副猪嗜血杆菌感染猪脾脏的转录组变化与基因通路/网络分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副猪嗜血杆菌(Haemophilus parasuis, HPS)属于革兰氏阴性多形短小杆菌,是猪Glasser氏病的致病菌,临床上典型症状为纤维素性多发性浆膜炎、多发性关节炎和脑膜炎。副猪嗜血杆菌感染已成为目前养猪生产中的严重威胁之一,造成了很大的经济损失。尽管商业化疫苗已经被开发出来,可是由于该细菌存在众多的血清型,市售疫苗往往难以起到全面的保护作用,这些局限也与目前人们对该细菌感染的分子机理缺乏深入的认识密切相关。从长远的角度考虑,在猪群中培育具有HPS抗性的新品系(品种)是解决感染的最佳途径,代表了未来养猪业可持续发展的方向。而无论是深入了解致病机理还是培育抗性品种都离不开对宿主候选基因的研究,也许,距离真正培育出抗性品种还比较遥远,但那仅仅是时间问题。基于这些科学疑问,本论文:
     1.利用高通量基因芯片技术(Affymetrix Porcine GeneChip(?))首次对副猪嗜血杆菌感染后宿主的转录组变化(脾脏中,感染后6天检测)进行了分析。多种组织的切片结果显示:HPS感染在肺部、肝脏、脾脏中可导致明显的病理变化/较为强烈的免疫应答;以脾脏组织为主要研究对象的芯片原始数据先后经过GCRMA法标准化处理、SAM法显著性分析和基因注释之后共发现有286个基因存在显著差异表达,倍数变化(Fold Change, FC)>2,假阳性率(False Discovery Rate, FDR)<10%,其中157个基因上调表达,129个基因下调表达;定量PCR结果证明:这些差异表达基因真实可靠地反映出了组织本身在感染状态的转录组变化,排除了不确定因素的干扰;此外,还采用定量PCR (Quantitative real-time PCR, qRT-PCR)对芯片差异表达基因进行了进一步的验证。
     2.利用Ingenuity(?)技术对HPS感染导致的差异表达基因所代表的生物学意义进行了全面地解析。分子水平上,HPS感染整体引起了机体一系列的功能性改变;先天免疫如炎症反应、免疫细胞迁移,后天免疫如细胞介导的免疫应答、体液介导的免疫应答,以及宿主抗微生物应答等均受到明显地影响;HPS入侵还导致宿主发生
     一系列感染性疾病,特别明显的是呼吸系统疾病;其他重要的变化还包括多种组织器官的功能性障碍、物质代谢等,从分子水平上显示出宿主免疫应答与机体生长发育之间的内在联系。
     3.重点对HPS感染过程中宿主的免疫应答进行了分析。结果表明:宿主免疫启动以MYD88 (myeloid differentiation primary response gene 88)依赖的TLR2 (Toll-like receptor 2)信号通路为主,该信号通路以核转录因子CEBPB (Ccaat/enhancer binding protein beta)为中心与感染过程中的炎症反应和急性期应答等重要免疫反应形成完整的信号转导级联;在差异表达基因的基础上揭示出了与呼吸系统疾病、遗传紊乱、关节炎等密切相关的分子网络;对差异显著的经典信号通路分析表明:HPS通过下调CCL5 (chemokine (C-C motif) ligand 5).PRKCH(protein kinase C, eta).ACTA1 (actin,alpha 1, smooth muscle, aorta)、ACTC1 (actin, alpha, cardiac muscle 1)、ACTG2 (actin, gamma 2, smooth muscle, enteric)、TRD@ (T cell receptor delta locus)以及CD3系列基因阻止先天免疫应答中吞噬细胞的募集、细胞内完整吞噬体的形成、先天免疫和后天免疫应答之间的信号交流并抑制淋巴细胞活化,这代表了HPS最主要的免疫逃避机制;
     4.对HPS感染引起的猪钙粒蛋白基因S100A8 (S100 calcium binding protein A8)、S100A9 (S100 calcium binding protein A9)、S100A12 (S100 calcium binding protein A12)首次进行了基因克隆并分析了它们的基本分子特征。结果表明:猪钙粒蛋白基因组结构均由3个外显子和2个内含子组成,基因组全长分别为1000 bp、2817 bp、1440 bp;猪体细胞杂种板和辐射杂种板的基因定位结果显示它们均位于猪4号染色体q21-q23区段,与SW512紧密连锁;这3个基因主要在猪免疫器官或与免疫应答密切相关的器官如骨髓、淋巴节、肺脏、肝脏等组织中高表达,LPS和Poly (I:C)在猪PK-15细胞以及体外全血培养系统中的免疫刺激显著上调它们的表达,结果初步证明了它们在猪免疫应答中的重要作用。
     5.结合生物信息学预测、启动子区系列删除实验和基因芯片结果初步表明:猪钙粒蛋白在HPS感染过程中的上调表达需要核转录因子CEBPB,基因转录与p38MAPK信号密切有关并极有可能依赖IL10;分子结构特征分析显示猪S100A8、S100A12、S100A9含有一些宿主保护性免疫应答中非常重要的氨基酸位点如Met(S100A8 Met42)位点和Zn2+结合位点等;提出了“猪钙粒蛋白主要通过调节炎症反应信号实现对宿主的免疫保护作用”这一假设。
     6.通过对影响猪免疫力(Immune Capacity)的数量性状位点(QTLs)和HPS感染的差异表达基因进行联合分析,积极探索了特异性免疫应答对免疫力的影响,可能代表了今后数据联合分析的新方向。
     总之,本论文内容填补了HPS感染过程中宿主应答方面的研究空白,鉴定出许多与感染密切相关的宿主基因,初步揭示了宿主免疫应答的分子信号通路和基因网络,这为深入了解HPS感染的致病机理、治疗、宿主抗性基因的筛选奠定了一定的基础,也为我们研究猪免疫应答提供了新的参考。
Haemophilus parasuis (HPS) is a small, pleomorphic, Gram-negative bacillus that causes Glasser's disease, which is characterized by fibrinous polyserositis, meningitis and arthritis. It has become an increasing threat in pig herds worldwide and causes devastating losses to the pig industry. Commercial vaccines against HPS have been developed, but none of them offer effective protection against all heterologous strains. One of the most important reasons is that little is known about the pathogenesis, especially, the host immune responses (IR) to the infection. In the long run, it will be the best to shift our focus in breeding for resistance to Glasser's disease. Research on host genes is not only helpful for our understanding of the pathogenesis but also very useful to enhance porcine genetic abilities to combat HPS. May be, there is still a long way to go, but much progress will be achived sooner or later. Because of these, in this article:
     1. For the first time, we analyzed the global change following HPS infection in porcine spleen (6 days post infection) based on the Affmetrix Porcine GeneChip(?) technology. Histology detections of porcine main organs show that HPS infection result in significant responses in spleen, lung, and liver; Raw data of the GeneChip(?) was normalized by GCRMA method, following significant analysis using SAM. After gene annotations, a total of 286 genes (Fold change>2, False discovery rate<10%) are differentially expressed, in which 157 and 129 genes are up-regulated and down-regulated, respectively. No evidence was obtained that expression levels had changed as a result of significant migration of cells, which could result in masking of the gene expression levels (Quantitative real-time PCR results).10 genes were selectively validated using Quantitative real-time PCR (qRT-PCR)
