近江牡蛎一种四跨膜素鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软体动物的免疫系统包括体液应答和各种免疫细胞的细胞反应,这些反应包括活性氧的产生,抗微生物肽的分泌,包囊作用以及吞噬作用,例如,血淋巴细胞形成了宿主的主要防御系统,血淋巴细胞的粘附和运动在吞噬外来异物和向炎症部位转移过程中发挥了重要作用。由于血淋巴细胞的粘附行为,造成诸如对寄生虫的包囊作用和血淋巴细胞介导的凝血反应等,这些反应可能是由于位于细胞表面的特异的受体分子诱导的,且这些受体接收和传递不同的生物反应信号。因此,鉴定影响软体动物免疫系统的因子如血淋巴细胞的表面受体分子将有助于我们搞清楚作为病原载体的软体动物的免疫系统,同时为理解寄生虫的传播开辟一条新途径。
     本研究利用SMARTM技术构建了近江牡蛎(Crassostrea ariakensis)LPS刺激下血淋巴细胞的全长cDNA文库。经筛选和PCR鉴定后我们挑选了120个阳性克隆进行了测序分析,共获得了100个EST序列,其中包含了7个未报道的近江牡蛎血淋巴细胞的全长序列(四跨膜素tetraspanin, FJ475123;癌基因FosB, FJ594438;铁蛋白ferritin, FJ529405;烟酰胺腺嘌呤脱氢酶NADH, FJ495091;QM样蛋白QM-like, FJ467930;腺苷高半胱氨酸水解酶SAHH, FJ495090;泛素因子u-box, FJ495092)。通过NCBI匕对和生物信息学软件分析,这些基因分别与物质代谢、转录调控、呼吸代谢、蛋白降解以及天然免疫等作用相关。
     四跨膜素(又称为四跨膜蛋白)是一种具有四段跨膜结构的大基因家族,该家族成员在哺乳动物、昆虫、蠕虫和真菌中都有发现。四跨膜素蛋白可以调控细胞的形状、运动、入侵、融合以及膜表面复合体的信号传导。第一种四跨膜素蛋白(ME491/CD63)在1988年进行了报道,而标志性的序列特征报道则出现在1990年。除了四段跨膜结构以外,四跨膜素还具有几个保守的氨基酸残基包括高度保守的CCG,而月.还有两个半胱氨酸残基,这对于形成四跨膜素的胞外环结构至关重要。在哺乳动物的免疫细胞(如T和B淋巴细胞,粒细胞,单核细胞,巨噬细胞,树突细胞和自然杀伤细胞)至少具有八种四跨膜素。这些四跨膜素直接间接通过大量的免疫分子发生作用,例如T细胞受体,B细胞受体,主要组织相容性复合体1类分子等等。
     我们在牡蛎血淋巴细胞cDNA文库中鉴定了一种四跨膜素分子命名为Ca-TSP,并且发现在血淋巴细胞的转录表达中具有变异,发现三种不同的Ca-TSP分子。利用免疫荧光和免疫电镜检测我们发现Ca-TSP位于牡蛎血淋巴细胞的颗粒及囊泡状结构中。序列分析、结构预测以及免疫电镜检测显示Ca-TSP是一种位于颗粒上的整合的糖蛋白,可能是一种和CD63类似的蛋白。通过对分离的牡蛎的血淋巴细胞的基因表达分析,在LPS和PolyⅠ:C刺激的前12小时中Ca-TSP的表达显示上调,而H2O2刺激下Ca-TSP的表达显示降低。Western blot得出了类似的结果。实验同时发现:重组表达的Ca-TSP可以显著抑制血淋巴细胞的聚集,结果显示Ca-TSP可能参与牡蛎血淋巴细胞的天然免疫过程。为了寻求牡蛎四跨膜素的功能性解释,我们进行了蛋白质相互作用和信号传导途径方面的检测。免疫荧光实验结果显示Ca-TSP与血蓝蛋白共同位于牡蛎的血淋巴细胞中,蛋白质相互作用检测发现Ca-TSP和血蓝蛋白以及一种类凝集素蛋白形成复合体。未知蛋白检测出血细胞凝集特性,但它仍然可能是一种复合物,因此牡蛎的Ca-TSP的免疫应答可能有血蓝蛋白和这种类凝集素的参与。我们利用MEK的抑制剂来检测可能涉及的信号传导通路,当血细胞同U0126和PD98059两种抑制剂混合后检测,发现MAPK的磷酸化水平在1小时后是下降的,在12小时后升高了一点,而Ca-TSP的表达量是下调的,因此我们推测Ca-TSP可能是受MAPK诱导的,并且其中可能有其它的信号途径参与。
The molluscan immune system involves both humoral responses and various immunocyte reactions, including reactive oxygen species production, antimicrobial peptide secretion, encapsulation and phagocytosis. For molluscs, hemocytes play key role in host defense. Hemocyte adherence and mobility are essential for phagocytosis against foreign particles and migration toward inflammatory sites. Additionally, hemocyte adherence to different surfaces can result in important cellular behaviors; e.g. parasitic encapsulation and hemocyte-mediated clotting responses. These responses might be induced by specific membrane receptors of the hemocytes for receiving and transducing signals. Consequently, the elucidation of molluscan vector immunity is expected to help identify factors that influence the vectorial capacity of molluscs and to provide new avenues to understand parasite transmission by these organisms.
