干旱地区陆地生态系统碳循环规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验是在典型干旱区—新疆三工河流域(草地生态系统选择在巴音布鲁克草原)
    进行的,主要依托中国科学院新疆生态地理研究所阜康荒漠生态试验站,以干旱区典型
    陆地生态系统为研究对象,对干旱区典型陆地生态系统 CO2源汇关系进行了系统研究,
    并对三工河流域及巴音布鲁克亚高山草地生态系统进行了碳估算,为评价不同生态系统
    的环境效应提供理论依据。取得了如下主要结论:
    1. 绿洲农田生态系统
     各种类型的绿洲农田生态系统对的 CO2固定量有一定日变化差异,在夜间的 11 个
    小时内,各农田生态系统都是碳源,即净释放 CO2。而白天小麦生态系统和棉花生态系
    统都有 1 个小时为碳源。研究表明玉米农田生态系统对 CO2的净固定能力最强,24 小
    时固定 CO238.47g/m2。其次是小麦生态系统和棉花生态系统。从年固碳量来看,绿洲玉
    米生态系统为最高,达到 141.66 t CO2/hm2·a;其次为小麦生态系统,为 122.60 t
    CO2/hm2·a;棉花生态系统最低,为 50.39 t CO2/hm2·a。
    2. 荒漠林地生态系统
     在夜间的 11 个小时内,各林地生态系统都是碳源,即净释放 CO2。而在白天,云
    杉林地生态系统有 7 个小时为碳源,研究表明:云杉林地生态系统对 CO2的净固定能力
    最弱,24 小时内净释放 CO2 4.22g/m2。最强的是梭梭林地生态系统,24 小时净固定
    CO218.34 g/m2。红柳林地生态系统对 CO2 的固定能力稍弱于梭梭林地生态系统。从各观
    测样地的年固碳能力来看,梭梭林地生态系统固定量最大达到了 9.29 t CO2/hm2·a,红
    柳林地生态系统次之,为 2.68 t CO2/hm2·a。云杉林地生态系统总体来看是一个弱的碳
    源,年释放量达到 8.20 t CO2/hm2,这与传统的观点相左,尚需要进一步研究。
    3. 亚高山草地生态系统
     围栏封育条件下,草地生态系统日 CO2净固定量达到了 12.76gCO2/m2·d,每天除
    18 时和 21 时是弱的碳源外,其余时间均是碳汇。其中 16 时以前是碳的强汇,对 CO2
    的净固定量达到 12.02gCO2/m2,占到日总 CO2净固定量的 94.20%;自然放牧条件下,
    草地生态系统日 CO2净固定量达到了 11.52gCO2/m2·d,除 9 时、13 时、14 时和 21 时
    是弱的碳源外,其余时间均是碳汇。其中 15~19 时是碳的强汇,对 CO2的净固定量达
    到 9.46gCO2/m2,占到日 CO2净固定量的 82.00%。13、14 时出现弱源的主要原因是由
    于植物的光合速率在中午有所下降即“午休”现象导致的。每年的 5~9 月份是牧草的生
    长期,对巴音布鲁克亚高山草地生态系统 CO2的年固定量的初步估算结果表明:其 CO2
    固定量达到 7.14 t CO2/hm2·a。
    4. 碳估算
    
    
    4.1 三工河流域土壤碳估算
     新疆三工河流域总碳储量约为 11.18Pg,其中有机碳约为 5.43 Pg,占 48.54%,无机
    碳约为 5.75Pg,占 51.46%。
     各土壤生态系统相比较,森林土壤、草甸土壤具有较大的有机碳通量和有机碳容量,
    但其无机碳通量和无机碳容量均明显低于其它土壤生态系统;荒漠土壤生态系统的有机
    碳通量、碳容量最低,但其具有较高的无机碳储量。
    4.2 巴音布鲁克亚高山草地生态系统碳估算
     巴音布鲁克亚高山草地生态系统地上植物体碳总量约为 7.20 万 t。其中地上部分约
    为 3.20 万 t,约占 44.44%;地下部分根系约为 4.0 万 t,约占到 55.56%。
     对巴音布鲁克亚高山草原生态系统的土壤有机碳进行了估算,结果表明:亚高山草
    原生态系统土壤有机碳的平均碳通量为 16.80Ckg/m2,土壤有机碳总贮藏量约为 3019.22
    万 t。
    5. 土壤条件对凋落物分解速率的影响
     壤质土上的有机物料分解速率高于粘质土和砂质土;中等土壤湿度条件下有机物料
    的分解速率最高;深埋方式有机物料的分解速率高于浅埋方式;中等土壤盐分条件下,
    有机物料的分解速率最高;不同类型凋落物,在其它条件完全相同的条件下,分解速率
    也不完全相同,主要是由于其木质素含量有所差异所致。本研究是在固定了其它因子的
    条件下,仅对单因子逐项进行了研究,因子间的交互作用尚需要进一步研究。
The experiment was conducted in the typical terrestrial ecosystem in arid region ----
    Sangong River drainage area in Xinjiang (and the selected grassland ecosystem is at
    Bayinbuluke Grassland) with Fukang Desert Ecology Experimental Station of Xinjiang
    Ecological Geography Academic Institution of Chinese Academy of Sciences as the main
    backing, typical terrestrial ecosystem in arid region as the subject investigated. CO2
    source/sink relation of typical terrestrial ecosystem in arid region is studied systematically
    based on field-study data in the field, and carbon concerning Sangong River drainage area and
    Bayinbuluke subalpine meadow ecosystem is estimated. The main conclusions are as follows:
    1. Oasis field ecosystem
     There are certain differences among the fixation quantity of CO2 of different types of
    field ecosystems. All field ecosystems are carbon source, i.e. net discharge of CO2 during the
    11 hours at night. However, there is one hour acting as carbon source for wheat-soil
    ecosystem and cotton-soil ecosystem in the daytime. Study shows that maize-soil ecosystem