     2. Ingenuity(?) Pathway Analysis (IPA) of the microarray result show that HPS infection result in a serial significant changes of host biology functions, including those involved in innate IR, e.g., Inflammatory Response, Immune Cell Trafficking, and adaptive IR, e.g., Humoral Immune Response, Cell-mediated Immune Response, and Antimicrobial Response; Infection also result in several kinds of infectious diseases such as respiratory disease; Additionally, tissue or organ abnormals and metabolisms such as those in lipids, amino acids, vitamins, and minerals are significantly affected too. These data indicate a molecular connection between IRs and organismal development.
     3. Host IRs are the main issue during HPS infection. Our results indicate that the MYD88 (myeloid differentiation primary response gene 88) dependent TLR2 (Toll-like Receptor 2) signaling plays a crucial role in initiating host IRs following HPS infection. CEBPB (Ccaat/enhancer binding protein beta) is the core transcription factor in this signaling that connect to a wide range of cascades like inflammatory responses and acute phase reactions. Gene networks on respiratory disease, genetic disorder, arthritis, etc., are identified too; Canonical pathway analysis indicate that HPS employes several strategies for immune evasion, including inhibiting leukocyte migrations, phagocytosis, and communations between immune cells in innate IR and activation of T/B lymphocytes in adaptive IR and so on. Key down-regulated genes in these dead pathways are CCL5 (chemokine (C-C motif) ligand 5), PRKCH(protein kinase C, eta), ACTA1 (actin, alpha 1, smooth muscle, aorta), ACTC1 (actin, alpha, cardiac muscle 1), ACTG2 (actin, gamma 2, smooth muscle, enteric), TRD@ (T cell receptor delta locus), and CD3.
     4. All of the three genes encoding porcine calgranulins:S100A8 (S100 calcium binding protein A8), S100A9 (S100 calcium binding protein A9), and S100A12 (S100 calcium binding protein A12), which are closely related to HPS infection are cloned. Our results show that they share the same gene structures with human/mouse homologs. The genome (1000 bp、2817 bp、1440 bp in order) comprises 3 exons dividing by 2 introns; Gene mapping using SCHP (Somatic Cell Hybrid Panel) and IMpRH (INRA-UMN porcine Radiation Hybrid panel) show that they are located on SSC4 q21-q23 and closely linked with SW512; Under normal condition, most abundant mRNA levels are seen in the organs of the immune system, e.g., bone marrow, spleen, and lymph nodes, and other organs that have important functions during IR such as lung and liver; Immunostimulations in PK-15 (porcine kidney-15) cells and porcine whole blood cultures mimicking bacterial or viral infections using LPS and Poly (I:C) significantly enhanced their mRNA levels. These results further confirmed their immunological characterizations.
     5. Promoter analysis of porcine S100A8, S100A9, and S100A12 were performed by bioinformatics predictions in combine with promoter serial deletion experiments. We show that CEBPB is required for their up-regulations during HPS infection. The up-regulation is also closely related to p38 MAPK pathway and maybe IL10 dependent. Importantly, there are many key amino acid sites in these molecues such as Met42 in porcine S100A8 and Zn2+-binding sites that have been proven to play key antimicrobial roles in human and/or mouse. All together, we herein presume that porcine calgranulins might protect host from HPS infection (or many other kinds of pathogens in pig) through regulating inflammations.
     6. At last but not least, we show a meta-analysis between differentially expressed genes during HPS infection and the up-to-date pig QTLs (quantitative trait locus) of Immune Capacity. Many interesting candiadate genes are identified, indicating that important relationships exist between these genes and the pig general resistance. The method we use provide a new way for high-throughout data analysis and may have a "bright" usage in the future for a deep understanding of candidate genes in pig breeding. In conclusion, we herein fill the "blank" on host responses to HPS infection. Genes, pathways, and gene networks underlying the infection are identified. These results will lead to therapies for HPS and candidate genes for HPS resistance as well as provide fundamental information regarding porcine immune response mechanisms.