     Using SMARTTM technology, we construstructed an full-length cDNA library of oyster hemocytes which were challenged by LPS.120positive clones were selected for sequencing after screening and confirmation of PCR. We have got100ESTs which included seven novel genes:tetraspanin, FJ475123; FosB, FJ594438; ferritin, FJ529405; NADH, FJ495091; QM-like, FJ467930; SAHH, FJ495090:u-box, FJ495092. T identified by NCBI Blast and analysed by bioinformation software, hese genes were annotated to be involved in different biological processes including substance metabolism, respiratory metabolism, transcription regulation, protein degradation and native immune etc.
     Tetraspanins (also referred to as tetraspans or TM4SF proteins) are a family of four-transmembrane-domain proteins, found in mammals, insects, worms and fungi. Tetraspanin proteins regulate cell morphology, motility, invasion, fusion and signaling as organizers of multi molecular membrane complexes. The first tetraspanin protein, ME491/CD63, was characterized in1988and the hallmark family sequence motifs were reported in1990. In addition to four transmembrane domains, these proteins feature several conserved amino acid residues including a highly conserved CCG motif, where two cysteine residues are required for formation of essential disulphide bonds of the second extracellular loop. The mammalian immune cells,(T and B lymphocytes, granulocytes, monocytes, macrophages, dendritic cells and natural killer cells) all have at least eight tetraspanins. These tetraspanins associate directly or indirectly with numerous molecules—for example, T-cell receptors, B-cell receptors, major histocompatibility complex(MHC) class I, MHC class II, CD2, CD4. CD8, CD19, EWI-2,α4β1and α6β1integrins—that have crucial roles in the functions of immune cells.
     In this research, we identified a tetraspanin family member gene, named Ca-TSP, in the oyster Crassostrea ariakensis and found that the transcription profiles of Ca-TSP were variable in the oyster hemocytes. Three distinct patterns of variation of Ca-TSP were observed. Using immunofluorescence and immunoelectron microscopy, we show that Ca-TSP was present in granules and in vesicular structures of the oyster hemocyte. Sequence analysis, structural features and immunogold electron microscopy showed that Ca-TSP is an integral membrane glycoprotein of granules of hemocyte and may be a novel CD63-like gene of the tetraspanin family of molluscs. The gene expression analysis of Ca-TSP using isolated oyster hemocytes, was done following challenge of the oysters with LPS and PolyhC. The Ca-TSP mRNA levels increased in hemocytes in the first12hours after LPS and Poly Ⅰ:C stimulation, and decreased after the addition of H2O2. Western blot analysis using anti-Ca-TSP antibody indicated that gene expression and protein levels were similar. The recombinant Ca-TSP was found to significantly inhibit hemocytes aggregation. Our results suggested that Ca-TSP participates in the innate immunity of the oyster. In seeking an explanation for the functional properties of tetrasapnins, we focused on the interactions of acting proteins and signal transduction pathways. Immunofluorescence assay showed that Ca-TSP colocalizes with hemocyanin in oyster hemocytes in vivo. The analyses of protein interactions showed that Ca-TSP, hemocyanin and a lectin-like protein formed a complex. To our knowledge, there are no reports on the interaction between tetraspanin and hemocyanin. Although the HA of the unknown isolated proteins was detected, it is supposed that the unknown isolated proteins should be a complex. Therefore the immune response of Ca-TSP may be supported by compound action of oyster hemocyanin and the lectin-like protein. We used MEK inhibitors to survey the signal pathway which was involved in. However preincubation with MEK inhibitor U0126and PD98059. resulted in a reduction of p-MAPK after1h, but12h later level of p-MAPK increased a little. And treatment of hemocytes in vitro resulted in down-regulated level of Ca-TSP after12h. It was showned that there were obvious inhibition effects when both of inhibitors were used. It is suggested that the important kinase pathway might be involved in the regulation of Ca-TSP.
引文
[1].李坚明与刘坚红,广西近江牡蛎产业发展现状与对策.中国水产,2008(4):第82-83页.
    [2].吴信忠,鱼类和贝类进化与免疫学前沿.国际学术动态,2010(3):第31-32页.
    [3]. Wright, M.D., K.J. Henkle and G.F. Mitchell, An immunogenic mr 23,000 integral membrane protein of Schistosoma mansoni worms that closely resembles a human tumor-associated antigen. Journal of Immunology,1990.144(8):p.3195-3200.
    [4]. Loukas, A., M. Tran and M.S. Pearson, Schistosome membrane proteins as vaccines. International Journal for Parasitology,2007.37(3-4):p.257-263.
    [5]. Clergeot, P.H., et al., Plsl, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proceedings of the National Academy of Sciences of the United States of America,2001.98(12):p.6963-6968.
