导针对靶细胞的特异性杀伤效应,并随着效/靶比的提高,杀伤效应也相应提高;其中含有CTL多表位的四种重组腺病毒免疫所诱导的CTL杀伤效应明显高于不含CTL表位的两种重组腺病毒。对在CTL多表位间加入或不加入间隔序列AAY的各重组腺病毒的比较来看,在CTL多表位间加入间隔序列AAY的重组腺病毒免疫小鼠能产生更高的细胞免疫应答,表明间隔序列AAY对于各CTL表位的分隔能提高重组腺病毒的免疫效果。对各重组腺病毒免疫小鼠血清中细胞因子检测的结果显示,各重组腺病毒均可刺激Th1类细胞因子(INF-γ、IL-2、IL-12)水平的提高,而Th2类细胞因子水平变化不明显。说明重组腺病毒免疫小鼠后可以刺激机体Th1类细胞的优势应答,从而有助于提高小鼠的细胞免疫应答能力。
Hemorrhagic fever with renal syndrome (HFRS), which is caused byhantavirus, is an acute infectious disease characterized by fever, vascularhemorrhage and kidney dysfunction. HFRS is more severely in China. About50,000-100,000 cases of HFRS are reported annually and HFRS has a highmorbidity and mortality. Until now, there are still no effective therapeutical drugson HFRS. Several types of inactivated vaccine for HFRS have been developed athome and abroad. However, these inactivated vaccines have displayed severalshortcomings, especially on poor stimulation of effective cellular immunity. Sothere is a desperate need to develop more efficacious vaccines to improve vaccineefficiencyfor HFRS.
     Hantavirus (HTNV) is a single-stranded negative-sense RNA virus, whosegenome is composed of L, M and S segments encoding RNA-dependent RNApolymerase (RDRP), envelope glycoprotein G1 and G2, and nucleoprotein (NP)respectively. It is indicated that the glycoprotein (GP), encoded by M segment,could elicit neutralization antibodies and thus protect infected animals and humanfrom HTNV lethal infection. On contrast, the immunogenicity of GP is muchweak. The antibodies stimulated by GP are produced later with lower titers thanNP. Researches have shown that NP, another structural protein, is more immunogenic and thus stimulate an early, high-titer and long-lasting antibodyresponse, which plays an important role in inducing cellular immunity againstHTNV infection in vivo. As neutralization epitopes are principally resided onenvelope glycoprotein (GP) of Hantavirus, envelope glycoprotein is currently themain target protein in genetic engineering vaccine for HFRS. However, GP ismuch less immunogenic than NP because the antibodies stimulated by GP weregenerated later and the titers were low. Research indicated that GP and NP mightboth play important role in stimulating humoral or cellular immune response. Soa prominent problem in genetic engineering vaccine development for HFRS ishow to take both advantages from GP and NP in inducing immune response invivo.
     In previous work in our laboratory, G1 and G2 fragment of M segment, and0.7 kb fragment of S segment 5’terminal of the HTNV76-118 strain were spliced,expressed in baculovirus and adenovirus expression system respectively, and theresults showed that the HTNV 76-118 strain G1S0.7 and G2S0.7 chimeric geneproducts elicited both humoral and cellular immune response in mice. Evenadenovirus express system was better than baculovirus system, the overallimmunity in mice was far from satisfaction, particularlly on cellular immunity.There is evidence that T cell immunity (mainly CTLs) is crucial for host defenseagainst many virus infections (including HTNV) especially in the clearance ofvirus infected cells. In this case, it is reasonable to combine both CTL epitopesand neutralization epitopes on structural proteins of HTNV to enhence bothhumoral and cellular responses.
     On the basis of our previous work, several recombinant adenovirusescontaining HTNV M segment (encoding glycoprotein G1 and G2), partial Ssegment (encoding the major antigen component of NP), and multi-CTLepitopes on S segment, were generated, and their immune response in mice were studied.
