利用回交导入系筛选水稻高产、抗旱和耐盐株系及选择导入系相关性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上重要的粮食作物之一,在耕地资源有限,人口不断增加的条件下,提高粮食产量已经成为亟待解决的重要问题。然而随着气候变化等不利因素的影响,干旱、盐害两大非生物胁迫已经造成水稻严重减产。培育具有高产、抗旱和耐盐水稻品种是减轻这两种逆境危害和提高水稻产量最经济有效的措施。
     本研究以黄华占为轮回亲本,全球水稻分子育种计划中的4个种质材料(OM1706,岗46B,IR64,CR203)为供体亲本培育回交导入系,经高产、抗旱、耐盐筛选和交叉鉴定,获得高产、抗旱、耐盐导入系,以及具有两种及两种以上优良性状的导入系,并对不同选择策略进行评价。同时,以不同性状的选择群体为研究材料,定位高产、抗旱、耐盐以及产量相关性状的QTL,鉴定出在不同群体和环境下稳定表达的增加高产、抗旱和耐盐性的重要等位基因,为分子标记辅助育种提供有益信息。主要获得以下研究结果:
     1、从高产选择群体中共获得3个生长季均稳定高产株系4个,抗旱选择群体中连续4个生长季均表现抗旱的株系4个,对耐盐选择群体三次鉴定中均表现耐盐的株系111个。
     2、通过交叉鉴定,13个株系两年均表现高产兼耐盐,5个表现抗旱兼耐盐。综合正常灌溉和干旱胁迫条件下所有选择群体在不同环境下的表现,海南环境下获得既高产又抗旱的株系19个,包括耐盐选择群体中获得的11个,高产群体中获得的1个,抗旱群体中获得的7个;北京环境下获得既高产又抗旱的导入系18个,包括耐盐选择群体中获得的5个,高产群体中的6个,抗旱群体中获得的7个。
     3、目标性状的筛选受到环境与供体的影响,相比之下,高产和耐盐性相对稳定。在黄华占背景下,海南和北京灌溉条件下的高产筛选以供体CR203对高产贡献最大;温室与人工气候室两种环境中,耐盐性贡献最大供体均为IR64;抗旱性则受环境影响较大,海南干旱胁迫条件下,供体OM1706对抗旱性影响较大,北京干旱胁迫条件下,岗46B对抗旱性贡献最大。
     4、不同的筛选方式对提高目标性状的效果不同,先进行抗旱或耐盐筛选,再进行高产筛选比直接进行高产筛选获得高产株系的比例要高;同样,对群体进行抗旱直接筛选,或先进行耐盐筛再进行抗旱筛选,获得的抗旱株系的比例要大于从高产群体中筛选抗旱株系的比例。先进行耐盐筛选再进行高产或抗旱筛选的策略不仅增强了株系的耐盐性,而且也提高了高产和抗旱性。
     5、采用选择导入法,分别检测到与高产、抗旱和耐盐性相关的位点15、13和16个,分布于12条染色上。通过对相应群体的随机群体进行单方差分析,某些与目标性状选择相关的偏分离位点在单方差分析中也得以验证,并估算了基因的加性效应。两种方法共同定位到的位点比较可靠,可以作为是影响目标性状的重要QTL。
     6、检测到高产、抗旱和耐盐三个性状遗传重叠的位点2个;高产、耐盐遗传重叠位点2个;高产、抗旱遗传重叠位点3个;抗旱、耐盐遗传重叠的位点2个。不同群体定位到与高产、抗旱和耐盐性相关的相同位点个数分别为2、1和3个;同一性状,在两个群体中均检测到的位点有6个,包括与RM219和RM527/RM24连锁的2个高产QTL,与RM335连锁的1个抗旱位点;以及与RM490、RM482和RM574/RM437连锁的3个耐盐QTL。同一群体中两年稳定表达的位点有7个,包括2个抗旱位点(qDT2.2和qDT6.2)和5个高产位点(qGY1.1, qGY6.1, qGY7.1, qGY5.3和qGY3)。
     7、对产量相关性状QTL定位发现,海南、北京正常灌溉和干旱胁迫条件下,4个群体中检测到15个位点的供体等位基因分别有利于提高千粒重、实粒数、总粒数、有效穗数中的两个或多个性状。其中同时在两个群体中检测到的有qFGP2.2,qFGP10.3,qSNP2.1,qSNP10.2。北京和海南两种环境下均检测到的QTL,包括在正常灌溉条件检测到qGW2.3,qSNP1.4,qSNP2.1,qSNP7.2,qPN4.2,qSNP1.1和qSNP10.2。qSNP10.2的供体等位基因在正常灌溉和干旱胁迫条件下均增加总粒数。上述这些位点均是影响产量或产量相关性状稳定表达的重要位点。
     8、标记RM576、RM263、RM24、RM182、RM126、RM484不仅与控制高产、抗旱和耐盐性的QTL连锁,而且与控制产量构成因素的QTL连锁,表现出抗逆性之间及其与高产的遗传重叠,更重要的是与这些标记连锁的QTL在两种环境和两个群体或两种检测方法中被稳定检测到,这些位点上的供体等位基因对提高水稻产量、抗旱和耐盐性起积极作用,对分子标记辅助选和聚合育种有重要的参考价值。
Rice is one of the most important crops in the world. With unceasing increase of population underlimited land resources, it has been urgent to improve grain yield nowadays. However, with the influenceof unfavorable factors such as climate drought and salinity are becoming two detrimental abioticstresses which have caused serious deduction of rice production. Development of drought tolerance (DT)and salt tolerance (ST) rice variety is a most economic and effective way to minimize their damage andimprove grain yield.
     In the present study, backcross introgression lines (ILs), which were derived from Huanghuazhan(HHZ) as the recurrent parent, and four germplasm including OM1706, Gang46B, IR64and CR203asdonor parents, were used to develop high yiled (HY), DT and ST ILs through screening against GY, DTand ST and intercross identification, resulting in some ILs with two or multiple favorable target traits.Different selection strategies were then evaluated for their breeding efficiency. Meanwhile, QTLs forHY, DT and ST were detected using different trait-specific ILs, and some important favorable allelesstably expressed in different populations and environments were identified, providing some beneficialinformation for marker-assisted breeding for the three complex traits. The main results were describedas follows:
     1. Four ILs showing consistent HY across3growing seasons were obtained from HY selected ILs,4lines showing consistent DT across4growing seasons from DT selected ILs,111lines showingconsistent ST in three repeatedly experiments from ST selected ILs.