引文
1.魏子贡,蔡旭旺,金梅林,胡军勇,葛君,陈焕春.副猪嗜血杆菌抗体间接血凝检测方法的建立及应用.中国兽医科学,2006,36:713-718
    2.施启顺.畜禽抗病育种研究进展.中国畜牧杂志,1995,31:48-51
    3.施启顺.畜禽的抗病性与抗病育种.国外畜牧学,猪与禽,2006,1:32-36
    4.熊远著.瘦肉型猪育种的发展及展望.中国工程学,2000,2:42-46
    5.朱猛进,刘榜,彭中镇.我国养猪业的特点及若干思考.中国畜牧兽医,2005,6:24-27
    6. Amano, H., Shibata, M., Kajio, N., Morozumi, T.,1994. Pathologic observations of pigs intranasally inoculated with serovar 1,4 and 5 of Haemophilus parasuis using immunoperoxidase. method. J Vet Med Sci,194,56:639-644
    7. Aragon V, Bouchet B, Gottschalk M. Invasion of endothelial cells by systemic and nasal strains of Haemophilus parasuis. Vet J,2010,186:264-267
    8. Archibald AL, Haley CS, Brown JF, Couperwhite S, McQueen HA, Nicholson D, Coppieters W, Van de Weghe A, Stratil A, Winter(?) AK, et al. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome,1995,6:157-175
    9. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol,2000,18:767-811
    10. Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S, Kundu M. NF-{kappa}B- and C/EBP{beta}-driven Interleukin-1{beta} Gene Expression and PAKl-mediated Caspase-1 Activation Play Essential Roles in Interleukin-1{beta} Release from Helicobacter pylori Lipopolysaccharide-stimulated Macrophages. J Biol Chem,2005,280:4279-4288
    11. Benedyk M., Sopalla C., Nacken W., Bode G, Melkonyan H., Banfi B., Kerkhoff C. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities. J Invest Dermatol,2007,127: 2001-2011
    12. Bin Fan, Suneel K Onteru, Dorian J Garrick, Kenneth J Stalder, Max F Rothschild. Whole-Genome Association Analysis On Body Composition And Feet And Leg Structure Soundness Traits In The Pig. Proceedings of the Plant and Animal Genome XVIII Meetings,2009, San Diego, CA: http://www.intl-pag.org/18/abstracts/P05n_PAGXVIII_605.html
    13. Blanco I, Canals A, Evans G, Mellencamp MA, Cia C, Deeb N, Wang L, Galina-Pantoja L. Differences in susceptibility to Haemophilus parasuis infection in pigs. Can J Vet Res,2008,72:228-235
    14. Blanco I, Galina-Pantoja L, Oliveira S, Pijoan C, Sanchez C, Canals A. Comparison between Haemophilus parasuis infection in colostrums-deprived and sow-reared piglets. Vet Microbiol,2004,103:21-27
    15. Bouchet B, Vanier G, Jacques M, Auger E, Gottschalk M. Studies on the interactions of Haemophilus parasuis with porcine epithelial tracheal cells:limited role of LOS in apoptosis and pro-inflammatory cytokine release. Microb Pathog,2009,46:108-113
    16. Bouchet B, Vanier G, Jacques M, Gottschalk M. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells. Vet Res, 2008,39:42
    17. Brun JG, Haland G, Haga HJ, Fagerhol MK, Jonsson R. Effects of calprotectin in avridine-induced arthritis. Apmis,1995,103:233-240
    18. Burkey TE, Skjolaas KA, Dritz SS, Minton JE. Expression of Toll-like receptors, interleukin 8, macrophage migration inhibitory factor, and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis. Vet Immunol Immunopathol,2007,115:309-319
    19. Buske B, Sternstein I, Brockmann G. QTL and candidate genes for fecundity in sows. Anim Reprod Sci,2006,95:167-183
    20. Butler D. Human genome at ten:Science after the sequence. Nature,2010,465: 1000-1001
    21. Cai X, Chen H, Blackall PJ, Yin Z, Wang L, Liu Z, Jin M. Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol,2005, 111:231-236
    22. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results:A review of statistical methods and recommendations for their application. Am J Hum Genet, 2010,86:6-22
    23. Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev,1991,5:1538-1552
    24. Chen H, Cheng L, Yang S, Liu X, Liu Y, Tang J, Li X, He Q, Zhao S. Molecular characterization, induced expression, and transcriptional regulation of porcine S100A12 gene. Mol Immunol,2010,47:1601-1607
    25. Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S. Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genomics,2009,10:64
    26. Chen H, Lunney JK, Cheng L, Li X, Cao J, Zhu M, Zhao S. Porcine S100A8 and S100A9: molecular characterizations and crucial functions in response to Haemophilus parasuis infection. Dev Comp Immunol,2010, Sep:(Ref. No.:DCI-D-10-00217R2)
    27. Chen H, Lunney JK, Cheng L, Li X, Cao J, Zhu M, Zhao S. Porcine S100A8 and S100A9: molecular characterizations and crucial functions in response to Haemophilus parasuis infection. Dev Comp Immunol,2010, Sep Ref. No.:DCI-D-10-00217R2
    28. Chen K, Baxter T, Muir WM, Groenen MA, Schook LB. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci,2007,3: 153-165
    29. Clapperton M, Bishop SC, Glass EJ. Innate immune traits differ between Meishan and Large White pigs. Vet Immunol Immunopathol,2005,104:131-144
    30. Coccia EM. IFN regulation and functions in myeloid dendritic cells. Cytokine Growth Factor Rev,2008,19:21-32
    31. Couture O., Callenberg K., Koul N., Pandit S., Younes R., Hu Z. L., Dekkers J., Reecy J., Honavar V., Tuggle C. ANEXdb:an integrated animal ANnotation and microarray EXpression database. Mamm. Genome,2009,20:768-777
    32. Couture, O., Callenberg, K., Koul, N., Pandit, S., Younes, R., Hu, Z.L., Dekkers, J., Reecy, J., Honavar, V, Tuggle, C. ANEXdb:an integrated animal ANnotation and microarray EXpression database. Mamm Genome,2009,20:768-777
    33. Davis GP, DeNise SK. The impact of genetic markers on selection. J Anim Sci,1998, 76:2331-2339
    34. de la Fuente AJ, Ferri EF, Tejerina F, Frandoloso R, Martinez SM, Martin CB. Cytokine expression in colostrum-deprived pigs immunized and challenged with Haemophilus parasuis. Res Vet Sci.2009 Aug;87(1):47-52. Epub 2009 Jan 31.