    has biggest capability of CO2 net fixation with fixation quantity of 38.47g/m2 per hour. And
    wheat-soil ecosystem and cotton-soil ecosystem stand second on the list. From the point of
    view of annual carbon fixation quantity oasis maize-soil ecosystem is highest up to 141.66 t
    CO2 /hm2.a; the following one is wheat-soil ecosystem with 122.60 t CO2 /hm2.a; and
    cotton-soil ecosystem is lowest with 50.39 t CO2 /hm2.a.
    2. Desert forestland ecosystem
     All forestland ecosystems are carbon source, i.e. net discharge of CO2 during the 11
    hours at night. However, there is 7 hours acting as carbon source for Picea schrenkiana
    forestland ecosystem. Study shows that Picea schrenkiana forestland ecosystem has the
    weakest capability of CO2 net fixation with net discharge of 4.22g/m2 within 24 hours. And
    Haloxylon ammodendron forestland ecosystem is of the strongest capability with CO2 net
    fixation of 18.34g/m2 within 24 hours. The CO2 fixation capability of Tamarix ramosissima
    forestland ecosystem is slightly weaker than that of Haloxylon ammodendron forestland
    ecosystem. From the point of view of annual carbon fixation quantity of each observed plot,
    Haloxylon ammodendron forestland ecosystem is highest up to 9.29 t CO2 /hm2.a; the
    following one is Tamarix ramosissima forestland ecosystem with 2.68 t CO2 /hm2.a; And
    Picea schrenkiana forestland ecosystem is a weak carbon source as a whole with annual
    discharge quantity of 8.20 t CO2 /hm2.a which is at variance with traditional opinion and
    further study is needed.
    3. Subapline meadow ecosystem
     Under the condition of animal raising shut with fencing, the daily net fixation of CO2 of
    grassland ecosystem is 12.76gCO2 /m2.d, it is a carbon sink during the day except at 18:00
    and 21:00 during which it is a weak source and of the rest time of the day it is an obvious
    strong carbon sink before 16:00 with CO2 net fixation of 12.02g CO2/m2 which occupies
    94.20% of daily total CO2 net fixation. Under the natural pasturing condition, the daily net
    fixation of CO2 of grassland ecosystem is 11.52gCO2 /m2.d, it is a carbon sink during the day
    except at 9:00, 13:00, 14:00 and 21:00 during which it is a weak source and from 15:00 to
    19:00 it is an obvious strong carbon sink with CO2 net fixation of 9.46gCO2/m2 which
    occupies 82.00% of daily total CO2 net fixation. The main reason why a weak source appears
    at 13:00 and 14:00 is that photosynthesis rate of vegetation declines a little at noon, i.e. the
    so-called noon break. The period from May to September every year is growing period of
    forage grass, for which the annual CO2 fixation of Bayinbuluke Subapline meadow ecosystem
    
    
    is up to 7.14 t CO2 /hm2.a according to the preliminary estimate.
    4. Estimation of carbon
    4.1 Estimation of carbon in Sangong River drainage area
     Total reserves of carbon in Sangong River drainage area, Xinjiang is estimated to be
    about 11.18Pg, of which organic carbon is about 5.43Pg whic
引文
1. 《新疆森林》编辑委员会,新疆森林,中国林业出版社,北京:1989.8.
    2. 巴音布鲁克草原生态研究专集,干旱区研究,1991.Vol.(8):(增刊).