     2. By intercross screening,13lines showed HY and ST,5showed DT and ST. According toperformance of selected ILs under normal irrigated and drought stress conditions,19lines were selectedas HY and DT in Hainan condition, including11from ST selected ILs,1from HY selected ILs, and7from DT selected ILs. Similarly,18lines were selected as HY and DT in Beijing condition, including5from ST selected ILs,6from HY selected ILs, and7from DT selected ILs.
     3. Trait-specific selections are dependent on environment and donor. Relatively speaking,screening of HY and ST is more stable than that of DT. Using HHZ as a recipient, the donor CR203showed most contribution to HY in Hainan and Beijing environments; IR64showed most contributionto ST in green house and phototron conditions; OM1706showed most contribution to DT under Hainandrought stress condition whereas Gang46B showed most contribution to DT under Beijing droughtstress condition.
     4. Different screening ways showed various selection effectiveness of improving the target traits.First DT or ST then following HY screening would obtain more numbers of HY ILs than direct HYscreening does. Similarly, Direct DT screening or first ST then DT screening would get more numbersof DT ILs than screening DT from HY selected IL populations. The strategy of first ST then HY or DTscreening resulted in not only increased ST but also improved HY and DT.
     5. By selective IL mapping method total of15,13and16loci were detected and distributed all12chromosomes for HY, DT and ST, respectively. Through single marker analysis for corresponding random populations, some distorted loci associated with the target traits were repeatedly mapped andconfirmed and their additive effects were also estimated. Those loci detected by above two methods arerelatively durable, thus being probably more important QTLs underlying the target traits.
     6. Two genetic overlapping loci were detected for HY, DT and ST, two for HY and ST, three forHY and DT, and two for DT and ST. There were common2,1and3loci detected in differentpopulations for HY, DT and ST, respectively. There were six loci detected in the two populations for thesame trait, including two HY loci linked with RM219and RM57, one DT locus associated with RM335,and three ST loci associated with RM490, RM482and RM574/RM437. There were seven loci stablyexpressed in the same population across two years, including2DT loci (qDT2.2and qDT6.2) and fiveHY loci (qGY1.1, qGY6.1, qGY7.1, qGY5.3and qGY3).
     7. QTL mapping indicated that the donor alleles at15loci detected in the four populations undernormal and drought stress conditions in Hainan and Beijing were favorable to improve two or multipleyield component traits such as thousand grain weight (TGW), filled grains per panicle (FGP), spikeletnumber per panicle (SNP) and panicle number per plant (PNP). Among them, qFGP2.2,qFGP10.3,qSNP2.1and qSNP10.2were simultaneously detected in the two populations, and donor alleles atqSNP10.2increased SNP in both normal and drought stress conditions. Above loci are important stablyexpressed loci affecting yield or yield-related traits.
     8. The markers RM576, RM263, RM24, RM182, RM126and RM484were associated not only withHY, DT and ST, but also with QTLs underlying yield component traits, showing genetic overlapbetween abiotic stress tolerance and HY. More importantly, the QTLs associated with these markerswere all detected by two methods under two environments and/or two populations. The donor alleles atabove loci play an active role in improvement of HY, DT and ST, thus they have important value inmarker-assisted selection and pyramiding breeding in rice.
引文
1.陈俊宇,张振华,庄杰云.水稻株高QTL及其与产量性状和抽穗期关系的研究进展.福建稻麦科技,2012,30(1):67-71.
    2.陈煜,杨燕凌,谢小芳,柯玉琴.水稻耐盐相关基因的克隆及转化研究进展.中国农学通报,2010,26(11):23-27.
    3.程建峰,潘晓云,刘宜柏,戴廷波,曹卫星.水稻抗旱性鉴定的形态指标.生态学报,2005,25(11):3117-3125.
    4.程立锐,利用双向导入系和重组自交系研究水稻重要农艺性状的遗传规律[博士学位论文].北京:中国农业科学院研究生院,2011.
    5.方宣钧,吴为人.唐纪良编著,作物DNA标记辅助育种.北京:科学出版社,2000:61.
    6.龚继明,钱前.水稻耐盐性QTL的定位.科学通报,199843(17):1847-1850.
    7.顾兴友,卢永根,郑少玲,严小龙.水稻苗期耐盐性遗传的时代平均数分析.作物学报,1999,6:686-690.
    8.胡荣海,农作物抗旱鉴定方法和指标.中国种业,1986,4:36-39.
    9.康乐,李宏,孙勇,卢德城,张帆,黄道强,徐建龙,王志东,朱苓华,高用明,傅彬英,李康活,周永力,周少川,黎志康.应用导入系群体进行水稻产量相关性状的遗传剖析.作物学报,2008,34(9):1500-1509.
    10.兰巨生,胡福顺,张景瑞.作物抗旱指数的概念和统计方法.华北农学报,1990,5(2):20-25.
    11.李奇穗,李秀梅.高频率干旱对仁寿县水稻产量的影响.现代农业科技,2010,23:278-279.
    12.李奇穗,余立.极端天气对水稻生长和产量的影响.现代农业科技,2012,14:236-236.
    13.李姝晋,朱建清,叶小英,王丽华,宋永燕,王贺正.干旱和盐胁迫下水稻品种的双重耐性差异.西南农业学报,2005,18(2):128-132.
    14.黎志康.我国水稻分子育种计划的策略.分子植物育种,2005,3(5):603-608.
    15.李子银,张劲松,陈受宜.水稻盐胁迫应答基因的克隆、表达及染色体定位.中国科学生命科学,1999,29(6):560-570.
    16.梁正伟,杨富,王志春,陈渊.盐碱胁迫对水稻主要生育性状的影响.生态环境,2004,13(1):43-46.
    17.林鸿宣,柳原城司,庄杰云,仙北俊弘,郑康乐,八岛茂夫.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72-78.
    18.刘春玲,陈慧萍,刘娥娥,彭新湘,卢少云,郭振飞.水稻品种对几种逆境的多重耐性及与ABA的关系.作物学报,2003,29(5):725-729.
    19.刘立峰,李自超,穆平.基于作物QTL的分子育种研究进展.分子植物育种,2004,2(1):77-83.
    20.罗秋香,管清杰,金淑梅,柳参奎.植物耐盐性分子生物学研究进展.分子植物育种,2006,4(6):57-64.
    21.祁栋灵,郭桂珍,李明哲,曹桂兰,张俊国,周庆阳,张三元,徐锡哲,韩龙植.水稻耐盐碱性生理和遗传研究进展.植物遗传资源学报,2007,8(4):486-493.