     1. Two synthetic CTL epitope genes in tandem, with (CTL1) or withoutinterval sequence AYY (CTL2), were inserted into the 3’terminal of chimericgene of HTNV G1S0.7 and G2S0.7 respectively, subcloned into adenovirustransfer vector pShuttle followed by restriction enzyme analysis for positiveclone selection, and designated pG1S0.7CTL1, pG1S0.7CTL2, pG2S0.7CTL1,and pG2S0.7CTL2, respectively.
     2. Recombinant adenovirus transfer vector pShuttle, after I-Ceu I and PI-SceI digestion respectively, was connected with Adeno-X DNA, elctroporated into E.coli JM109, and identified by PCR. Positive clones of recombinant adenoviruseswere then harvested after transfection of package cell line HEK293, anddesignated AG1S0.7CTL1, AG1S0.7CTL2, AG2S0.7CTL1 and AG2S0.7CTL2respectively.
     3. Recombinant adenoviruses were purified by double cesium chloridegradient centrifugation, titered by plaque formation assay, and infected HEK293and Vero-E6 cells. IFA and ELISA results showed that the recombinantadenoviruses expressed HTNV antigens in both HEK293 and Vero-E6 cells,indicating that the insertion of CTL epitopes did not affect the expression ofHTNV antigen and the binding activity to specific mAbs. Western blot analysisalso demonstrated that recombinant adenovirus expressed the fusion proteins inHEK293 cells, with 97 kDa and 80 kDa specifically reacted with mAb, indicatingthe integrityof expressed fusion proteins.
     4. BALB/c mice were inoculated with recombinant adenoviruses, andassayed by IFA, ELISA, microcell-culture neutralization test, T lymphocyteproliferation (MTT assay), cell-mediated cytotoxicity, and cytokine detection.The results showed that low titer antibodies against NP (1:160~1:320) and GP (1:20~1:40) were generated by administration of recombinant adenovirus, andlow neutralization antibodies (1:5~1:40) were observed. The lymphocyteproliferation index of group AG2S0.7CTL1 was significantly higher than thecontrol group, while other groups of AG1S0.7CTL2, AG2S0.7CTL1 andAG2S0.7CTL2 were little higher than the control group without statasticalsignificance. Recombinant adenoviruses containing CTLepitopes induced a moreeffective cellular immune response than the group without CTL epitopes.Cell-mediated cytotoxicity assay results indicated that recombinant adenovirusesproduce specific cytotoxic effects on target cells, in a proportionate manner withthe rise of E/T rations. Meanwhile, recombinant adenoviruses containing CTLepitopes elicited stronger cellular immune response than the groups without CTLepitopes. Recombinant adenoviruses with CTL epitops intervalled by AYYsequence (CTL1) exhibited a more effective cellular immune response than thegroup without AYY (CTL2), among which recombinant adenovirus groupAdnoG2s0.7CTL1 produced the strongest cellular immunity compared with allother groups, suggesting that the recombinant adenovirus containing CTLepitopes stimulated more efficient cellular immune response in mice. Cytokinedetection test results demonstrated a Th1-type response with rise of INF-γ, IL-2, and IL-12, while Th2-type cytokines such as IL-4, IL-10 did not changeremarkedly, indicating that recombinant adenoviruses elicited more efficientcellular immune response in immunized BALB/c mice.
引文
1. Severson WE, Xu X, Jonsson CB. Cis-Acting signals in encapsidation of Hantaanvirus S-segment viral genomic RNA by its N protein. J Virol. 2001Mar;75(6):2646-52.
    2. Hong T, Spiropoulou CF, Morzunov S et al. Genetic identification of a hantavirusassociated with an outbreakof acute respiratoryillness. Science 1993;262:914-917.
    3. Lee H,Lee P,Johnson K.Isolation of the etiologic agent of Korean hemorrhagicfever.J Infect Dis. 1978;137(3):298-308.
    4. Dantas JR,Okuno Y,Asada H,et al.Characterization of glycoproteins of virusescausing hemorrhagic fever with renal syndrome(HFRS)using monoclonalantibodies.Virology.1986; 151(2):379-384.