    3. 蔡祖聪,沈光裕,颜晓元.1998.土壤质地,温度和 Eh 对稻田甲烷排放得影响.土壤学报,35(2):
     145-153
    4. 曹志洪,1994.化肥-环境与农业持续发展.土壤科学与农业持续发展.南京:江苏省科技出版社,
     183-195.
    5. 曹志洪,朱永官.1995.苏南稻麦两熟制下土壤养分平衡与培肥的长期实验.土壤,27(2):60-64
    6. 陈德章,王明星.1995.稻田甲烷排放的初级模式.大气科学,19(6):733-740.
    7. 常庆瑞主编,土地资源学,西北农林科技大学出版社,2002.11.
    8. 陈灵芝,黄建辉,严昌荣.1997.中国森林生态系统养分循环.气象出版社,北京.
    9. 陈彤编著,新疆塔城老风口防风阻雪生态工程评价与发展战略研究,新疆人民出版社,2003.8,
     第八章.
    10. 程伯容,许广山,丁桂方,张玉华和王伟.1984.Litterfall and its nutrient content of dominant types
     of forest ecosystem in Changbai mountain.森林生态系统研究,4:19~24.
    11. 戴万宏,农田土壤空气 CO2 动态和土壤-大气界面释放的研究,西北农林科技大学,博士学位
     论文:1~33.
    12. 董鸣主编,陆地生物群落调查观测与分析,中国标准出版社,北京:1997.5.
    13. 董云社,彭公炳,李俊.1996.温带森林土壤排放 CO2,CH4,N2O 时空特征.地理学报,51 增刊:
     120-128.
    14. 段争虎,刘新明,屈建军.1996,中国土地沙漠化对大气 CO2含量的影响.中国沙漠.10(2):89-93.
    15. 方精云,刘国华,徐崇龄.1996.中国森林植被生物量和净生产率.生态学报,16(4):497-508.
    16. 方精云主编,全球生态学气候变化与响应,高等教育出版社,北京:2000.12.
    17. 傅声雷,蚁伟民,丁明懋.1995.鼎湖山不同植被类型下土壤微生物养分的矿化.植物生态学
     报,19(3):217—224.
    18. 高素华.王春乙.1994.CO2浓度升高对冬小麦,大豆籽粒成分的影响.环境科学,15(5):24-30.
    19. 高云超,朱文珊,陈文新.1993.土壤微生物生物量周转的估算.生态学杂志,12(6):6~10.
    20. 韩兴国,李凌浩,黄建辉.1999.生物地球化学概论.高等教育出版社,北京.
    21. 郝余祥.1982.土壤微生物.科学出版社,北京,1~167.
    22. 侯爱新,陈冠 雄,吴杰.1997.稻田 CH4和 N2O 排放关系及其微生物学机理和一些影响因子.应用
     生态学报,8(3):270-274.
    23. 荒漠生态系统研究专集,干旱区研究,1990.Vol.(7):(增刊).
    24. 荒漠生态系统研究专集,干旱区研究,1992.Vol.(9):(增刊).
    25. 黄昌勇主编.2000.土壤学.中国农业出版社,北京,1—311.
    26. 黄承才,葛滢,常杰,卢蓉和徐青山.1999.中亚热带东部三种主要木本群落土壤呼吸的研究.生
    
    
    90 干旱地区陆地生态系统碳循环规律研究
     态学报,19(3):324—328.
    27. 黄建辉,陈灵芝,韩兴国.1998.辽东栎枝条分解过程中几种主要营养元素的变化.植物生态
     学报,22(5):398—402.
    28. 黄培祐编著,干旱区免灌植被及其恢复,科学出版社,北京:2002.2.
    29. 黄耀,2001,关于中国陆地生态系统碳循环研究的几点思考[J],世界科技研究与发展,21 世纪
     青年学者论坛,66-68;
    30. 黄志群,廖利平,高洪,汪思龙和于小军.2000.杉木根桩分解过程及几种主要营养元素的变化.应
     用生态学报,11(1):40--42.
    31. 贾宏涛、陈冰、蒋平安等,防护林立地土壤肥力演替规律初步研究,林业科技,2002.12,(6):
     15-17.
    32. 贾宏涛、蒋平安、陈冰等,新疆塔城老风口工程区防护林立地土壤化学特征,土壤,2001.12,(6):
     305-308.
    33. 蒋平安、贾宏涛、陈冰等,新疆老风口防风阻雪生态工程的土壤改良效应评价,水土保持学报,
     2002.9.Vol.16(3):32-35.
    34. 拉夏埃尔.李博等译.植物生理生态学.1980.科学出版社,北京,1~314.