    22.祁栋灵,韩龙植,张三元.水稻耐盐/碱性鉴定评价方法.植物遗传资源学报,2005,6(2):226-231.
    23.阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展.植物学通报,2003,20(1):10-22.
    24.阮松林,薛庆中.盐胁迫条件下杂交水稻种子发芽特性和幼苗耐盐生理基础.中国水稻科学,2002,16(3):281-284.
    25.山仑.旱地农业技术发展趋向.中国农业科学,2002,35(7):848-855.
    26.山仑,陈国良.黄土高原旱地农业的理论与实践.北京:科学出版社,1993:286-297.
    27.孙勇,藏金萍,王韵,朱苓华, Mohammadhosein F.,徐建龙,黎志康.利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL.作物学报,2007,33(10):1611-1617.
    28.田翠,张涛,蒋开锋,杨莉,郑家奎.水稻QTL定位研究进展.基因组学与应用生物学,2009,28(3):557-562.
    29.徐恒戬.作物耐盐诱变育种研究进展.种子,2008,27(1):51-54.
    30.徐建龙,高用明,傅彬英,黎志康.回交导入后代水稻种质有利基因的鉴定与筛选研究.分子植物育种,2005,3(5):619-628.
    31.徐建龙,薛庆中,罗利军,黎志康.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001,28(8):752~759.
    32.杨升,张华新,张丽.植物耐盐生理生化指标及耐盐植物筛选综述.西北林学院学报,2010,25(3):59-65.
    33.杨小玲,侯正仿,季静.耐盐植物育种研究进展.中国农学通报,2008,24(8):213-216.
    34.王贺正,李艳,马均,张荣萍,李旭毅,汪仁全.水稻苗期抗旱性指标的筛选.作物学报,2007,33(9):1523-1529.
    35.王贺正,徐国伟,马均.水稻抗旱性鉴定方法及鉴定指标的研究进展.中国种业,2009,3:16-18.
    36.王怀豫,丁士军,陈传波.世界主要水稻生产系统分类及特征.世界农业,2004,1:43-46.
    37.王志春,梁正伟.植物耐盐研究概况与展望.生态环境,2003,12(1):106-109.
    38.臧金平,孙勇,王韵,杨静,李芳,周永力,朱苓华, Jessica R., Mohammadhosein F.,徐建龙,黎志康.利用回交导入系剖析水稻苗期和分蘖期耐盐性的遗传重叠.中国科学: C辑2008,9:841-850.
    39.张灿军,姚宇卿,王育红,吕军杰,张洁,李俊红,王聪慧.旱稻抗旱性鉴定的方法与指标研究--Ⅰ鉴定方法与评价指标.干旱地区农业研究,2005,23(3):33-36.
    40.张帆,郝宪彬,高用明,华泽田,马秀芳,陈温福,徐正进,朱苓华,黎志康.利用籼稻资源中的“隐蔽有利基因”提高粳稻苗期耐冷性.作物学报,2007,33(10):1618-1624.
    41.张锦伟,谭学林,许健.不同浓度NaCl溶液对水稻不同品种系幼苗生长的影响.植物资源遗传学报,2004,5(1):100-104.
    42.张素红,刘立新,苗立新,佟彤,刘忠卓,隋亚云.盐胁迫对水稻苗期的影响研究--盐胁迫对水稻苗期水分的影响.北方水稻,2010,40(2):18-21.
    43.张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,2006,39(8):1526-1535.
    44.赵秀琴,朱苓华,徐建龙,黎志康.灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位.作物学报,2007,33(9):1536-1542.
    45.赵银河,祝钰,孙明高,孙方行,于振群,孔红岭.干旱和盐分交互胁迫对紫荆、皂角幼苗保护酶活性的影响.山东农业大学学报(自然科学版),2007,38(2):173-177.
    46.郑天清,徐建龙,傅彬英,高用明, Satish V., Lafitte R.,翟虎渠,万建民,朱苓华,黎志康.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究.作物学报,2007,33(8):1380-1384.
    47.臧金平.水稻抗旱、耐QTL表达的遗传背景效应及抗旱、耐盐的遗传重叠研究.[硕士论文].北京:中国农业科学院.2008
    48.周广生,崔克辉,靳德明,曹凑贵,徐才国,骆炳山.发根力作为栽培稻品种苗期抗旱性鉴定指标的研究.中国农业科学,2005,38(12):2571-2576.
    49.周和平,张立新,禹锋,李平.我国盐碱地改良技术综述及展望.现代农业科技,2007,11:159-164.
    50.周政.不同抗逆性选择对水稻产量相关性状的影响以及高产、抗旱和耐盐QTL的定位[硕士学位论文].北京:中国农业科学院研究生院,2011.
    51.周政,李宏,孙勇,黄道强,朱苓华,卢德城,李康活,徐建龙,周少川,黎志康.高产、抗旱和耐盐选择对水稻产量相关性状的影响.作物学报,2010,36(10):1725-1735.
    52.庄杰云,郑康乐.水稻产量性状遗传机理及分子标记辅助高产育种.生物技术通报,1998,1:1-9.
    53. Ali A.J., Xu J.L., Ismail A.M., Fu B.Y., Vijaykumar C.H.M., Gao Y.M., Domingo J., Maghirang R.,Yu S.B., Gregorio G., Ynaaghihara S., Cohen M., Carmen B., Maekill D., Li Z.K. Hidden diversityfor abiotic stress tolerances in the primary gene of rice revealed by a large backcross breedingprogram. Field Crops Research2006,97(5):66-76.
    54. Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., QianQ., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science2005,309(5735):741-745.
    55. Ashraf M. Inducing drought tolerance in plants: recent advance. Biotechnology Advances2010,28(1):169-183.
    56. Atlin G.N., Lafitte H.R. Field screening for drought tolerance in crop plants with emphasis on rice:marker-assisted breeding versus direct selection for drought tolerance in rice. International CropsResearch Institute for the Semi-Arid Tropics2002,71-81.
    57. Babu R.C., Nguyen B.D., Chamarerk V., Shanmugasundaram P., Chezhian P., Jeyaprakash P.,Ganesh S. K., Palchamy A., Sadasivam S., Sarkarung S., Wade L. J., Nguyen H.T. Genetic analysisof drought resistance in rice by molecular markers: association between secondary traits and fieldperformance. Crop Science2003,43(4):1457-1469.
    58. Bartel D., Nelson D. Approaches to improve stress tolerance using molecular genetics. Plant, Cell&Environment1994,17(5):659-667.