    35. de la Fuente AJ, Gutierrez-Martin CB, Rodriguez-Barbosa JI, Martinez-Martinez S, Frandoloso R, Tejerina F, Rodriguez-Ferri EF. Blood cellular immune response in pigs immunized and challenged with Haemophilus parasuis. Res Vet Sci,2009,86: 230-234
    36. de Seny D, Fillet M, Ribbens C, Maree R, Meuwis MA, Lutteri L, Chapelle JP, Wehenkel L, Louis E, Merville MP, Malaise M.Monomeric calgranulins measured by SELDI-TOF mass spectrometry and calprotectin measured by ELISA as biomarkers in arthritis. Clin Chem,2008,54:1066-1075
    37. del Rio ML, Gutierrez-Martin CB, Rodriguez-Barbosa JI, Navas J, Rodriguez-Ferri EF. Identification and characterization of the TonB region and its role in transferrin-mediated iron acquisition in Haemophilus parasuis. FEMS Immunol Med Microbiol,2005,45:75-86
    38. del Rio ML, Navas J, Martin AJ, Gutierrez CB, Rodriguez-Barbosa JI, Rodriguez Ferri EF. Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor. Vet Res,2006, 37:49-59
    39. Della CM, Sivori S, Castriconi R, Marcenaro E, Moretta A. Pathogen-induced private conversations between natural killer and dendritic cells. Trends Microbiol,2005,13: 128-136
    40. Dell'Angelica E. C., Schleicher C. H., Simpson R. J., Santome J. A. Complex assembly of calgranulins A and B, two S100-like calcium-binding proteins from pig granulocytes. Int J Biochem Cell Biol,1996,28:53-62
    41. Dell'Angelica, E.C., Schleicher, C.H., Santome, J.A. Primary structure and binding properties of calgranulin C, a novel S100-like calcium-binding protein from pig granulocytes. J Biol Chem,1994,269:28929-28936
    42. Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A. DAVID:Database for Annotation, Visualization, and Integrated Discovery. Genome Biol,2003,4:3
    43. Edgeworth J, Gorman M, Bennett R, Freemont P, Hogg N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem,1991,266:7706-7713
    44. Eileen Thacker. Immunology:The innate immune system. The Pig Journal,2003,52: 111-123
    45. Endoh Y., Chung Y M., Clark I. A., Geczy C. L., Hsu K. IL-10-dependent S100A8 gene induction in monocytes/macrophages by double-stranded RNA. J Immunol, 2009,182:2258-2268
    46. et al. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics, 2006,58:324-330
    47. Foell D, Wittkowski H, Roth J. Mechanisms of disease:a 'DAMP' view of inflammatory arthritis. Nat Clin Pract Rheumatol,2007,3:382-390
    48. Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes:a novel group of damage-associated molecular pattern molecules. J Leukoc Biol,2007, 81:28-37
    49. Frosch M, Strey A, Vogl T, Wulffraat NM, Kuis W, Sunderkotter C, Harms E, Sorg C, Roth J. Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum,2000,43:628-637
    50. Fuellen, G., Foell, D., Nacken, W., Sorg, C., Kerkhoff, C. Absence of S100A12 in mouse:implications for RAGE-S100A12 interaction. Trends Immunol,2003,24: 622-624
    51. Gao Y, Flori L., Lecardonnel J., Esquerre D., Hu Z. L., Teillaud A., Lemonnier G, Lefevre F., Oswald I. P., Rogel-Gaillard C. Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genomics 2010,11:292
    52. Gebhardt C., Nemeth J., Angel P., Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol,2006,72,1622-1631
    53. Gheorghiu I, Deschenes C, Blais M, Boudreau F, Rivard N, Asselin C. Role of specific CCAAT/enhancer-binding protein isoforms in intestinal epithelial cells. J Biol Chem,2001,276:44331-44337
    54. gli-Esposti MA, Smyth MJ. Close encounters of different kinds:dendritic cells and NK cells take centre stage. Nat Rev Immunol,2005,5:112-124
    55. Goldstein, D.B. Common genetic variation and human traits. N Engl J Med,2009, 360:1696-1698
    56. Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G, Gellin J. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics,1996,36:252-262
    57. Goyette J., Geczy C. L. Inflammation-associated S100 proteins:new mechanisms that regulate function. Amino Acids,2010, DOI:10.1007/s00726-010-0528-0 (in press)
    58. Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle:identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res,2002,12:222-231
    59. Harrison CA, Raftery MJ, Walsh J, Alewood P, Iismaa SE, Thliveris S, Geczy CL. Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J Biol Chem,1999,274:8561-8569
    60. Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, Schook LB, Alexander LJ. A first-generation porcine whole-genome radiation hybrid map. Mamm Genome,1999,10:824-830
    61. Hermann-Josef Rothkotter H-J. Anatomical particularities of the porcine immune system--A physician's view. Dev Comp Immunol,2009,33:267-272
    62. Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M.F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D., Schmidt, A.M. RAGE mediates a novel proinflammatory axis:a central cell surface receptor for S100/calgranulin polypeptides. Cell,1996,97:889-901
    63. Hong M, Ahn J, Yoo S, Hong J, Lee E, Yoon I, Jung JK, Lee H. Identification of novel immunogenic proteins in pathogenic Haemophilus parasuis based on genome sequence analysis. Vet Microbiol,2010 Aug 6 (in press)
    64. Hsu K, Champaiboon C, Guenther BD, Sorenson BS, Khammanivong A, Ross KF, Geczy CL, Herzberg MC. ANTI-INFECTIVE PROTECTIVE PROPERTIES OF S100 CALGRANULINS. Antiinflamm Antiallergy Agents Med Chem,2009,8: 290-305
    65. Hsu K, Passey RJ, Endoh Y, Rahimi F, Youssef P, Yen T, Geczy CL. Regulation of S100A8 by glucocorticoids. J Immunol,174:2318-2326