    [6]. Tanguy, A., X.M. Guo and S.E. Ford, Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C.gigas) oysters. Gene,2004.338(1): p.121-131.
    [7]. Todres, E., J.B. Nardi and H.M. Robertson, The tetraspanin superfamily in insects. Insect Molecular Biology,2000.9(6):p.581-590.
    [8]. DeSalle, R., R. Mares and A. Garcia-Espana, Evolution of cysteine patterns in the large extracellular loop of tetraspanins from animals, fungi, plants and single-celled eukaryotes. Molecular Phylogenetics and Evolution,2010.56(1):p.486-491.
    [9]. Berditchevski, F., Complexes of tetraspanins with integrins:more than meets the eye. Journal of Cell Science,2001.114(23):p.4143-4151.
    [10]. Garcia-Espana, A., et al., Appearance of new tetraspanin genes during vertebrate evolution. Genomics,2008.91(4):p.326-334.
    [11]. Hemler, M.E., Specific tetraspanin functions. Journal of Cell Biology,2001.155(7):p. 1103-1107.
    [12]. Hemler, M.E., Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annual Review of Cell and Developmental Biology,2003.19:p.397-422.
    [13]. Hemler, M.E., Tetraspanin functions and associated microdomains. Nature Reviews Molecular Cell Biology,2005.6(10):p.801-811.
    [14]. Yunta, M. and P.A. Lazo. Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cellular Signalling,2003.15(6):p.559-564.
    [15].桂朗等,四跨膜蛋白超家族tetraspanins的免疫功能研究进展.生物化学与生物物理进展,2008.35(11):第1231-1238页.
    [16]. Huang, S.F., et al., The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics,2005.86(6):p.674-684.
    [17]. Hemler, M.E., Targeting of tetraspanin proteins-potential benefits and strategies. Nature Reviews Drug Discovery,2008.7(9):p.747-758.
    [18]. Crew, V.K., et al., CD 151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood,2004.104(8):p.2217-2223.
    [19]. Kovalenko, O.V., et al.. Evidence for specific tetraspanin homodimers:inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochemical Journal,2004. 377(Part 2):p.407-417.
    [20]. Sterk, L., et al, The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha 6 beta 4 and may regulate the spatial organization of hemidesmosomes. Journal of Cell Biology,2000.149(4):p.969-982.
    [21]. Masciopinto, F., et al., The small extracellular loop of cd81 is necessary for optimal surface expression of the large loop, a putative HCV receptor. Virus Research,2001.80(1-2):p.1-10.
    [22]. Kropshofer, H., et al., Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class Ⅱ complexes. Nature Immunology,2002.3(1):p.61-68.
    [23]. Knobeloch, K.P., et al., Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Molecular and Cellular Biology,2000.20(15):p.5363-5369.
    [24], Waterhouse, R., C. Ha and G.S. Dveksler, Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. Journal of Experimental Medicine,2002.195(2):p.277-282.
    [25]. Park, S., et al.. Control of cell motility by interaction of gangliosides, tetraspanins, and epidermal growth factor receptor in a431 versus kb epidermoid tumor cells. Carbohydrate Research, 2009.344(12):p.1479-1486.
    [26]. Figdor, C.G. and A.B. van Spriel, Fungal pattern-recognition receptors and tetraspanins: partners on antigen-presenting cells. Trends in Immunology,2010.31(3):p.91-96.
    [27]. Clarke, G.C., et al., Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nature Genetics,2000.25(1):p.67-73.
    [28]. Adell, T., et al., Evolution of metazoan cell junction proteins:the scaffold protein magi and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. Journal of Molecular Evolution.2004.59(1):p.41-50.
    [29]. Gourgues, M., A. Brunet-Simon and C. Levis, The tetraspanin BcPlsl is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Molecular Microbiology. 2004.51(3):p.619-629.
    [30]. Moribe, H., et al., Tetraspanin protein (Tsp-15) integrity is required for epidermal integrity in Caenorhabditis elegans. Journal of Cell Science,2004.117(22):p.5209-5220.
    [31]. Cai, P., et al., Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2:sequence variation and possible implications for immune evasion. Biochemical and Biophysical Research Communications,2008.372(1):p.197-202.
    [32]. Kopczynski, C.C., G.W. Davis and C.S. Goodman, A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science,1996.271(5257):p.1867-1870.
    [33]. Sinenko, S.A. and B. Mathey-Prevot, Increased expression of drosophila tetraspanin, TSP68c, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene,2004.23(56):p.9120-9128.
    [34]. Wang, B., et al., Three tetraspanins from chinese shrimp, Fenneropenaeus chinensis, may play important roles in wssv infection. Journal of Fish Diseases,2010.33(1):p.15-29.
    [35]. Zhuang, S., et al., An integrin-tetraspanin interaction required for cellular innate immune responses of an insect, Manduca sexla. Journal of Biological Chemistry,2007.282(31):p.
    [36]. Venier, P., et al., Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics,2011.12(69).
    [37]. Morga, B., et al., Molecular responses of Ostrea edulis hemocytes to an in vitro infection with Bonamia ostreae. Developmental Comparative Immunology,2011.35(3):p.323-333.