    5.罗雯,徐志凯.汉坦病毒囊膜糖蛋白G1与核蛋白部分片段在昆虫细胞中的融合表达及免疫学特性研究.第四军医大学博士学位论文.2001.7.
    6.张芳琳,徐志凯.汉滩病毒M基因G2片段与S基因0.7kb片段嵌合基因的表达及基因免疫的研究.第四军医大学博士学位论文.2001.7.
    7. Huang C, Jin B,Wang M, et a1. Hemorrhagic fever with renal syndrome:relationship between pathogenesis and cellular immunity.J Infect Dis 1994;1694:868-70.
    8.徐耀先,解梦霞,向近敏.病毒命名与分类系统研究进展.中国病毒学.1999;14(3):155-169.
    9. Schmaljohn CS, Dalrympl JM. Hantavirus. In: Webster GW, Granoff A(eds)Encyclopedia of virology.Vol 2. London,Academic Press. 1994:538-545.
    10.俞晓进,刘光中,胡宏.汉坦病毒的基因组检测和基因分型.国外医学-临床生物化学与检验学分册.1999;20(2):25-28.
    11. Li D,Schmaljohn AL,Anderson K,et al.Complete nucleotide sequences of the Mand S segments of two hantavirus isolates from California: evidence forreassortment in nature among viruses related to hantavirus pulmonarysyndrome.Virology.1995;206(2): 973-983.
    12. Gott P,Stohwasser R,Schnitzler P et al.RNA binding of recombinant nucleocapsidproteins of hantaviruses.Virology.1993;194(1):332-337.
    13. Ha IS,ChoiY,Park YS et al.Development of monoclonal antibodies against Hantaanvirus nucleocapsid protein.Clin Diagn Lab Immunol.1995; 2(4): 439-442.
    14.李德新,宋干,杭长寿,et al.流行性出血热病毒结构蛋白的研究.病毒学报.1990;6(2):99- 105.
    15. Kang JI,Lee YS,Ahn K,et al.A dominant antigenic region of the hantaan virusnucleocapsid protein is located within a amino-terminal short stretch of hydrophilicresidues.Virus Genes. 2001;23(2):183-186.
    16. Yoshimatsu K, Arikawa J, Tamura M et al. Characteization of the nucleocapsidprotein of Hantaan virus strain 76-118 using monoclonal antibodies. J GenBirol,1996;77:695-704.
    17. Yamada T,Hjelle B,Lanzi R,et al.Antibody responses to Four Corners hantavirusinfections in the deer mouse(Peromyscus maniculatus): identification of animmunodominant region of the viral nucleocapsid protein.J Virol.1995; 69(3):1939-1943.
    18. Yoshimatsu K,Yoo YC,Yoshida R,et al.Protective immunity of hantaan virusnucleocapsid and envelope protein studied using baculovirus expressedprotein.ArchVirol.1993;130(3-4): 365-376.
    19. Lundkvist A,Kallio Kokko H,Sjolander KB,et al.Characterization of Puumala virusnucleocapsid protein: identification of B-cell epitopes and domains involved inprotective immunity.Virology.1996; 216(2):397-406.
    20.徐志凯,王海涛,肖毅,et al.肾综合征出血热病毒50KD结构蛋白的抗原位点分析.单克隆抗体通讯.1992;8(2):30-34.
    21.徐志凯,王海涛,卫立辛,et al.肾综合征出血热病毒50KD结构蛋白免疫学特性的初步研究.第四军医大学学报.1989;10(4):221-223.
    22.徐志凯,王海涛,汪力亚,et al.肾综合征出血热病毒50KD结构蛋白的纯化和鉴定.病毒学杂志.1988;3(2):124-128.
    23.徐志凯,et al.单克隆抗体对HFRS病毒两种粗制抗原相对亲和力的初步研究.单克隆抗体通讯.1990;6(2):14-18.