    59. Barton N.H. Genetic hitchhiking. Philosophical Transactions of the Royal Society B: BiologicalSciences2000,355:1553-1562.
    60. Bernier J., Atlin G., Serraj R., Kumar A., Spaner D. Breeding upland rice for drought resistance.Journal of the Science of Food and Agriculture2008,88(6):927-939.
    61. Bernier J., Kumar A., Ramaiah V., Spaner D., Atlin G. A large effect QTL for grain yield underreproductive-stage drought stress in upland rice. Crop Science2007,47(2):507-516.
    62. Bhandari H., Pandey S., Sharan R., Naik D., Hirway I., Taunk S.K., Sastri A.S.R.A.S. Economiccosts of drought and rice farmers’ coping mechanisms: economic costs of drought and rice farmers’drought coping mechanisms in eastern India. Los Ba os, Philippines: International Rice ResearchInstitute2007,43-110.
    63. Blum A. Plant breeding for stress environments. Boca Raton, Florida: CRC Press,1988,45
    64. Blum,A., Mayer J., Golan G., Sinmena B. Drought Tolerance of a doubled haploid line populationof rice in the field: Genetic improvement of rice for water-limited environments. Los Banos,Philippines: International Rice Research Institute,1999,310-330.
    65. Brondani C., Rangel P.H.N., Brondani R.P.V., Ferreira M.E. QTL mapping and introgression ofyield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellitemarkers. Theoretical and Applied Genetics2002,104:1192-1203.
    66. Bonham-Smith, P.C., Kapoor, M., Bewley, J.D. Establishment of thermotolerance in maize byexposure to stresses other than a heat shock does not require heat shock protein synthesis. PlantPhysiology1987,85(2):575-580.
    67. Bouman B.A.M., Tuong T.P. Field water management to save water and increase its productivity inirrigated lowland rice. Agricultural Water Management2001,49(1):11-30.
    68. Bruce W.B., Edmeades G.O., Barker T.C. Molecular and physiological approaches to maizeimprovement for drought tolerance. Journal of Experimental Botany2002,53(336):13-25.
    69. Cao Y.L., Ding X.H., Cai M. Zhao J., Lin Y.J., Li X.H., Xu C.U., Wang S.P. The expressionpattern of a rice disease resistance gene Xa3/Xa26is differentially regulated by the geneticbackgrounds and developmental stages that influence its function. Genetics2007,177(1):523-533.
    70. Champoux M.C., Wang G., Sarkarung S., Mackill D.J., O’Toole J.C., Huang N., McCouch S.R.Locating genes associated with root morphology and drought avoidance in rice via linkage tomolecular markers. Theoretical and Applied Genetics1995,90:969-981.
    71. Chapman S.C. Edmeades G.O. Selection improves drought tolerance in tropical maize populations:II. Direction and correlated responses among secondary traits. Crop Science1999,39(5):1315-1324.
    72. Cooper M. Concept and strategies for plant adaptation research in rainfed lowland rice. Field CropsResearch1999,64:13-34.
    73. Cooper M., Somrith, B. Implications of genotype-by-environment interactions for yield adaptationof rainfed lowland rice. Influence of flowering date on yield variation. In: Breeding Strategies forRainfed Lowland Rice in Drought-prone Environments. Proceedings of an International Workshopheld at Ubon Ratchathani, Thailand, November5–8,1996. ACIAR, Canberra, pp.104–114.
    74. Courtois B., McLaren G., Sinha P.K., Prasad K., Yadav R., Shen L. Mapping QTL associated withdrought avoidance in upland rice. Molecular Breeding2000,6:55-66.
    75. Courtois B., Shen L., Petalcorin W., Carandang S., Mauleon R., Li Z. Locating QTLs controllingconstitutive root traits in the rice population IAC165×Co39. Euphytica2003,134:335-345.
    76. Cramer G.R., Epstein E., L uchli A. Effects of sodium, potassium and calcium on salt-stressedbarley II. Elemental analysis. Physiologia Plantarum1991,81(2):197-202.
    77. Craufurd P.Q, Flower D.J., Peacock J.M. Effect of heat and drought stress on sorghum (Sorghumbicolor). I. Grain yield. Experimental Agriculture1993,29(1):61-76.
    78. Cruz R.T., O'Toole J.C. Dryland rice response to an irrigation gradient at flowering stage.Agronomy Journal1984,76(2):178-183.
    79. Cushman J.C., Bohnert H.J. Genomic approaches to plant stress tolerance. Current Opinion in PlantBiology2000,3(2):117-124.
    80. Ding J.L., Wu M.C., Tiyip T. Study on soil salinization information in arid region using remotesensing technique. Agricultural Sciences in China2011,10(3):404-411.
    81. Edmeades G.O., Bolanos J., Lafitte H.R., Rajaram S., Pfeiffer W., Fischer R.A. Traditionalapproaches to breeding for drought resistance in cereals. In: Baker F.W.G.(eds). DroughtResistance in Cereals. UK: CAB International, Wallingford, Oxon,1989,27-52.
    82. Ekanayake I.J., DeDatta S.K., Steponkus P.L. Spikelet sterility and flowering response of rice towater stress at anthesis. Annals of Botany1989,63(2):257-264.
    83. Fageria N.K. Salt tolerance of rice cultivars. Plant and Soil1985,88(2):237-243.
    84. Fan C.C., Xing Y.Z., Mao H.L., Lu T.T., Han B., Xu C.G., Li X.H. Zhang Q.F. GS3, a major QTLfor grain length and weight and minor QTL for grain width and thickness in rice, encodes a putativetransmembrane protein. Theoretical and Applied Genetics2006,112(6):1164-1171.
    85. Farooq S., Azam F.E. Co-existence of salt and drought tolerance in Triticeae. Hereditas2001,135(2-3):205-210.
    86. Farooq S., Niazi M.L.K., Iqbal N. Shah T.M. Salt tolerance potential of wild resources of the tribeTriticeae. Plant and Soil1989,119:255-260.
    87. Fischer K.S., Edmeades G.O., Johnson E.C. Selection for improvement in maize yield undermoisture-deficits. Field Crops Research1989,22(3):227-243.
    88. Flowers T.J. Improving crop salt tolerance. Journal of Experimental Botany2004,55(396):307-319.
    89. Flowers T.J., Yeo A.R. Variability in the resistance of sodium chloride salinity within rice (Oryzasativa L.) varieties. New Phytologist.1981,88(2):363-373.
    90. Flowers T.J., Yeo A.R. Breeding for salinity resistance in crop plants: where next? Functional PlantBiology1995,22(6):875-884.