    [38]. Resh, M.D., Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. Stke,2006. re 14.
    [39]. Charrin, S., et al., A physical and functional link between cholesterol and tetraspanins. European Journal of Immunology,2003.33(9):p.2479-2489.
    [40]. Cherukuri, A., et al., B cell signaling is regulated by induced palmitoylation of CD81. Journal of Biological Chemistry,2004.279(30):p.31973-31982.
    [41]. Benkendorff, K., Molluscan biological and chemical diversity:secondary metabolites and medicinal resources produced by marine molluscs. Biological Reviews,2010.85(4):p.757-775.
    [42]. Toshkova, R., et al., Effect of rapana venosa hemocyanin on antibody-dependent cell cytotoxicicity and mitogen responsibility of lymphocytes from hamsters with progressing myeloid tumors. World Journal of Medical Sciences,2009.2(4):p.135-142.
    [43].张秀丽等,血蓝蛋白研究进展.动物医学进展,2008.29(7):第86-89页.
    [44].彭文与王江勇,软体动物血蓝蛋白的结构和免疫功能的研究进展.水产科学,2011.30(3):第182-186页.
    [45].谢维与栾云霞,节肢动物血蓝蛋白家族的组成与演化.生命科学,2011.23(1):第106-114页.
    [46].章跃陵,罗芸与彭宣宪,血蓝蛋白功能研究新进展.海洋科学,2007.31(2):第77-80页.
    [47]. Lieb, B. and J. Markl, Evolution of molluscan hemocyanins as deduced from dna sequencing. Micron,2004.35(1-2):p.117-9.
    [48]. Herskovits, T.T., Recent aspects of the subunit organization and dissociation of hemocyanins. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,1988.91(4):p. 597-611.
    [49]. Van Holde, K.E. and K. Miller, Hemocyanins. Adv. Protein Chem.,1995(47):p.1-81.
    [50]. Bergmann, S., J. Markl and B. Lieb, The first complete cdna sequence of the hemocyanin from a bivalve, the protobranch Nucula nucleus. Journal of Molecular Evolution,2007.64(5):p. 500-510.
    [51]. Lieb, B. and C. Todt, Hemocyanin in mollusks-a molecular survey and new data on hemocyanin genes in solenogastres and caudofoveata. Molecular Phylogenetics and Evolution,2008. 49(1):p.382-385.
    [52]. Lieb, B., B. Altenhein and J. Markl, The sequence of a gastropod hemocyanin (hthl from Haliotis tuberculata). Journal of Biological Chemistry,2000.275(8):p.5675-5681.
    [53]. Stewart, D., W. Dandliker and A.W. Martin, Blood protein of Cryptochiton stelleri. Fed. Proc.1952(11):p.115.
    [54]. Miller, K.I., et al.. Sequence of the octopus dofleini hemocyanin subunit:structural and evolutionary implications. Journal of Molecular Biology,1998.278(4):p.827-842.
    [55]. Albrecht, T., et al., Rhogocytes (pore cells) as the site of hemocyanin biosynthesis in the marine gastropod Haliotis Wberculala. Cell and Tissue Research,2001.304(3):p.455-462.
    [56]. Streit, K., et al., Developmental expression of two Haliotis asinina hemocyanin isoforms. Differentiation,2005.73(7):p.341-349.
    [57]. Mellema, J.E. and A. Klug, Quaternary structure of gastropod hemocyanin. Nature,1972. 239(5368):p.146-&.
    [58]. Miller, K.I., E. Schabtach and K.E. Vanholde, Arrangement of subunits and domains within the Octopus dofleini hemocyanin molecule. Proceedings of the National Academy of Sciences of the United States of America.1990.87(4):p.1496-1500.
    [59]. Markl,J, Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biological Bulletin,1986.171(1):p.90-115.
    [60]. Ellerton, H.D., N.F. Ellerton and H.A. Robinson, Hemocyanin-a current perspective. Progress in Biophysics & Molecular Biology,1983.41(3):p.143-248.
    [61]. Lieb, B., et al., Structures of two molluscan hemocyanin genes:significance for gene evolution. Proceedings of the National Academy of Sciences of the United States of America,2001. 98(8):p.4546-4551.
    [62]. Van Holde, K.E., K.I. Miller and H. Decker, Hemocyanins and invertebrate evolution. Journal of Biological Chemistry,2001.276(19):p.15563-15566.
    [63]. Mangum, C.P., et al., Bivalve hemocyanin-structural, functional, and phylogenetic-relationships. Biological Bulletin,1987.173(1):p.205-221.
    [64]. Decker, H. and N. Terwilliger, Cops and robbers:putative evolution of copper oxygen-binding proteins. Journal of Experimental Biology,2000.203(12):p.1777-1782.
    [65]. Kawabata, T., et al., Molecular-cloning of insect pro-phenol oxidase-a copper-containing protein homologous to arthropod hemocyanin. Proceedings of the National Academy of Sciences of the United States of America,1995.92(17):p.7774-7778.