    24.梁米芳,宋干,杭长寿,et al.流行性出血热病毒单克隆抗体的特性鉴定及其对病毒结构蛋白作用的初步研究.病毒学报.1989; 5(3):217-223.
    25.尹文,徐志凯,闫岩,et al.汉滩病毒S基因的分段表达及其表达产物的鉴定.细胞与分子免疫学杂志.1998;14(1):23-25.
    26.薛小平,徐志凯,马文煜,et al.汉坦病毒陈株S基因编码区的克隆序列分析及表达.中国病毒学.1999;14(1):148-152.
    27.刘勇,徐志凯,王海涛,et al.重组汉坦病毒核蛋白及其26 ku片段的免疫学特性鉴定.第四军医大学学报,2000,21(11):1307-1309.
    28. Dantas JR,Okuno Y,Asada H,et al.Characterization of glycoproteins of virusescausing hemorrhagic fever with renal syndrome(HFRS)using monoclonalantibodies.Virology.1986; 151(2):379-384.
    29. Arikawa J,Schmaljohn AL,Dalrymple JM,et al.Characterization of Hantaan virusenvelope glycoprotein antigenic determinants defined by monoclonal antibodies.JGen Virol.1989;70 (3): 615-624.
    30. Zoller L, Scholz J,Stohwasser R,et al. Immunoblot analysis of the serologicalresponse in hantavirus infection.J.MedicalVirol,1989; 27(3): 231-237
    31. Wang B,Boyer J,Srikantan V,et al.DNA inoculation induces neutralizing immuneresponses against human immunodeficiency virus type 1 in mice and nonhumanprimates.DNACell Biol.1993;12(9):799-805.
    32. Kallio-Kokko H,Leveelahti R,Brummer-Korvenkontio M,et al.Human immuneresponse to Puumala virus glycoproteins and nucleocapsid protein expressed inmammalian cells.J MedVirol. 2001;65(3):605-613.
    33. Schmaljohn CS,et al. Preparation of candidate vaccinia-vected vaccines forhaemorrhagic fever with renal syndrome. Vaccine,1992;10:10.
    34.石晓宏,杭长寿等.汉坦病毒包膜糖蛋白G1和G2重组杆状病毒表达载体的构建与表达及其免疫原性.病毒学报,1995;11:208.
    35. Coney L,Wang B,Ugen KE,et al.Facilitated DNA inoculation induces anti-HIV-1immunity in vivo.Vaccine.1994; 12(16): 1545-1550.
    36. Barry MA,Johnston SA.Biological features of genetic immunization.Vaccine.1997;15(8): 193-202.
    37. Wolff JA, Malone RW,Williams P,et al.Direct gene transfer into mouse muscle invivo. Science.1990; 247(4949): 1465-1749.
    38. Cabral GA, Staab A. Effects on the immune system [J]. Handb Exp Pharmacol,2005,168:385-423.
    39. Nakamura T, Yanagihara R, Gibbs Jr CL, et al. Immune spleen cell-mediatedprotection against fatal Hantaan virus infection in infant mice. J. Inf. Dis. 1985;151(4): 691-697.
    40. Van Epps HL,SchmaljohnCS,Ennis FA. Human memory cytotoxic T-lymphocyte(CTL) responses to Hantaan virus infection: identification of virus-specific andcross-reactive CD8(+)CTLepitopes on nucleocapsid protein. JVirol.1999; 73(7):5301-5308.
    41. Park JM,Cho SY,Hwang YK,et al.Identification of H-2K(b)-restricted T-cellepitopes within the nucleocapsid protein of Hantaan virus and establishment ofcytotoxicT-cell clones.J MedVirol. 2000;60(2):189-199.
    42. de Carvalho Nicacio C,Sallberg M,Hultgren C,et al.T-helper and humoral responsesto Puumala hantavirus nucleocapsid protein: identification of T-helper epitopes in amouse model. J GenVirol. 2001;82(1):129-138.