    91. Fukai S. Phenology in rainfed lowland rice. Field Crops Research1999,64(1-2):51-60.
    92. Fukai S., Cooper M. Development of drought-resistant cultivars using physiomorphological traits inrice. Field Crops Research1995,40(2):67-86.
    93. Fukai S., Pantuwan G., Jongdee B., Cooper M. Screening for drought resistance in rainfed lowlandrice. Field Crops Research1999,64(1-2):61-74.
    94. Garrity D.P., Vidal E.T., O'Toole J.C. Manipulating panicle transpiration resistance to increase ricespikelet fertility during flowering stage water stress. Crop Science1986,26(4):789-795.
    95. Grattan S.R., Grieve C.M. Mineral element acquisition and growth response of plants grown insaline environments. Agriculture, Ecosystem&Environment1992,38(4):275-300.
    96. Gregorio G.B., Senadhira D., Mendoza R. D., Manigbas N.L., Roxas J.P., Guerta C.Q. Progress inbreeding for sailinity tolerance and associated abiotic stresses in rice. Field Crops Research2002,76:91-101.
    97. Hanjra M.A., Qureshi M.E. Global water crisis and future food security in an era of climate change.Food Policy2010,35(5):365-377.
    98. He G.M., Luo X.J., Tian F., Li K.G., Zhu Z.F., Su W., Qian X.Y., Fu Y.C., Wang X.K., Sun C.Q.,Yang J.S. Haplotype variation in structure and expression of a gene cluster associated with aquantitative trait locus for improved yield in rice. Genome Research2006,16(5):618-626.
    99. He Y.X., Zheng T.Q., Hao X.B., Wang L.F., Gao Y.M., Hua Z.T., Zhai H.Q., Xu J.L., Xu Z.J., ZhuL.H., Li Z.K. Yield performances of japonica introgression lines selected for drought tolerance in aBC breeding programme. Plant Breeding2010,129(2):167-175.
    100.Hibberd J.M., Sheehy J.E., Langdale J.A. Using C4photosynthesis to increase the yield ofrice-rationale and feasibility. Current Opinion in Plant Biology2008,11(2):228-231.
    101. Hu H.H., Dai M.Q., Yao J.L., Xiao B.Z., Li X.H., Zhang Q.F., Xiong L.Z. Overexpressing a NAM,ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice.Proceedings of the National Academy of Sciences of the Unite States of America2006,103(35):12987-12992.
    102.Huang N., Angeles E.R., Domingo J., Magpantay G., Singh S., Zhang G., Kumaravadivel N.,Bennett J., Khush G.S. Pyramiding of bacterial blight resistance genes in rice: Marker-assistedselection using RFLP and PCR. Theoretical and Applied Genetics1997,95:313-320.
    103.Huang X., Qian Q., Liu Z., Sun H., He S., Luo D., Xia G., Chu C., Li J., Fu X. Natural variation atthe DEP1locus enhances grain yield in rice. Nature Genetics2009,41(4):494-497.
    104.Ikehashi H., Ponnamperuma F.N. Varietal tolerance of rice for adverse soils. In: Soils and Rice,LosBanos, Philippines: IRRI,1978, pp.801-823.
    105.Izzo R., Navati-Izzo F., Quartacci M. F. Growth and mineral absorption in maize seedlings asaffected by increasing NaCl concentrations. Journal of Plant Nutrition1991,14(7):687-699.
    106.Jeon J.S., Jung K.H., Kim H.B., Suh J.P., Khush G.S. Genetic and molecular insights into theenhancement of rice yield potential. Journal of Plant Biology2011,54(1):1-9.
    107. Ji X.M., Raveendran M., Oane R., Ismail A., Lafitte R., Bruskiewich R., Cheng S.H., Bennett J.Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice atflowering. Plant Molecular Biology2005,59:945-964.
    108.Jiang G.H., He Y.Q., Xu C.G., Li X.H., Zhang Q. The genetic basis of stay-green in rice analyzedin a population of doubled haploid lines derived from an indica by japonica cross. Theoretical andApplied Genetics2004,108(4):688-698.
    109.Jiang Y., Huang B. Drought and heat stress injury to two cool-season turfgrasses in relation toantioxidant metabolism and lipid peroxidation. Crop Science2001,41(2):436-442.
    110.Jing R.L. Advances of research on drought resistance and water use efficiency in crop plants.Review of China Agricultural Science and Technology2007,9:1-5.
    111.Jongdee B., Fukai S., Cooper M. Leaf water potential and osmotic adjustment as physiologicaltraits to improve drought tolerance in rice. Field Crops Research.2002,76(2-3):153-163.
    112.Kazuo S., Kazuko Y. S. Gene networks involved in drought stress response and tolerance. Journalof Experimental Botany2007,58(2):221-227.
    113.Kelly J.D. Use of RAPD markers in breeding for major gene resistance to plant pathogens.HortScience1995,30:461-465.
    114.Khush G.S. Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology1997,35:25-34.
    115. Khush G.S. What it will take to feed5.0billion rice consumers in2030. Plant Molecular Biology2005,59:1-6.
    116.Khush G. S. Green revolution: preparing for the21st century. Genome1999,42(4):646-655.
    117.Khush G.S. What it will take to feed5.0billion rice consumers in2030. Plant Molecular Biology2005,59(1):1-6.
    118.Kumar A., Bernier J., Verulkar S., Lafitte H.R., Atlin G.N. Breeding for drought tolerance: Directselection for yield, response to selection and use of drought-tolerant donors in upland andlowland-adapted populations. Field Crops Research2008,107(3):221-231.
    119. Kumar R., Venuprasad R., Atlin G.N. Genetic analysis of rainfed lowland rice drought toleranceunder naturally-occurring stress in eastern India: Heritability and QTL effects. Field CropsResearch2007,103(1):42-52.
    120.Lafitte H.R., Li Z.K., Vijayakumar C.H.M., Gao Y.M., Shi Y., Xu J.L., Fu B.Y., Yu S.B., Ali A.J.,Domingo J., Maghirnag R., Torres R., Mackill D. Improvement of rice drought tolerance throughbackcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Research2006,97(1):77-86.
    121.Lafitte H.R., Price A.H., Courtois B. Yield response to water deficit in an upland rice mappingpopulation: Associations among traits and genetic markers. Theoretical and Applied Genetics2004,109:1237-1246.
    122.Lanceras, J., Pantuwan G., Jongdee B., Toojinda T. Quantitative trait loci associated with droughttolerance at reproductive stage in rice. Plant Physiology2004,135(1):384-399.