    66. Humphray SJ, Scott CE, Clark R, Marron B, Bender C, Camm N, Davis J, Jenks A, Noon A, Patel M, Sehra H, Yang F, Rogatcheva MB, Milan D, Chardon P, Rohrer G, Nonneman D, de Jong P, Meyers SN, Archibald A, Beever JE, Schook LB, Rogers J. A high utility integrated map of the pig genome. Genome Biol,2007,8:R139
    67. Ibeagha-Awemu EM, Kgwatalala P, Zhao X. A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm Genome,2008,19:591-617
    68. Jin H, Wan Y, Zhou R, Li L, Luo R, Zhang S, Hu J, Langford PR, Chen H. Identification of genes transcribed by Haemophilus parasuis in necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environ Microbiol, 2008,10:3326-3336
    69. Joling P, Mok KS, de Vries Reilingh G, Wever PJ, Cornelis RS, Oskam JP, Henken AM. Vet Q. An evaluation of immune competence in different swine breeds,1993,15: 9-15
    70. Jung A, Kato H, Kumagai Y, Kumar H, Kawai T, Takeuchi O, Akira S. Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces a cytotoxic T-cell response via MyD88. J Virol,2008,82:196-206
    71. Kanis E, De Greef KH, Hiemstra A, van Arendonk JA. Breeding for societally important traits in pigs. J Anim Sci,2005,83:948-957
    72. Karimi K, Lennartz MR. Protein kinase C activation precedes arachidonic acid release during IgG-mediated phagocytosis. J Immunol,1995,155:5786-5794
    73. Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W., Quantitative trait loci mapping in dairy cattle:review and meta-analysis, Genet Sel Evol,2004,36: 163-190
    74. Klempt M, Melkonyan H, Hofmann HA, Sorg C. Identification of epithelial and myeloid-specific DNA elements regulating MRP14 gene transcription. J Cell Biochem,1999,73:49-55
    75. Kuruto-Niwa R., Nakamura M., Takeishi K., Nozawa R. Transcriptional regulation by C/EBP alpha and-beta in the expression of the gene for the MRP 14 myeloid calcium binding protein. Cell Struct Funct,1998,23,109-118
    76. Lee MS, Kim YJ. Signaling pathways downstream of patternrecognition receptors and their cross talk. Annu Rev Biochem,2007,76:447-480
    77. Li JX, Jiang P, Wang Y, Li YF, Chen W, Wang XW, Li P. Genotyping of Haemophilus arasuis from diseased pigs in China and prevalence of two coexisting virus pathogens.Prev Vet Med,2009,91:274-279
    78. Li Y, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G, Cao H, Korneliussen T, Grarup N, Guo Y, Hellman I, Jin X, Li Q, Liu J, Liu X, Spars(?) T, Tang M, Wu H, Wu R, Yu C, Zheng H, Astrup A, Bolund L, Holmkvist J, J(?)rgensen T, Kristiansen K, Schmitz O, Schwartz TW, Zhang X, Li R, Yang H, Wang J, Hansen T, Pedersen O, Nielsen R, Wang J. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet,2010,42:969-972
    79. Lillie BN, Hammermueller JD, Macinnes JI, Jacques M, Hayes MA. Porcine mannan-binding lectin A binds to Actinobacillus suis and Haemophilus parasuis. Dev Comp Immunol,2006,30:954-965
    80. Lim SY., Raftery M., Cai H., Hsu K., Yan W. X., Hseih H. L., Watts R. N., Richardson D., Thomas S., Perry M., Geczy C. L.,2008. S-nitrosylated S100A8: novel anti-inflammatory properties. J Immunol,181:5627-5636
    81. Little TW. Haemophilus infection in pigs. Vet Rcc,1970,87:399-402
    82. Ludwig IS, Geijtenbeek TB, van Kooyk Y. Two way communication between neutrophils and dendritic cells. Curr Opin Pharmacol,2006,6:408-413
    83. Lusitani D, Malawista SE, Montgomery RR. Calprotectin, an abundant cytosolic protein from human polymorphonuclear leukocytes, inhibits the growth of Borrelia burgdorferi. Infect Immun,2003,71:4711-4716
    84. M.F. Rothschild, L. Messer, A. Day, R. Wales, T. Short, O. Southwood and G. Plastow, Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs, Mamm Genome,2000,11:75-77
    85. MacLennan I, Vinuesa C. Dendritic cells, BAFF, and APRIL:innate players in adaptive antibody responses. Immunity,2002,17:235-238
    86. Martin de la Fuente AJ, Carpintero R, Rodriguez Ferri EF, Alava MA, Lampreave F, Gutierrez Martin CB. Acute-phase protein response in pigs experimentally infected with Haemophilus parasuis. Comp Immunol Microbiol Infect Dis,2010,33:455-465
    87. Martin de la Fuente AJ, Rodriguez-Ferri EF, Frandoloso R, Martinez S, Tejerina F, Gutierrez-Martin CB. Systemic antibody response in colostrum-deprived pigs experimentally infected with Haemophilus parasuis Res Vet Sci,2009,86:248-253
    88. Max F. Rothschild, Danielle M. Gorbach, Bin Fan, Suneel K. Onteru, Zhi-Qiang Du, Dorian J. Garrick, Rohan L. Fernando, Kenneth J. Stalder, Jack C.M. Dekkers. Applications Of New Porcine Genomic Tools To Trait Discovery And Understanding Genomic Architecture. Proceedings of the Plant and Animal Genome ⅩⅧ Meetings, 2009, San Diego, CA: http://www.intl-pag.org/18/abstracts/W86_PAGXVIII_614.html
    89. Mellencamp MA, Galina-Pantoja L, Gladney CD, Torremorell M. Improving pig health through genomics:a view from the industry. Dev Biol (Basel),2008,132: 35-41
    90. Melnikow E, Dornan S, Sargent C, Duszenko M, Evans G, Gunkel N, Selzer PM, Ullrich HJ. Microarray analysis of Haemophilus parasuis gene expression under in vitro growth conditions mimicking the in vivo environment. Vet Microbiol,2005, 110:255-263
    91. Metcalf DS, Maclnnes JI. Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid. Can J Vet Res,2007,71:181-188
    92. Michaels RD, Whipp SC, Rothschild MF. Resistance of Chinese Meishan, Fengjing, and Minzhu pigs to the K88ac+ strain of Escherichia coli. Am J Vet Res,1994,55: 333-338