    43. Lee KY, Chun E, Kim NY, et al. Characterization of HLA-A2.1-restricted epitopes,conserved in both Hantaan and Sin Noimbre viruses, in Hantaan virus infectedpatients. J GenVirol, 2002; 83(Pt 5): 1131-1136.
    44. Van Epps HL,Terajima M,Mustonen J,et al.Long-lived memory T lymphocyteresponses after hantavirus infection.J Exp Med. 2002;196(5):579-588.
    45. Maeda K, West K, Toyosaki-Maeda T, et al. Identification and analysis forcross-reactivity among hantaviruses of H-2b-restricted cytotoxic T-lymphocyteepitopes in Sin Nombre virus nucleocapsid protein. J Gen Virol, 2004; 85(Pt 7):1909-1919.
    46. Gyu-Jin Woo, Eun-Young Chun, Keun Hee Kim, Wankee Kim. Analysis of ImmuneResponses Against Nucleocapsid Protein of the Hantaan Virus Elicited by VirusInfection or DNA Vaccination. The Journal of Microbiology, 2005 Dec; 43(6):537-545.
    47. Terajima M,Van Epps HL,Li D,et al.Generation of recombinant vaccinia virusesexpressing Puumala virus proteins and use in isolating cytotoxic T cells specific forPuumala virus.Virus Res. 2002;84(1-2):67-77.
    48.孙柱臣.流行性出血热及其疫苗的研究进展.微生物学免疫学进展.1994; 22(特):34-38.
    49. Zhu ZY,Tang HY,Li YJ,et al.Investigation of inactivated epidemic hemorrhagicfever tissue culture vaccine in humans.Chin Med J [Engl]. 1994; 107(3): 167-170.
    50. Yamanishi K,Tanishita O,Tamura M,et al.Development of inactivated vaccineagainst virus causing haemorrhagic fever with renal syndrome.Vaccine. 1988; 6(3):278-282.
    51. Song G,Huang YC,Hang CS,et al.Preliminary human trial of inactivated goldenhamster cell(GHKC)Vaccine against haemorrhagic fever with renalsyndrome(HFRS).Vaccine.1992; 10(4): 214-216.
    52. Cho HW,Howard CR.Antibody responsesin humans to an inactivated hantavirusvaccine (Hantavax). Vaccine. 1999;17(20-21):2569-2575.
    53. Bonn D.Hantaviruses: an emerging threat to human health? Lancet. 1998; 352(9131):886.
    54.宋干.汉坦病毒.闻玉梅主编.现代医学微生物学.上海:上海医科大学出版社,1999:1110-1112.
    55.陈化新.肾综合征出血热灭活疫苗应用研究.第七次全国肾综合征出血热会议论文汇编,2006;81-86.
    56. Schmaljohn CS,Chu YK,Schmaljohn AL,et al.Antigenic subunits of Hantaan virusexpressed byBaculovirus and vaccinia recombinants.JVirol.1990;64(7):3162-3170.
    57. Pensiero MN,Jennings GB,Schmaljohn CS,et al.Expression of the hantaan virus Mgenome segment by using a vaccinia virus recombinant.J Viro1. 1988; 62(3):696-702.
    58. McClain DJ,Summers PL,Harrison SA,et al.Clinical evaluation of a vaccinia -vectored Hantaan virus vaccine.J MedVirol.2000;60(1):77-85.