    123.Lang N.T., Masood S., Yanagihara S. Mapping QTLs for salt tolerance in rice. In: Khush G S, BrarD S, Hardy B,(eds). Advances in rice genetics supplement to rice genetics IV. Los Banos:Proceedings of the Fourth International Rice Genetics Symposium,2000, International RiceResearch Institute,2003:294-298.
    124.Levitte J. Responses of plants to environmental stresses. Science1972,177:786.
    125.Li J., Thomson M., McCouch S.R. Fine mapping of a grain-weight quantitative trait locus in thepericentromeric region of rice chromosome3. Genetics2004,168(4):2187-2195.
    126.Li Z.C., Mu P., Li C., Zhang H.L., Li Z.K., Gao Y.M., Wang X.K. QTL mapping of root traits in adoubled haploid population from a cross between upland and lowland japonica rice in threeenvironments. Theoretical and Applied Genetics2005,110:1244-1252.
    127.Li Z.K., Pinson S.R.M., Park W.D., Paterson A.H., Stansel J.W. Epistasis for three grain yieldcomponents in rice (Oryza sativa L). Genetics1997,145:453-465.
    128.Li Z.K., Yu S.B., Lafitte H.R., Huang N., Courtois B., Hittalmani S., Vijayakumar C.H.M., LiuG.F., Wang G.C., Shashidhar H.E., Zhuang J.Y., Zheng K.L., Singh V.P., Sidhu J.S.,Srivantaneeyakul S., Khush G.S. QTL×environment interactions in rice. I. Heading date and plantheight. Theoretical and Applied Genetics2003,108(1):141-153.
    129.Lilley J.M., Fukai S. Effect of timing and severity of water deficit on four diverse rice cultivars I.Rooting pattern and soil water extraction. Field Crops Research1994,37(3):205-213.
    130.Lin H.X., Zhu M.Z., Yano M., Gao J.P., Liang Z.W., Su W.A., Hu X.H., Ren Z.H., Chao D.Y.QTLs for Na+and K+uptake of the shoots and roots controlling rice salt tolerance. Theoretical andApplied Genetics2004,108(2):253-260.
    131.Lin J.Y., Shen M. Rice production constraints in China: Progress and priorities. Los Ba os,Philippines: CAB International in Association with the International Rice Research Institute1996,55
    132.Liu H.Y., Zou G.H., Liu G.L., Hu S.P., Li M.S., Yu X.Q., Mei H.W., Luo L.J. Correlation analysisand QTL identification for canopy temperature, leaf water potential and spikelet fertility in riceunder contrasting moisture regimes. Chinese Science Bulletin2005,50(4):317-326.
    133.Liu J.X., Liao D.Q., Oane R., Estenor L., Yang X.E., Li Z.C., Bennett J. Genetic variation in thesensitivity of anther dehiscence to drought stress in rice. Field Crops Research2006,97(1):87-100.
    134.Luigi C., Fulvia R., Badeck F.W., Elisabetta M., Anna M.M., Enrico F., Caterina M., AlessandroTondelli, A. Michele Stanca. Drought tolerance improvement in crop plants: An integrated viewfrom breeding to genomics. Field Crops Research2008,105:1–14.
    135.Luo L.J. Breeding for water-saving and drought-resistance rice (WDR) in China. Journal ofExperimental Botany2010,61(13):3509-3517.
    136.Lurie S., Klein J.D. Acquisition of low-temperature tolerance in tomatoes by exposure tohigh-temperature stress. Journal of the American Society for Horticulture Science.1991,116(6):1007-1012.
    137.Lutts S., Kinet J.M., Bouharmont J. Changes in plant response to NaCl during development of rice(Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany1995,46(12):1843-1852.
    138.Martinez V., L uchli A. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypiumhirsutum L.). New Phytologist1994,126(4):609-614.
    139.Melchinger A.E. Use of molecular markers in breeding for oligogenic disease resistance. Plantbreeding1990,104:1-19
    140.Mei H.W., Xu J.L., Li Z.K., Yu. X.Q., Guo L.B., Wang Y.P., Ying C.S., Luo L.J. QTLs influencingpanicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.).Theoretical and Applied Genetics2006,112(4):648-656.
    141.Michael G., André L.P. Global impact of salinity and agricultural ecosystems. Salinity:Environment Plants Molecules.2004,3-20.
    142.Mittler R. Abiotic stress, the field environment and stress combination. Trends in Plant Science2006,11(1):15-19.
    143.Moffat A.S. Finding new ways to protect drought-stricken plants. Science2002,296(5571):1226-1229.
    144.Monneveux P., Saanchez C., Beck D., Edmeades G.O. Drought tolerance improvement in tropicalmaize source populations: Evidence of progress. Crop Science2006,46(1):180-191.
    145.Munir A., Hanjra M., Ejaz Q. Global water crisis and future food security in an era of climatechange. Food Policy35(5):2010,365-377.
    146.Munns R. Comparative physiology of salt and water stress. Plant, Cell&Environment2002,25(2):239-250.
    147.Namuco O.S., O'Toole J.C. Reproductive stage water stress and sterility. I. Effect of stress duringmeiosis. Crop Science1986,26(2):317-321.
    148.O'Toole J.C., Hsiao T.C., Namuco O.S. Panicle water relations during water stress. Plant ScienceLetters1984,33(2):137-143.
    149.O'Toole J.C., Namuco O.S. Role of panicle exsertion in water stress induced sterility. Crop Science1983,23(6):1093-1097.
    150.Ou-Yang Y., Liu Y.G., Zhang Q. Hybrid sterility in plant: stories from rice. Current Opinion ofPlant Biology2010,13(2):186-192.
    151.Ozturk Z.N., Talame V., Deyholos M., Michalowski C.B, Galbraith D.W., Gozukirmizi N.,Tuberosa R., Bohnert H.J. Monitoring large-scale changes in transcript abundance in drought andsaltstressed barley. Plant Molecular Biology2002,48:551-573.
    152.Pantuwan G., Fukai S., Cooper M., Rajatasereekul S., O’Toole J.C. Yield response of rice (Oryzasativa L.) to drought under rainfed lowlands:3. Plant factors contributing to drought resistance.Field Crops Research2002,73(2-3):181-200.
    153.Pantuwan G., Fukai S., Cooper M., Rajatasereekul S., O'Toole J.C. Yield response of rice (Oryzasativa L.) genotypes to drought under rainfed lowlands:2. Selection of drought resistant genotypes.Field Crops Research2002,73(2-3):169-180.