    93. Miyasaki KT, Bodeau AL, Murthy AR, Lehrer RI. In vitro antimicrobial activity of the human neutrophil cytosolic S-100 protein complex, calprotectin, against Capnocytophaga sputigena. J Dent Res,1993a,72:517-523
    94. Miyasaki KT, Bodeau AL, Pohl J, Shafer WM. Bactericidal activities of synthetic human leukocyte cathepsin G-derived antibiotic peptides and congeners against Actinobacillus actinomycetemcomitans and Capnocytophaga sputigena. Antimicrob Agents Chemother,1993b,37:2710-2715
    95. Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB. The crystal structures of human S100A12 in apo form and in complex with zinc:new insights into S100A12 oligomerisation. J Mol Biol,2009,391:536-551
    96. Mullins MA, Register KB, Bayles DO, Loving CL, Nicholson TL, Brockmeier SL, Dyer DW, Phillips GJ.Characterization and comparative analysis of the genes encoding Haemophilus parasuis outer membrane proteins P2 and P5. J Bacteriol, 2009,191:5988-6002
    97. Muneta Y, Uenishi H, Kikuma R, Yoshihara K, Shimoji Y, Yamamoto R, et al. Porcine TLR2 and TLR6:identification and their involvement in Mycoplasma hyopneumoniae infection. J Interferon Cytokine Res,2003,23:583-590
    98. Murthy AR, Lehrer RI, Harwig SS, Miyasaki KT. In vitro candidastatic properties of the humanneutrophil calprotectin complex. J Immunol,1993,151:6291-6301
    99. Nakajima T, Kinoshita S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T, Akira S. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci U S A, 1993,90:2207-2211
    100.Naqvi AN. Application of molecular genetics technologies in livestock production: potentials for developing countries. Advan Biol Res,2007,1:72-84
    101.Nguyen VP, Wong CW, Hinch GN, Singh D, Colditz IG. Variation in the immune status of two Australian pig breeds. Aust Vet J,1998,76:613-617
    102.Nisapakultorn K, Ross KF, Herzberg MC. Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect Immun,2001a,69:4242-4247
    103.Nisapakultorn K, Ross KF, Herzberg MC. Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun,2001b,69:3692-3696
    104.Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature,1987,330:80-82
    105.Olesen I, Groen AF, Gjerde B. Definition of animal breeding goals for sustainable production systems. J Anim Sci,2000,78:570-82
    106.Oliveira S, Batista L, Torremorell M, Pijoan C. Experimental colonization of piglets and gilts with systemic strains of Haemophilus parasuis and Streptococcus suis to prevent disease. Can J Vet Res,2001,65:161-167
    107.Oliveira S, Pijoan C. Haemophilus parasuis:new trends on diagnosis, epidemiology and control. Vet Microbiol,2004,99:1-12
    108.Olvera A, Pina S, Perez-Simo M, Oliveira S, Bensaid A. Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo. Vet Res,2010,41:26
    109.Ozinsky A., Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. PNAS USA,2000,97:13766-13771
    110.Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, Valente AJ, Chandrasekar B. Interleukin-17 Stimulates C-reactive Protein Expression in Hepatocytes and Smooth Muscle Cells via p38 MAPK and ERK1/2-dependent NF-{kappa}B and C/EBPbeta Activation. J Biol Chem,2007,282:27229-27238
    111.Peet RL, Fry J, Lloyd J, Henderson J, Curran J, Moir D. Haemophilus parasuis septicaemia in pigs. Aust Vet J,1983,60:187
    112.Plastow G, Sasaki S, Yu TP, et al. Practical application of DNA markers for genetic improvement. Record of Proceedings National Swine Improvement Federation Conference and Annual Meeting 2003, Available: www.nsif.com/Conferences/pdf/PracticalDNAMarkers.pdf.
    113.Pompei L, Jang S, Zamlynny B, Ravikumar S, McBride A, Hickman SP, Salgame P. Disparity in IL-12 Release in Dendritic Cells and Macrophages in Response to Mycobacterium tuberculosis Is Due to Use of Distinct TLRs. J Immunol,2007,178: 5192-5199
    114.Przytulski T, Porzeczkowska D. Studies on genetic resistance to leptospirosis in pigs. Br Vet J,1980,136:25-32
    115.Quackenbush, J. Computational Analysis of Microarray Data. Nat Rev Genet,2001,2: 418-427
    116.Quackenbush, J. Microarray data normalization and transformation. Nat Genet,2002, 32 Suppl:496-501
    117.R. Omelka, M. Bauerova and J. Bulla, Genetic markers for reproductive traits in pigs, J Agric Sci,2001,47:731-740
    118.Raftery MJ, Yang Z, Valenzuela SM, Geczy CL. Novel intra- and inter-molecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem. 2001,276:33393-33401
    119.Ravasi T., Hsu K., Goyette J., Schroder K., Yang Z., Rahimi F., Miranda L. P., Alewood P. F., Hume D. A., Geczy C. Probing the S100 protein family through genomic and functional analysis. Genomics,2004,84:10-22
    120.Raymond C, Wilkie B, Mallard B, Quinton M. Natural killer cell frequency and function in Yorkshire pigs selectively bred for high or low antibody and cell-mediated immune response. Nat Immun,1998,16:127-136
    121.Reiner G, Eckert J, Peischl T, Bochert S, Jakel T, Mackenstedt U, Joachim A, Daugschies A, Geldermann H. Variation in clinical and parasitological traits in Pietrain and Meishan pigs infected with Sarcocystis miescheriana. Vet Parasitol, 2002,106:99-113
    122.Roberts, P.C. Gene expression microarray data analysis demystified. Biotechnol Annu Rev,2008,14:29-61
    123.Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat Immunol,2006,7:1258-1265
    124.Robinson MJ, Tessier P, Poulsom R, Hogg N. The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem,2002,277:3658-3665