    59. MackettM, GeoffreyL, Moss SB. Vaccinia virus: a selectable eukaryotic cloning andexp ression vector. Proc Natl Acad Sci, 1982, 79: 7415-7419
    60. Kaplan C et al. Vaccinia virus: a suitable vehicle for recombinant vaccines? ArchVirol.1989, 106:127.
    61. N.J. Sullivan, T.W. Geisbert and J.B. Geisbert, et al. Accelerated vaccination forEbola virus haemorrhagic fever in non-human primates. Nature. 2003;424 (6949):681~684
    62. J.R. Mascola, A. Sambor, K. and Beaudry, S. et al. Neutralizing antibodies elicited byimmunization of monkeys with DNA plasmids and recombinant adenoviral vectorsexpressing human immunodeficiency virus type 1 proteins. J Virol. 2005;79 (2):771~779
    63. Y. Tan, N.R. Hackett and J.L. et al. Boyer Protective immunity evoked againstanthrax lethal toxin after a single intramuscular administration of anadenovirus-based vaccine encoding humanized protective antigen. Hum Gene Ther.2003;14 (17):1673~1682
    64. W. Gao, A. Tamin, A. and Soloff, L. et al. Effects of a SARS-associated coronavirusvaccine in monkeys. Lancet. 2003;362 (9399): 1895~1896
    65. Maeda K, West K,and Hayasaka D, et al. Recombinant adenovirus vector vaccineinduces stronger cytotoxic T-cell responses than recombinant vaccinia virus vector,plasmid DNA, or a combination of these. Viral Immunol. 2005;18(4):657-667.
    66. Ulrich R,el al.The Fourth International Conference on HFRS and hantaviruses.Atlanta, Georgia, USA,1998.
    67. Hooper JW,Kamrud KI,Elgh F,et al. DNAvaccination with hantavirus M segmentelicits neutralizing antibodies and protects against seoul virus infection. Virology.1999;255(2): 269- 278.
    68. Kamrud KI, Hooper JW, Elgh F, et al. Comparison of the protective efficacyofnaked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectorsexpressing Hantavirus structural genes in hasters. Virology 1999 Oct 10;263 (1):209-19.
    69. Koletzki D,Schirmbeck R,Lundkvist A,et al.DNA vaccination of mice with aplasmid encoding Puumala hantavirus nucleocapsid protein mimics the B-cellresponse induced byvirus infection.J Biotechnol.2000;84(1):73-78.
    70. Hanke T, McMichael A. Pre-clinical development of a mlti-CTL epitope-basedDNAprime MVAboost vaccine forAIDS. J. Immunol Lett,1999,66(1-3):177-181.
    71. BrusicV,BajicVB,PetrovskyN.Computational methods for prediction ofT-cellepitopes-a framework for modelling,testing,and applcetions.Methods,2004,34(4):436-443.
    72. Meyer D,Torres JV. Hypervariable epitope construct:a synthetic immunogen thatovercomes MHC restriction of antigen presentation [J]. Mol Immunol, 1999, 36(10):631-637.
    73. Thomson S A,Elliott S L,Sherriu M A,el:a1.Recombinant poly-epitope vaccinesfor the delivery of multiple CD8 eytotoxic T cell epitopes[J].J Immunol,1996,157(2):822-826.
    74. An LL,Whitton JL.A multivalent minigene vaccine,containing B-cell,cytotmficT-lymphocyte, and Th epitopes from several microbes,induces appropriateresponses in vivo and confers protection against more than one pathogen. JVirol,1997, 71(3): 2292-2302.
    75. Alexander J,Oserof C,Dahlberg C,et a1.A decaepitope polypeptide primes formultiple CD8R IFN--and Th lymphocyte responses:evaluation of multiepitopepolypeptides as a mode for vaccine delivery[J] 1mmuno1,2002,168 (12):6189.
    76. Yano A,Onomka A,Asahi-Ozaki Y,eta1.Aningenious designfor peptidevaccines.Vaccine,2005,23(17-l8):2322-2326.
    77. Wang QM,Sun SH,Hu ZL,eta1.Epitope DNA vaccines against tuberculosis:spacers and ubiquitin modulates cellular immune responses elicited by epitopeDNA vaccine.Scand J Immuno,2004,60(3):219-225 .
    78. Velders MP,Weijzen S,Eiben GL,et al. Defined flanking spacers and enhancedproteolysis is essential for eradication of established tumors by an epitope stringDNAvaccine[J].J lmmunol, 2001; 166(9): 5366-5373.