    154.Passioura J.B. Drought and drought tolerance. In: Belhassen E.,(eds). Drought tolerance in higherplants: genetical, physiological and molecular biological analysis. Online: Sringer Netherlands,1997,1-5.
    155.Pearson G.A., Ayers A.D., Eberhard D.L. Relative salt tolerance of rice during germination andearly seedling development. Soil Science1996,102(3):151-156.
    156.Peng S., Cassman K.G., Virmani S.S., Sheehy J., Khush G.S. Yield potential trends of tropical ricesince the release of IR8and the challenge of increasing rice yield potential. Crop Science1999,39(6):1552-1559.
    157.Peng S., Tang Q., Zou Y. Current status and challenges of rice production in China. PlantProduction Science2009,12(1):3-8.
    158. Pitman M.G., L uchli A. Global impact of salinity and agricultural ecosystems. In: Lüttge U.,(eds). Salinity: Environment Plants Molecules. Online: Springer Netherlands,2004,3-20.
    159.Prashant V., Swamy B.P.M., Shalabh D., Helal U.A., Stacruz M.T., Singh A.K. Kumar A. qDTY1.1,a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect inmultiple elite genetic backgrounds. BMC Genetics2011,12:89.
    160. Price A., Courtois B. Mapping QTLs associated with drought resistance in rice: Progress,problems, and prospects. Plant Growth Regulation1999,29(1-2):123-133.
    161.Price A.H., Tomos A.D. Genetic dissection of root growth in rice. II: Mapping quantitative trait lociusing molecular markers. Theoretical and Applied Genetics1997,95(1-2):143-152.
    162.Price A.H., Young E.M., Tomos A.D. Quantitative trait loci associated with stomatal conductance,leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytologist1997,137(1):33-91.
    163.Qian Q., Seiji Y., Teng S., Zeng D.L., Zhu L.H., Chen S.Y. Isolation expression characteristics andchromosomal locations of three cDNA fragments under salt stress in rice. Acta Botanica sinica.2003,45(9):1090-1095.
    164.Ray J.D., Yu L., McCouch S.R., Champoux M.C., Wang G., Nguyen H.T. Mapping QTLassociated with root penetration ability in rice (Oryza sativa L.). Theoretical and Applied Genetics1996,92(6):627-636.
    165.Rekika D., Havaux M., Araus J.L. Monneveux P. Variation for physiological traits related to abioticstress tolerance in Aegilops species. In: Jaradat A.A.(eds). Science. USA: Publisher Inc,1998,293-304.
    166.Ren Z.H., Gao J.P., Li L.G., Cai X.L., Huang, W., Chao D.Y., Zhu M.Z., Wang Z.Y., Luan S., LinH.X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics2005,37(10):1141-1146.
    167.Richards R.A., Rebetzke G. J., Condon A.G., Herwaarden A.F. Breeding opportunities forincreasing the efficiency of water use and crop yield in temperate cereals. Crop Science2002,42(1):111-121.
    168.Robin S., Pathan M.S., Courtois B., Lafitte R., Carandang S., Lanceras S., Amante M., NguyenH.T., Li Z. Mapping osmotic adjustment in an advanced back-cross inbred population of rice.Theoretical and Applied Genetics2003,107(7):1288-1296.
    169.Sabehat A., Weiss D., Lurie S. The correlation between heat-shock protein accumulation andpersistence and chilling tolerance in tomato fruit. Plant Physiology1996,110(2):531-537.
    170.Sanchez A.C., Brar D.S., Huang N., Li Z., Khush G.S. Sequence tagged site marker-assistedselectionfor three bacterial blight resistance genes in rice. Crop Scicene2000,40(3):792-797.
    171.Sasaki A., Ashikari M., Ueguchi-Tanaka M., Itoh H., Nishimura A., Swapan D., Ishiyama K., SaitoT., Kobayashi M., Khush G.S., Kitano H., Matsuoka M. Green revolution: A mutantgibberellin-synthesis gene in rice. Nature2002,416:701-702.
    172.Septiningsih E.M., Prasetiyono J., Lubis E., Tai T.H., Tjubaryat T., Moeljopawiro S., McCouch S.R.Identification of quantitative trait loci for yield and yield components in an advanced backcrosspopulation derived from the Oryza sativa variety IR64and the wild relative O.rufipogon.Theoretical and Applied Genetics2003,107(8):1419-1432.
    173.Shafqat F., Farooq E.A. Co-existence of salt and drought tolerance in Triticeae. Hereditas2001,135:205-210
    174.Shomura A., Izawa T., Ebana K., Ebitani T., Kanegae H., Konishi S., Yano M. Deletion in a geneassociated with grain size increased yields during rice domestication. Nature Genetics2008,40(8):1023-1028.
    175.Smith J.M., Haigh J. The hitch-hiking effect of a favorable gene. Genetical Research1974,23:23-35.
    176.Song X.J., Huang W., Shi M., Zhu M.Z., Lin H.X. A QTL for rice grain width and weight encodesa previously unknown RING-type E3ubiquitin ligase. Nature Genetics2007,39(5):623-630.
    177.Takahashi R., Joshee N., Kitagawa Y. Induction of chilling resistance by water stress and cDNAsequence analysis and expression of water stress-regulated genes in rice. Plant Molecular Biology1994,26(1):339-352.
    178.Takahashi Y., Shomura A., Sasaki T., Yano M. Hd6a rice quantitative trait locus involved inphotoperiod sensitivity encodes the alpha subunit of protein kinase CK2. Proceeding of the NationalAcademy of Sciences of the United States of America.2001,98:7922-7927.
    179.Tanksley S.D., Nelson J.C. Advanced backcross QTL analysis: a method for the simultaneousdiscovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theoretical and Applied Genetics1996,92(2):191-203.
    180.Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computationaland experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length, transposonassociations, and genetic marker potential. Genome Research2001,11:1441-1452.
    181.Teng S, Qian Q., Zeng D.L., Kunihiro Y., Fujimoto K., Huang D.N., Zhu L.H. Analysis of geneloci and epistasis for drought tolerance in seedling stage of rice (Oryza sativa L.). Acta GeneticaSinica2002,29(3):235-240.
    182.Tian F., Li D.J., Fu Q., Zhu Z.F., Fu Y.C., Wang X.K., Sun. C.Q. Construction of introgressionlines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.)background and characterization of introgressed segments associated with yield-related traits.Theoretical and Applied Genetics2006,112(3):570-580.