    125.Roehe and Kennedy B.W. Estimation of genetic parameters for litter size in Canadian Yorkshire and Landrace pigs with each parity of farrowing treated as a different trait. J Anim Sci,1995,73:2959-2970
    126.Rogel-Gaillard, C., Tuggle, C.K., Loveland, J., Harrow, J., Giuffra, E., Lunney, J., Hume, D., Archibald, A., Dawson, H., Reecy, J., Uenishi, H., Morozumi, T., Shinkai, H., Prickett, D., Zhao, S., Sang, Y., Blecha, F., Zhang, G., Bed'hom, B., Cheng, R., Rodriguez, Y., Anselmo, A., Badaoui, B., Chen, C., Chen, H., Abrams, S., Beraldi, D., Kapetanovic, R., Hu, Z., The Swine Genome Sequencing Consortium. Annotation of the immunity-related genes in the pig genome.2010, In Proceedings Int Soc Anim Gen Meeting
    127.Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW. A comprehensive map of the porcine genome. Genome Res,1996,6:371-391
    128.Rothschild M, Jacobson C, Vaske D, Tuggle C, Wang L, Short T, Eckardt G, Sasaki S, Vincent A, McLaren D, Southwood O, van der Steen H, Mileham A, Plastow G. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc Natl Acad Sci U S A,1996,93:201-205
    129.Rothschild MF, Chen HL, Christian LL, Lie WR, Venier L, Cooper M, Briggs C, Warner CM. Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with B. bronchiseptica. J Anim Sci,1984, 59:643-649
    130.Rothschild MF, Hu ZL, Jiang Z. Advances in QTL mapping in pigs. Int J Biol Sci, 2007,3:192-197
    131.Rothschild MF. Advances in pig genomics and functional gene discovery. Comp Funct Genomics,2003,4:266-270
    132.Rubies X, Kielstein P, Costa L, Riera P, Artigas C, Espuna E. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997. Vet Microbiol, 1999,66:245-248
    133.Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J. Biology of interleukin-10. Cytokine Growth Factor Rev,2010, Nov 4 (in press)
    134.Sack M, Baltes N. Identification of novel potential virulence-associated factors in Haemophilus parasuis. Vet Microbiol,2009,136:382-386
    135.Shinkai H, Tanaka M, Morozumi T, Eguchi-Ogawa T, Okumura N, Muneta Y,
    136.Sinkora M, Butler JE. The ontogeny of the porcine immune system. Dev Comp Immunol,2009,33:273-283
    137.Sinkora M, Sinkora J, Rehakova Z, Butler JE. Early ontogeny of thymoctes in pigs: sequential colonization of the thymus by T cell progenitors. J Immunol,2000,165: 1832-1839
    138.Sinkora M, Sinkora J, Rehakova Z, Splichal I, Yang H, Parkhouse RM, et al. Prenatal ontogeny of lymphocyte subpopulations in pigs. Immunology,1998,95:595-603
    139.Sinkora M, Sun J, Sinkorova J, Christenson RK, Ford SP, Butler JE. Antibody repertoire development in fetal and neonatal piglets. VI. B-cell lymphogenesis occurs at multiple sites with differences in the frequency of in-frame rearrangements. J Immunol,2003,170:1781-1788
    140.Sohnle PG, Collins-Lech C, Wiessner JH. The zinc-reversible antimicrobial activity of neutrophillysates and abscess fluid supernatants. J Infect Dis,1991,164:137-142
    141.Spelman RJ, Bovenhuis H. Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim Genet,1998,29:77-84
    142.Splichal I, Bonneau M, Charley B. Ontogeny of interferon alpha secreting cells in the porcine fetal hematopoietic organs. Immunol Lett,1994,43:203-208
    143.Sroussi HY, Kohler GA, Agabian N, Villines D, Palefsky JM.,2009. Substitution of methionine 63 or 83 in S100A9 and cysteine 42 in S100A8 abrogate the antifungal activities of S100A8/A9:potential role for oxidative regulation. FEMS Immunol Med Microbiol,55:55-61
    144.Steibel, J.P., Wysocki, M., Lunney, J.K., Ramos, A.M., Hu, Z.L., Rothschild, M.F., Ernst, C.W. Assessment of the swine protein-annotated oligonucleotide microarray. Anim Genet,2009,40:883-893
    145.Summerfield A, McCullough KC. The porcine dendritic cell family. Dev Comp Immunol,2009,33:299-309
    146.Suneel K Onteru, Bin Fan, Dorian J Garrick, Kenneth J Stalder, Max F Rothschild. Genome-Wide Analyses For Pig Reproductive Traits Using The PorcineSNP60 BeadChip. Proceedings of the Plant and Animal Genome ⅩⅧ Meetings,2009, San Diego, CA:http://www.intl-pag.org/18/abstracts/P05n_PAGⅩⅧ_615.html
    147.Suryono Kido J, Hayashi N, Kataoka M, Shinohara Y, Nagata T. Norepinephrine stimulates calprotectin expression in human monocytic cells. J Periodontal Res,2006, 41:159-164
    148.Sutherland MA, Rodriguez-Zas SL, Ellis M, Salak-Johnson JL. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J Anim Sci,2005, 83:2087-2095
    149.T.A. Rathje, G.A. Rohrer and R.K. Johnson, Evidence for quantitative trait loci affecting ovulation rate in pigs, J Anim Sci,1997,75:1486-1494
    150.Thomas D. Gene-environment-wide association studies:emerging approaches.2010, 11:259-272
    151.Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One,2007,13:e526
    152.Toshchakov VU, Basu S, Fenton MJ, Vogel SN. Differential Involvement of BB Loops of Toll-IL-1 Resistance (TIR) Domain-Containing Adapter Proteins in TLR4-versus TLR2-Mediated Signal Transduction. J Immunol,2005,175:494-500
    153.Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol,2007,7:179-190
    154.Tsuboi N, Yoshikai Y, Matsuo S, Kikuchi T, Iwami K, Nagai Y, Takeuchi O, Akira S, Matsuguchi T. Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol,2002,169:2026-2033
    155.Tuggle, C.K., Wang, Y, Couture, O. Advances in swine transcriptomics. Int J Biol Sci, 2007,3:132-152
    156.Tusher V. G, Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A,2001,98:5116-5121