    [66]. Salvato, B., et al., The enzymatic properties of Octopus vulgaris hemocyanin:o-diphenol oxidase activity. Biochemistry,1998.37(40):p.14065-14077.
    [67]. Lieb, B., et al., Red blood with blue-blood ancestry:intriguing structure of a snail hemoglobin. Proceedings of the National Academy of Sciences of the United States of America,2006. 103(32):p.12011-12016.
    [68].彭文,王江勇与丁雪娟,杂色鲍血蓝蛋白的分离纯化及其酚氧化酶活性研究.中国水产科学,2010(1):第52-58页.
    [69]. Hristova, R., et al., O-diphenol oxidase activity of molluscan hemocyanins. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,2008.149(3):p.439-446.
    [70]. Siddiqui, N.I., et al., Involvement of glycans in the immunological cross-reaction between alpha-macroglobulin and hemocyanin of the gastropod Helix pomalia. Biochimie,2009.91(4):p. 508-516.
    [71]. Dissous, C., J.M. Grzych and A. Capron, Schistosoma mansoni shares a protective oligosaccharide epitope with fresh-water and marine snails. Nature,1986.323(6087):p.443-445.
    [72]. Grzych, J.M., et al., Schistosoma-mansoni shares a protective carbohydrate epitope with keyhole limpet hemocyanin. Journal of Experimental Medicine,1987.165(3):p.865-878.
    [73]. Harris, J.R. and J. Markl, Keyhole limpet hemocyanin (klh):a biomedical review. Micron, 1999.30(6):p.597-623.
    [74]. Keller, H., et al., Abalone(Haliotis tuberculata) hemocyanin type 1 (hth1)-organization of the approximate to 400 kda subunit. and amino acid sequence of its functional units f. g and h. European Journal of Biochemistry,1999.264(1):p.27-38.
    [75]. Gebauer. W., et al., Hemocyanin subunit organization of the gastropod Rapana thomasiana. Archives of Biochemistry and Biophysics,1999.372(1):p.128-134.
    [76]. Bhagvat, K.R.D., Animal phenolases and adrenaline. Biochem. J.,1938.
    [77]. Vanbreemen, J., J.H. Ploegman and E. Vanbruggen. Structure of Helix pomalia oxy-beta-hemocyanin and deoxy-beta-hemocyanin tubular polymers. European Journal of Biochemistry,1979.100(1):p.61-65.
    [78]. Drexel, R., et al.. Complete amino acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biological Chemistry Hoppe-Seyler,1987.368(6):p.617-635.
    [79]. Lieb, B., et al., Cdna sequence, protein structure, and evolution of the single hemocyanin from Aplysia californica, an opisthobranch gastropod. Journal of Molecular Evolution,2004.59(4):p. 536-545.
    [80]. Herskovits, T.T., M.D. Edwards and M.G. Hamilton, The hemocyanin of the californian black sea hare, Aplysia vaccaria winkler. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,1995.110(3):p.515-521.
    [81]. Olsson, C.A., R. Chute and C.N. Rao, Immunologic reduction of bladder cancer recurrence rate.1974. p.173-176.
    [82]. Gebauer, W., et al., Quaternary structure, subunits and domain patterns of 2 discrete forms of keyhole limpet hemocyanin-klhl and klh2. Zoology Analysis of Complex Systems,1994.98(1):p. 51-68.
    [83]. Sohngen, S.M., et al., Mass determination, subunit organization and control of oligomerization states of keyhole limpet hemocyanin (klh). European Journal of Biochemistry,1997. 248(2):p.602-614.
    [84]. Lambert, O., et al.,3-dimensional reconstruction from a frozen-hydrated specimen of the chiton Lepidochiton sp hemocyanin. Journal of Molecular Biology,1994.244(5):p.640-647.
    [85]. Lang, W.H. and K.E. Vanholde, Cloning and sequencing of Octopus dofleini hemocyanin cdna-derived sequences of functional units ode and odf. Proceedings of the National Academy of Sciences of the United States of America,1991.88(1):p.244-248.
    [86]. Lang, W.H., cDNA cloning of the Octopus dofleini hemocyanin-sequence of the carboxyl-terminal domain. Biochemistry,1988.27(19):p.7276-7282.
    [87]. Bergmann, S., et al., The hemocyanin from a living fossil, the cephalopod Nautilus pompilius:protein structure, gene organization, and evolution. Journal of Molecular Evolution,2006. 62(3):p.362-374.
    [88]. Nakahara, A., S. Suzuki and J. Kino, Tyrosinase activity of squid hemocyanin. p.19-22.
    [89]. Lamy, J., et al., Intramolecular localization of the functional units of Sepia officinalis hemocyanin by immunoelectron microscopy. Journal of Molecular Biology,1998.284(4):p. 1051-1074.
    [90]. Harris, J.R., et al.,3d reconstruction of the hemocyanin subunit dimer from the chiton Acanthochiton fascicularis. Micron,2004.35(1-2):p.23-26.
    [91]. Sodergren, E.. et al., The genome of the sea urchin Strongylocentrotus purpuratus. Science, 2006.314(5801):p.941-952.