    183.Toorchi M., Shashidhar H.E., Gireesha T.M., Hittalmani S. Performance of backcross involvingtrangressant doubled haploid lines in rice under contrasting moisture regimes. Crop Science2003,43(4):1448-1456.
    184.Tuinstra M.R. Ejeta G. Goldsbrough P. Evaluation of near-isogenic sorghum lines contrastion forQTL markers associated with drought tolerance. Crop Science1998,38(3):835-842.
    185.Veldboom L R, Lee M, Woodman W L. Molecular-marker facilitated studies in an elite maizepopulation.I. Linkage analysis and determination of QTLs for morphological traits. Theoretical andApplied Genetics,1994,88:7-16
    186.Venuprasad R., Dalid C.O., Valle M.D., Zhao D., Espiritu M., Sta Cruz M.T., Amante M., KumarA., Atlin G.N. Identification and characterization of large-effect quantitative trait loci for grainyield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and AppliedGenetics2009,120(1):177-190.
    187.Venuprasad R., Lafitte H.R., Atlin G.N. Response to direct selection for grain yield under droughtstress in rice. Crop Science2007,47(1):285-293.
    188.Vikram P., Swamy B.P.M., Shalabh D., Helal U.A., Stacruz M.T., Singh A.K. Kumar A. qDTY1.1,a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect inmultiple elite genetic backgrounds. BMC Genetics2011,12:89.
    189.Wang E., Wang J.J., Zhu X.D., Wei H., Wang L.Y., Li Q., Zhang L.X., He W., Lu B.R., Lin H.X.,Ma H., Zhang G.Q., He Z.H, Control of rice grain-filling and yield by a gene with a potentialsignature of domestication. Nature Genetics2008,40(11):1370-1374.
    190.Wang J., Eagles H.A., Trethowan R., Ginkel M.V. Using computer simulation of the selectionprocess and known gene information to assist in parental selection in wheat quality breeding.Australian Journal of Agricultural Research2005,56(5):465-473.
    191.Xiao J.H, Li J., Grandillo S., Ahn S.N., Yuan L., Tanksley S.D., McCouch S.R. Identification oftrait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics,1998,150(2):899-909.
    192.Xu J.L., Li Z.K. Dissection of genetic overlap of salt tolerance QTLs at the seedling and tilleringstages using backcross introgression lines in rice. Sci. China C: Life Sci2008,51(7):583-591.
    193.Xu J.L., Xue Q.Z., Luo L.J., Li Z.K. QTL dissection of panicle number per plant and spikeletnumber per panicle in rice (Oryza sativa L.). Acta Genetica Sinica2001,28(8):752-759.
    194.Xu J.L., Xue Q.Z., Luo L.J., Li Z.K. Genetic dissection of grain weight and its related traits in rice(Oryza sativa L.). Chinese Journal of Rice Science2002,16:6-10.
    195.Xu J.L., Yu S.B., Luo L.J., Zhong D.B., Mei H.W., Li Z.K. Molecular dissection of the primarysink size and its related traits in rice. Plant Breeding2004,123(1):43-50.
    196.Xue W.Y., Xing Y.Z., Weng X.Y., Zhao Y., Tang W.J., Wang L., Zhou H.J., Yu S.B., Xu C.G., LiX.H. Zhang Q.F. Natural variation in Ghd7is an important regulator of heading date and yieldpotential in rice. Nature Genetics2008,40:761-767.
    197.Yadav R., Courtois B., Huang N, McLaren G. Mapping genes controlling root morphology and rootdistribution in a doubled-haploid population of rice. Theoretical and Applied Genetics1997,94(5):619-632.
    198.Yagi T., Nagata K., Fukuta Y., Tamura K., Ashikawa I., Terao T. QTL mapping of spikelet numberin rice (Oryza sativa L.). Breeding Science2001,51(1):53-56.
    199.Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto,K., Umehara, Y., Nagamura, Y., Sasaki, T. Hd1, a major photoperiod sensitivity quantitative traitlocus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell2000,12(12):2473-2483.
    200.Yoo S.C., Cho S.H., Zhang H., Paik H.C., Lee C.H., Li J., Yoo J. H., Lee B.W., Koh H.J., Seo H.S.,Paek N.C. Quantitative trait loci associated with functional stay-green SNU-SG1in rice. Moleculesand Cells2007,24(1):83-94.
    201.Yu S.B., Xu W.J., Vijayakumar C.H.M., Ali J., Fu B.Y., Xu J.L., Jiang Y.Z., Marghirang R.,Domingo J., Aquino C., Virmani S.S., and Li Z.K. Molecular diversity and multilocus organizationof the parental lines used in the International Rice Molecular Breeding Program. Theoretical andApplied Genetics2003,108(1):131-140
    202.Yue B., Xiong L.Z., Xue W.Y., Xing Y.Z., Luo L.J., Xu C.G. Genetic analysis for droughtresistance of rice at reproductive stage in field with different types of soil. Theoretical and AppliedGenetics2005,111(6):1127-1136.
    203.Yue B., Xue W.Y., Xiong L.Z., Yu X.Q., Luo L.J., Cui K.H., Jin D.M., Xing Y.Z., Zhang Q.F.Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerancefrom drought avoidance. Genetics2006,172(2):1213-1228.
    204.Zang, J.P., Sun, Y., Wang, Y., Yang, J., Li, F., Zhou, Y.L., Zhu, L.H., Jessica, R., Mohammadhosein,F., Xu, J.L., Li, Z.K. Dissection of genetic overlap of salt tolerance QTLs at the seedling andtillering stages using backcross introgression lines in rice. Sci China Ser C-Life Sci.2008,51(7):583-591.
    205.Zhang J., Zheng H.G., Aarti A., Pantuwan G., Nguyen T.T., Tripathy J.N., Sarial A.K., Robin S.,Babu R.C., Nguyen B. Nguyen D., Sarkarung S., Blum A., Nguyen H.T. Locating genomic regionsassociated with components of drought resistance in rice: comparative mapping within and acrossspecies. Theoretical and Applied Genetics2001,103(1):19-29.
    206.Zhu X.G., Long S.P., Ort D.R. Improving photosynthetic efficiency for greater yield. AnnualReview of Plant Biology2010,61:235-261.
    207.Zou G.H., Mei H.W., Liu H.Y., Liu G.L., Hu S.P., Yu X.Q., Li M.S., Wu J.H., Luo L.J. Grain yieldresponses to moisture regimes in a rice population: Association among traits and genetic markers.Theoretical and Applied Genetics2005,112(1):106-113.