    157.Vahle, J.L., Haynes, J.S., Andrews, J.J. Experimental reproduction of Haemophilus parasuis infection in swine:clinical, bacteriologic, and morphologic findings. J Vet Diagn Invest,1997,7:476-480
    158.Van Eenennaam AL. DNA-based biotechnologies. In:Beef Sire Selection Manual. The National Beef Cattle Evaluation Consortium,2006,66-73 (http://www.ansci.cornell.edu/nbcec/sire_selection/manual.pdf)
    159.Vanier G, Szczotka A, Friedl P, Lacouture S, Jacques M, Gottschalk M. Haemophilus parasuis invades porcine brain microvascular endothelial cells. Microbiology,2006, 152:135-142
    160.Vincent IE, Balmelli C, Meehan B, Allan G, Summerfield A, McCullough KC. Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology,2007,120:47-56
    161.Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases:structure, function, and biochemistry. Circ Res,2003,92: 827-839
    162.Voganatsi A, Panyutich A, Miyasaki KT, Murthy RK. Mechanism of extracellular release of human neutrophil calprotectin complex. J Leukoc Biol,2001,70:130-134
    163.Vogl T., Tenbrock K., Ludwig S., Leukert N., Ehrhardt C., van Zoelen M. A., Nacken W., Foell D., van der Poll T., Sorg C., Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med,2007,13:1042-1049
    164.Wang J. Computational biology of genome expression and regulation--a review of microarray bioinformatics. J Environ Pathol Toxicol Oncol,2008,27:157-179
    165.Wang, Y., Qu, L., Uthe, J.J., Bearson, S.M., Kuhar, D., Lunney, J.K., Couture, O.P., Nettleton, D., Dekkers, J.C., Tuggle, C.K. Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium. Genomics, 2007,90:72-84
    166.Wang, Y.F., Qu, L., Uthe, J.J., Royaee, A.R., Bearson, S.M.D., Kuhar, D., Lunney, J.K., Couture, O.P., Zhao, S., Tuggle, C.K., Nettleton, D., Dekkers, J.C.M., Tuggle, C.K. Global transcriptional response of Porcine Mesenteric Lymph Nodes to Salmonella enterica serovar Typhimurium. Genomics,2007,90:72-84
    167.Wattrang E, Almqvist M, Johansson A, Fossum C, Wallgren P, Pielberg G, et al. Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet,2005,36: 337-345
    168.Wilkinson JM, Sargent CA, Galina-Pantoja L, Tucker AW. Gene expression profiling in the lungs of pigs with different susceptibilities to Glasser's disease. BMC Genomics,2010,11:455
    169.Wilkinson JM, Sargent CA, Galina-Pantoja L, Tucker AW. Gene expression profiling in the lungs of pigs with different susceptibilities to Glasser's disease. BMC Genomics,2010,11:455
    170.Wise DJ, Anderson CD, Anderson BM. Characterization of H. parasuis periplasmic nucleotide pyrophosphatase as a potential target enzyme for inhibition of growth. Vet Microbiol,1997,58:261-276
    171.Wu Z, Irizarry R. A., Gentleman R., Martinez-Murillo F., Spencer F. A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc,2004, 99:909-917
    172.Wu, Z. and Irizarry, R.A. Preprocessing of oligonucleotide array data. Nat Biotechnol, 2004,22:656-658
    173.Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol,2010,2:a005140
    174.Xie Q, Jin H, Luo R, Wan Y, Chu J, Zhou H, Shi B, Chen H, Zhou R. Transcriptional responses of Haemophilus parasuis to iron-restriction stress in vitro. Biometals,2009, 22:907-916
    175.Xu K., Yen T., Geczy C. L.11-10 up-regulates macrophage expression of the S100 protein S100A8. J Immunol,2001,166,6358-6366
    176.Yerle M, Echard G, Robic A, Mairal A, Dubut-Fontana C, Riquet J, Pinton P, Milan D, Lahbib-Mansais Y, Gellin J. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet Cell Genet,1996, 73:194-202
    177.Yerle M, Pinton P, Delcros C, Arnal N, Milan D, Robic A. Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet Genome Res,2002,97:219-228
    178.Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet,1998,82:182-188
    179.Yue M, Yang F, Yang J, Bei W, Cai X, Chen L, Dong J, Zhou R, Jin M, Jin Q, Chen H. Complete genome sequence of Haemophilus parasuis SH0165. J Bacteriol,2009, 191:1359-1360
    180.Yui S, Mikami M, Tsurumaki K, Yamazaki M.,1997. Growth-inhibitory and apoptosis-inducing activities of calprotectin derived from inflammatory exudate cells on normal fibroblasts:regulation by metal ions. J. Leukoc. Biol.61,50-57
    181.Yui S, Nakatani Y, Hunter MJ, Chazin WJ, Yamazaki M.,2002. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP 14) from target cells in its apoptosis-inducing activity. Mediators Inflamm.11,165-172
    182.Zaia AA, Sappington KJ, Nisapakultorn K, Chazin WJ, Dietrich EA, Ross KF, Herzberg MC. Subversion of antimicrobial calprotectin (S100A8/S100A9 complex) in the cytoplasm of TR146 epithelial cells after invasion by Listeria monocytogenes. Mucosal Immunol,2009,2:43-53.
    183.Zhao, S.H., Recknor, J., Lunney, J.K., Nettleton, D., Kuhar, D., Orley, S., Tuggle, C.K. Validation of a first generation of porcine long oligonucleotide microarray for transcriptional profiling in the pig. Genomics,2005,86:618-625
    184.Zhou H, Yang B, Xu F, Chen X, Wang J, Blackall PJ, Zhang P, Xia Y, Zhang J, Ma R. Identification of putative virulence-associated genes of Haemophilus parasuis through suppression subtractive hybridization. Vet Microbiol,2010,144:377-383
    185.Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, Chen H, Jin M. Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine,2009,27:5271-5277
    186.Zhou M, Zhang A, Guo Y, Liao Y, Chen H, Jin M. A comprehensive proteome map of the Haemophilus parasuis serovar 5. Proteomics,2009,9:2722-2739