    [92]. Factsheet, ESTs. National Center for Biotechnology Information 2004.
    [93], Coombe, D.R.. P.L. Ey and C.R. Jenkiri. SelfNon-Self Recognition in Invertebrates. The Quarterly Review of Biology,1984.
    [94]. Tripp, M.R. and V.E. Kent, Studies on Oyster Cellular Immunity. In Vitro, Vol.3, Differentiation and Defense Mechanism in Lower Organisms[Annual Symposium,1967],1967.3:p. 129-135.
    [95]. Pruzzo, C., G. Gallo and L. Canesi, Persistence of vibrios in marine bivalves:the role of interactions with haemolymph components. Environmental Microbiology,2005.7(6):p.761-772.
    [96]. Gonzalez, M., et al., Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI. Proceedings of the National Academy of Sciences of the United States of America,2007.104(45):p.17759-17764.
    [97]. Gueguen, Y., et al., Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene,2003.303:p.139-45.
    [98]. Jenny, M.J., et al., Potential indicators of stress response identified by expressed sequence tag analysis of hemocytes and embryos from the american oyster, Crassostrea virginica. Marine Biotechnology,2002.4(1):p.81-93.
    [99]. Roberts, S., et al., Analysis of genes isolated from plated hemocytes of the pacific oyster, Crassostrea gigas. Marine Biotechnology,2009.11:p.24-44.
    [100]. Gestal, C., et al., Study of diseases and the immune system of bivalves using molecular biology and genomics. Reviews in Fisheries Science,2008.16:p.133-156.
    [101]. Scotto-Lavino, E., G.W. Du and M.A. Frohman,5'end cDNA amplification using classic RACE. Nature Protocols,2006.1(6):p.2555-2562.
    [102]. Schmidt, W.M. and M.W. Mueller, CapSelect:a highly sensitive method for 5' CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs..1999. p. e31.
    [103].朱靖等,入噬菌体cDNA文库向质粒cDNA文库转化的研究.家畜生态学报,2006.27(1):第27-28贞.
    [104]. Gourgues, M., et al., A new class of tetraspanins in fungi. Biochemical and Biophysical Research Communications,2002.297(5):p.1197-1204.
    [105]. Kitadokoro, K., et al., CD81 extracellular domain 3D structure:insight into the tetraspanin superfamily structural motifs. Embo Journal,2001.20(1-2):p.12-18.
    [106]. Seigneuret, M., et al., Structure of the tetraspanin main extracellular domain-a partially conserved fold with a structurally variable domain insertion. Journal of Biological Chemistry,2001. 276(43):p.40055-40064.
    [107]. Wang, H.Y. and X.M. Guo, Identification of Crassostrea ariakensis and related oysters by multiplex species-specific PCR. Journal of Shellfish Research.2008.27(3):p.481-487.
    [108]. Thompson, J.R., L.A. Marcelino and M.F. Polz, Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by'reconditioning PCR'. Nucleic Acids Research,2002.30(9):p.2083-2088.
    [109]. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods,2001.25(4):p.402-408.
    [110]. Wada, H. and N. Satoh, Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18s rDNA. Proceedings of the National Academy of Sciences of the United States of America,1994.91(5):p.1801-1804.
    [111]. Metzelaar, M.J.. et al., CD63-antigen-a novel lysosomal membrane glycoprotein, cloned by a screening-procedure for intracellular antigens in eukaryotic cells. Journal of Biological Chemistry, 1991.266(5):p.3239-3245.
    [112]. Mantegazza, A.R., et al.. CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells. Blood, 2004.104(4):p.1183-90.
    [113]. Alberts, B等.,细胞的分子生物学,张新跃等译,张新跃等译 编|.*2008,科学出版社:北京.第19页.
    [114]. Roit, I.,免疫学,周光炎上译,周光炎主译 编|.*2002,人民卫生出版社:北京.第120页.
    [115]. Roit, I.,免疫学,周光炎主译,周光炎主译 编|.*2002,人民卫生出版社:北京.第128页.
    [116]. Sauvage, C., et al., Single nucleotide polymorphisms and their relationship to codon usage bias in the pacific oyster Crassostrea gigas. Gene,2007.406(1-2):p.13-22.
    [117]. Schmitt, P., et al., Molecular diversity of antimicrobial effectors in the oyster Crassostrea gigas. BMC Evolutionary Biology,2010:p.-
    [118]. Sepulveda, J., et al., Schistosoma mansoni host-exposed surface antigens characterized by sera and recombinant antibodies from schistosomiasis-resistant rats. International Journal for Parasitology,2010.40(12):p.1407-1417.
    [119]. Rumpho, M.E., et al., Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proceedings of the National Academy of Sciences of the United States of America,2008.105(46):p.17867-17871.
    [120]. Hare, M.P. and J.C. Avise, Molecular genetic analysis of a stepped multilocus dine in the American oyster (Crassostrea virginica). Evolution,1996.50(6):p.2305-2315.
    [121].吕豪与魏若飞,太平牡蛎与大连湾牡蛎杂交实验.水产科学,1994.13(6):第8-11页.