    79. Firat H, Tourdot S, Ureta-Vidal A, et a1.Design of a polyepitope construct for theinduction of HLA-A0201-restricted HIV 1-specific CTL responses usingHLA-A*0201 transgenic,H-2 class I KO mice[J].Eur J lmmunol, 2001; 31(10):3064-3074.
    80. Schrours MW,Kueter EW,Scholten KB,et a1.A single amino acid substitutionimproves the in vivo immunognnicity ofthe HPV 16 oncoprotein E7(11-20)cytotoxicT lymphocyte epitope.Vaccine,2005,23(31):1005-1010.
    81. YanoA , OnomkaA , Asahi-OzakiY , eta1 . Aningenious designfor peptidevaccines.Vaccine,2005,23(17-l8):2322-2326.
    82. Klenennan P,Zinkemnge l R M.Original antigenic sin impairs cytotoxic Tlymphocyte responses to Viruses bearing variant epitopes [J].Nature. 1998,394:482 -485.
    83.史霖,袁育康。胜利,等.多CTL表位DNA疫苗诱导特异性CTL应答的研究[J].细胞与分子免疫学杂志,2006,4:15—18.
    84. Thomson S A,Elliott S L,Sherriu M A,el:a1.Recombinant polyepitope vaccinesfor the delivery of multiple CD8 eytotoxic T cell epitopes[J].J Immunol,1996,157(2):822-826.
    85. Woodberry T, Gardner J, Mateo L, et a1. Immunogenicity of a humanimmunodeficiency virus (HIV) polytope vaccine containing multiple HLA A2 HIVCD8(+) cytotoxicT-cell epitopes. JVirol, 1999; 73(7): 5320-5325.
    86. Bergelson JM,Cunningham JA,Droguett G,et al.Isolation of a common receptor forCoxsackie B viruses and adenoviruses 2 and 5.Science.1997;275(5304):1320-1323.
    87. WickhamTJ,Mathias P,Cheresh DA,et al.Integrins alpha v beta 3 and alpha v beta 5promote adenovirus internalization but not virus attachment. Cell. 1993; 73(2):309-319.
    88. Shenk T.Adenoviridae:The viruses and their application.Virology,Raven Press.NewYork. 1996: 2149- 2171.
    89. MizuguchiH,KayMA.Efficient construction of a recombinant adenovirus vector byan improved in vitro ligation method.Hum GeneTher .1998;9(17):2577-2583.
    90. Vorburger SA, Hunt KK.Adenoviral Gene therapy.Oncologist .2003;7(1):46-59.
    91.徐志凯,王海涛,卫立辛等.单克隆抗体对HFRS病毒两种粗制抗原相对亲和力的初步研究.单克隆抗体通讯.1990;6(2):14-18.
    92.黄其全,汪美先.单克隆抗体对肾综合征出血热病毒感染鼠的保护作用.病毒学报.1990;6 (2): 106-109.
    93.汪力亚,郑仁瑞,徐志凯等.肾综合征出血热病毒血凝素单克隆抗体的建立与鉴定.第四军医大学学报.1988;9(1):20-24.