    [122].周茂德,高允田与吴融,太平洋牡蛎与近江牡蛎、褶牡蛎人工杂交的初步研究.水产学报,1982.6(3):第235-241页.
    [123]. Alberts, B等.,细胞的分子生物学,张新跃等译,张新跃等译编|.*2008,科学出版社:北京.第805页.
    [124]. Varki, A.E.A.,糖生物学基础,张树政等,张树政等ˇ编|.*2003,科学出版社:北京.第9页.
    [125]. Fafandel, M., et al., Hemocytes/coelomocytes DNA content in five marine invertebrates:cell cycles and genome sizes. Biologia,2008.63(5):p.730-736.
    [126]. Sambrook, J., E.F. Fritsch and T. Maniatis, Molecular Cloning:A Laboratory Manual.1989, NY:Cold Spring Habor Laboratory,Cold Spring Harbor.
    [127]. Zhu, B.J. and X.Z. Wu, Identification of outer membrane protein ompR from rickettsia-like organism and induction of immune response in Crassostrea ariakensis. Molecular Immunology,2008. 45(11):p.3198-3204.
    [128]. Brockton, V., et al., Localization and diversity of 185/333 proteins from the purple sea urchin-unexpected protein-size range and protein expression in a new coelomocyte type. Journal of Cell Science,2008.121(3):p.339-348.
    [129]. Yang, S.B. and X.Z. Wu, Identification and functional characterization of a human sTRAIL homolog, CasTRAIL, in an invertebrate oyster Crassostrea ariakensis. Developmental and Comparative Immunology,2010.34(5):p.538-545.
    [130]. Slot, J.W. and H.J. Geuze, Cryosectioning and immunolabeling. Nature Protocols,2007. 2(10):p.2480-2491.
    [131]. Bachere, E., et al., Insights into the anti-microbial defense of marine invertebrates:the penaeid shrimps and the oyster Crassostrea gigas. Immunological Reviews,2004.198:p.149-168.
    [132]. Destoumieux, D., et al., Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. Journal of Cell Science,2000.113(3):p.461-469.
    [133]. Mitta, G., et al., Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. Journal of Cell Science,1999.112(23):p. 4233-4242.
    [134].黄晓峰与杨家骥,细胞超微结构与超微结构病理基础.2004,西安:第四军医大学出版社.
    [135]. Hine, P.M., The inter-relationships of bivalve hemocytes. Fish Shellfish Immunology.1999. 9(5):p.367-385.
    [136]. Pipe, R.K., Differential binding of lectins to hemocytes of the mussel Mytilus edulis. Cell and Tissue Research,1990.261(2):p.261-268.
    [137]. Yoshida, T., H. Ebina and Y. Koyanagi, N-linked glycan-dependent interaction of CD63 with CXCR4 at the golgi apparatus induces downregulation of cxcr4. Microbiology and Immunology, 2009.53(11):p.629-635.
    [138]. Mortensen, S. and J. Glette, Phagocytic activity of scallop (Pecten maximus) haemocytes maintained in vitro. Fish Shellfish Immunology,1996.6(2):p.111-121.
    [139]. Ruddell, C.L., The fine structure of the granular amebocytes of the pacific oyster, Crassostrea gigas. J Invertebr Pathol,1971.18(2):p.269-75.
    [140]. Fortier, M.E., et al., The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. American Journal of Physiology-Regulatory Integrative and Comparative Physiology,2004.287(4):p. R759-R766.
    [141]. Simpson, C.A., Oyster and virus. Lancet,1964.1(7341):p.1027-8.
    [142]. Yakovleva, N.V., M.P. Samoilovich and A.M. Gorbushin. The diversity of strategies of defense from pathogens in molluscs. Journal of Evolutionary'Biochemistry and Physiology,2001. 37(4):p.358-367.
    [143]. Le Guyader, F.S., et al., Norwalk virus-specific binding to oyster digestive tissues. Emerging Infectious Diseases,2006.12(6):p.931-936.
    [144]. Neumann, N.F. and M. Belosevic, Deactivation of primed respiratory burst response of goldfish macrophages by leukocyte-derived macrophage activating factor(s). Developmental and Comparative Immunology,1996.20(6):p.427-439.
    [145]. Lacoste, A., et al., Stress-induced immune changes in the oyster Crassostrea gigas. Dev Comp Immunol,2002.26(1):p.1-9.
    [146]. Courtois, S., et al., Delta N-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene,2002.21(44):p.6722-6728.
    [147]. Owusu-Ansah, E. and U. Banerjee, Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature,2009.461(7263):p.537-U109.
    [148]. Rieger, M.A., et al., Hematopoietic cytokines can instruct lineage choice. Science,2009. 325(5937):p.217-218.
    [149]. Chen, J.H. and C.J. Bayne, Bivalve mollusc hemocyte behaviors:Characterization of hemocyte aggregation and adhesion and their inhibition in the California mussel(Mytilus califomianus). Biological Bulletin,1995.188:p.255-266.
    [150]. Bang, F.B., Reaction to injury in the oyster (Crassostrea virginica). Biological Bulletin, 1961.161:p.57-68.
    [151]. Feng, S.Y. and J.S. Feng, Effect of temperature on cellular reactions of Crassostrea virginica to injection of avian erythrocytes. Journal of Invertebrate Pathology,1974.23(1):p.22-37.
    [152]. Cheng, T.C., Bivalves. Pp.233-300 in Invertebrate blood cells. N. A. Ratcliffe and A.F. Bowley, eds. Academic Press, New York..1981.
    [153]. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976.72:p.248-54.
    [154]. Barreiro, O., et al., Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. Journal of Cell Biology,2008.183(3):p.527-542.
    [155]. Mateo, D.R., et al., Differential in vivo response of soft-shell clam hemocytes against two strains of Vibrio splendidus:Changes in cell structure, numbers and adherence. Journal of Invertebrate Pathology,2009.102(1):p.50-56.
    [156]. Opper, B., P. Nemeth and P. Engelmann, Calcium is required for coelomocyte activation in earthworms. Molecular Immunology,2010.47(11-12):p.2047-2056.
    [157]. Lacoste, A., A. Cueff and S.A. Poulet, P35-sensitive caspases, MAP kinases and Rho modulate beta-adrenergic induction of apoptosis in mollusc immune cells. Journal of Cell Science, 2002.115(4):p.761-768.
    [158]. Seger, R. and E.G. Krebs, The MAPK signaling cascade. Faseb Journal,1995.9(9):p. 726-735.
    [159]. Hanington, P.C., et al., Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proceedings of the National Academy of Sciences of the United States of America,2010.107(49):p.21087-21092.
    [160]. Lacoste, A., A. Cueff and S.A. Poulet, P35-sensitive caspases, MAP kinases and Rho modulate beta-adrenergic induction of apoptosis in mollusc immune cells. Journal of Cell Science, 2002.115(4):p.761-768.
    [161]. Zelck, U.E., B.E. Gege and S. Schmid, Specific inhibitors of mitogen-activated protein kinase and P13-K pathways impair immune responses by hemocytes of trematode intermediate host snails. Developmental and Comparative Immunology,2007.31(4):p.321-331.
    [162]. Zhang, S.M., et al., Diversification of Ig superfamily genes in an invertebrate. Science,2004. 305(5681):p.251-254.
    []63]].工琴美,王鸣杰与常惠玲,自SDS-PAGE凝胶中洗脱蛋白质的简易高效方法.中国寄生虫学与寄生虫病杂志,1995(4):第76页.
    [164].牟海津与江晓路,双壳贝类血清中凝集素凝集性能初步研究.青岛海洋大学学报:自然科学版,1999.29(2):第249-254页.
    [165]. Chen, C., N.A. Ratcliffe and A.F. Rowley, Detection, isolation and characterization of multiple lectins from the haemolymph of the cockroach Blaberus discoidalis. Biochem. J.,1993.294:p. 181-190.
    [166], Destoumieux, D., et al., Crustacean immunity-antifungal peptides are generated from the c terminus of shrimp hemocyanin in response to microbial challenge. Journal of Biological Chemistry, 2001.276(50):p.47070-47077.
    [167]. Decker, H., et al., Minireview:recent progress in hemocyanin research. Integrative and Comparative Biology,2007.47(4):p.631-644.
    [168]].张惟杰,凝集素研究百年.生命的化学,1989.9(5):第1-2页.
    [169]. Loker, E.S., et al., Ultrastructure of encapsulation of Schistosoma mansoni mother sporocysts by hemocytes of juveniles of the 10-R2 strain of Biomphalaria glabrata. J Parasitol,1982. 68(1):p.84-94.
    [170]. Adema, C.M., R.A. Harris and E.C. van Deutekom-Mulder, A comparative study of hemocytes from six different snails:morphology and functional aspects. J Invertebr Pathol,1992.59(1): p.24-32.
    [171]. Fisher, W.S. and A.R. DiNuzzo, Agglutination of bacteria and erythrocytes by serum from six species of marine molluscs. J Invertebr Pathol,1991.57(3):p.380-94.
    [172]. Boswell, C.A. and C.J. Bayne, Schistosoma mansoni:lectin-dependent cytotoxicity of hemocytes from susceptible host snails, Biomphalaria glabrata. Exp Parasitol,1985.60(1):p.133-8.
    [173]. Canesi, L., et al., Surface interactions between Escherichia coli and hemocytes of the Mediterranean mussel Mytilus galloprovincialis Lam. leading to efficient bacterial clearance. Applied and Environmental Microbiology,2001.67(1):p.464-468.
    [174]. Zhang, Y.L., et al., Affinity proteomic approach for identification of an iga-like protein in lilopenaeus vannamei and study on its agglutination characterization. Journal of Proteome Research. 2006.5(4):p.815-821.
    [175], Hughes, T.K., et al., Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis. Proceedings of the National Academy of Sciences of the United States of America,1990.87(12):p.4426-4429.
    [176]. English, J.M. and M.H. Cobb, Pharmacological inhibitors of MAPK pathways. Trends in Pharmacological Sciences,2002.23(1):p.40-45.