    94. Clontech.Adeno-X expression SystemUser ManualPT3414-1.1998.
    95. Huang C, Jin B,Wang M, eto1. Hemorrhagic fever with renal syndrome:relationshipbetween pathogenesis and cellular immunity.J Infect Dis 1994;1694:868-70
    96. TemonenM, Mustonen J, Helin H, et al. Cytokines, adhesion molecules, andcellular infiltration in nephropathia epidemica kidneys: an immunohistochemicalstudy[ J ]. Clin Imm unol Imm unopatho, 1996,82: 1749 - 1755
    97.张芳琳,徐志凯,阎岩等.汉滩病毒S、M基因部分片段嵌合基因原核载体的构建及表达产物的鉴定.中国人兽共患病杂志,2003;19:34~36
    98.张芳琳,刘勇,白文涛等.汉坦病毒嵌合基因G2S0.7重组腺病毒免疫学研究.科学技术与工程,2004;4(5):360 ~362
    99.张芳琳,徐志凯,罗雯等.汉滩病毒M和S基因不同拼接方式嵌合基因免疫效果的研究.中国病毒学,2003;18:14~17
    100.罗雯,徐志凯,张芳琳等.汉滩病毒M、S基因不同拼接方式在昆虫细胞中融合表达效果比较.中国病毒学,2002;17:226~229
    101.罗雯,徐志凯,张芳琳等.汉滩病毒结构蛋白昆虫细胞融合表达产物的免疫原性评价.免疫学杂志,2002;18:411~413,417
    102. Fang-Lin Zhang, Xing-An Wu, Wen Luo, Wen-Tao Bai, Yong Liu, Yan Yan,Hai-Tao Wang, Zhi-Kai Xu. The Expression and Genetic Immunization of ChimericFragment of Hantaan Virus M and S segments. BBRC, 2007 Mar23;354(4):858~863.
    103.吴兴安,张芳琳等.汉滩病毒囊膜糖蛋白G2基因重组腺病毒的构建与表达.科学技术与工程,2004;4:363~366
    104.吴兴安,张芳琳等.汉坦病毒囊膜糖蛋白G1基因重组腺病毒载体的构建及其在Vero E6细胞中的表达.生物技术通讯,2003;14:456~459.
    105. Vapalahti O, Kallio2kokko H, Narvanen A. et al. Human B2cell ep itopes ofpummala virus neucleocap sid p rotein, the major antigen in early serologicalresponse[ J ]. J M ed V irol, 1995, 46: 293 - 303.
    106. GrahamFL,PrevecL.Manipulation of adenovirus vector.In:Murray EJ ed.Methods inmolecular biology.Clift on New Jersey:The Human Press Inc,1991;109-128.
    107. ZhangWW,FangX,MazurW,et al.High-efficiency genetransfer and high-levelexpression of wild-type p53 in human lung cancer cells mediated by recombinantadenovirus.Cancer GeneTher.1994;1(1):5-13.
    108. Andrew ME,Boyle DB,Peter LW,et al.The immunogenicity of VP7,a rotavirusantigen resident in the ER,is enhanced by cell surface expression.J Virol.1990;64(10):4776-4783.
    109. Gao GP,Yang YP,James M.Biology of adenovirus vectors with E1and E4 deletionsfor liver-directed gene trerapy.JVirol.1996;70(12):8934-8943.
    110. Raper SE,Haskal ZJ,Ye X,et al.Selective gene transfer into the liver of non-humanprimates with E1-deleted,E2A-defective,or E1-E4 deleted recombinantadenoviruses.Hum GeneTher.1998;9(5):671-679.
    111. Parks RJ,Graham FI.A helper-dependent system for adenovirus vector productionhelps define a lower limit for efficient DNA packaging.J Virol, 1997, 71(4):3293-3298.
    112. Barnett BG,Crews CJ,Douglas JT.Targeted adenoviral vectors.Biochim BiophysActa.2002; 1575 (1-3):1-14.
    113.秦卫兵.Th1和Th2细胞在体内的分化[J].国外医学免疫学分册,2002,25:42-46.
    114. Mosmann TR, Sad S. The expanding universe of T-cell subsets: th1, Th2 andmore.immunolToday, 1996,17:138-146.
    115. Fasbender A,Zabner J,Chillon M,et al.Complexes of adenovirus with polycationicpolymers and cationic lipids increase the efficiency of gene transfer in vitro and invivo.J Biol Chem.1997;272(10):6479-89.
    116. Schiedner G,Morral N,Parks RJ,et al.Genomic DNA transfer with a high-capacityadenovirus vector results in improved in vivio gene expression and decreasedtoxicity.Nat Genet.1998;18(2):180-183.