    35. 李长生.2001.生物地球化学的概念与方法-DNDC 模型的发展.第四纪研究,21(2):89-99.
    36. 李长生.2000.土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究.第四纪
     研究,20(4):345-350.
    37. 李迪强,孙成永,张新时.1998.中国潜在植被生产力的分布与模式.植被学报,40(6):560-566.
    38. 李江风等著,新疆年轮气候年轮水文研究,气象出版社,北京:1989.11.
    39. 李晶,王明新,陈德章.1998.稻田甲烷排放连续测量中采样时间的选择.中国科学院研究生院学
     报,15(1):24-29.
    40. 李克让主编,土地利用变化和温室气体净排放与陆地生态系统碳循环,气象出版社,北京:
     2002.5.
    41. 李凌浩,刘先华,陈佐忠.1998.内蒙古锡林河流域羊草草原生态系统碳素循环研究.植物学报,
     40(10):955-961.
    42. 李学垣主编,土壤化学,高等教育出版社,北京:2001.7.
    43. 李银鹏,季劲钧.2001,全球陆地生态系统与大气之间碳交换的模拟研究.地理学报,56(4):
     379-389.
    44. 李玉娥,林而达,1993.影响稻田甲烷形成和排放的因子及控制技术的研究进展.中国农业气象.14
     (3):50-53.
    45. 廖利平,高洪,汪思龙,马越强,黄志辉和子小军.2000.外加氮源对杉木叶凋落物分解及土
     壤养分淋失的影响.植物生态学报,24(1):34~39.
    46. 林而达等,全球气候变化对中国农业影响的模拟,中国农业科学技术出版社,北京:1997.3.
    47. 林开敏,马祥庆,范少辉,张小全,卓仕安和金昌雄.2000.杉木人工林林下植物的消长规律.福
    
    
    参考文献91
     建林学院学报,20(3):231--234.
    48. 刘国华,傅伯杰,方精云,2000,中国森林碳动态及其对地球碳平衡的贡献.生态学报,20(5):
     733~740
    49. 刘建栋,林振山,卢其尧.1998.冬小麦光和生产潜力数值模拟.地理研究,17(1):12~19.
    50. 刘绍辉,方精云.1997.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,17(5):469~
     476.
    51. 刘允芬.1998.西藏高原农田土壤 C02 排放研究初报.自然资源学报,13(2):181~186.
    52. 刘允芬.1995.农业生态系统碳循环研究,自然资源学报,10(1):1~8.
    53. 刘允芬.1998.中国农业系统碳汇功能,农业环境保护,17(5):197~202.
    54. 卢俊培,刘其汉. 1988. 海南岛尖峰岭热带林凋落物研究初报,植物生态学与地植物学,12(2):
     104~112.
    55. 罗承平,薛纪渝.1996.大气中 CO2 浓度增加对我国农业生产的影响,热带地理,16(3):191~194.
    56. 马志贵,王金锡.1993.大熊猫栖息环境的森林凋落物动态研究,植物生态学与地植物学学报,
     17(2):55~163.
    57. 孟范平.1994.大气 CO2 浓度增加对我国农业生产的影响.农村生态环境(学报),10(4):62-66.
    58. 潘根兴、曹建华、周运超,2000,土壤碳及其在地球表层系统碳循环中的意义[J],第四纪研究,
     Vol.20,No.4:325-333.
    59. 潘瑞炽,董愚得编著,植物生理学,高等教育出版社,北京:1995.5(第三版).
    60. 钱翌,何章起主编,普通生态学,新疆科技卫生出版社(K),乌鲁木齐,1994.3.
    61. 任海,彭少麟,刘鸿先,余作岳和方代有.1998.小良热带人工混交林的凋落物及其生态效益
     研究.应用生态学报,9(5):458-462.
    62. 任荣荣编著,中国森林地理景观概貌,中国农业出版社,北京:2002.7.
    63. 任泳红,曹敏,唐建维,唐勇和张建侯,1999.西双版纳季节雨林与橡胶多层林凋落物动态的
     比较研究,植物生态学报,23(5):418--425.
    64. 上官行健,王明新,沈壬兴.1993,稻田甲烷排放规律.地球科学进展,8(5):23-35.
    65. 沈宏,曹志洪,胡正义.1999a.土壤活性有机碳的表征及其生态效应,生态学杂志,18(3):
     32—38.
    66. 沈宏,曹志洪,王志明.1999b.不同农田生态系统土壤碳库管理指数的研究,自然资源学报,
     14(3):206--211.
    67. 沈宏,曹志洪.2000.不同农田生态系统土壤碳库管理指数的研究,生态学报,(20):663-668.
    68. 宋文质,王少彬,苏维翰,王智平.1996.我国农土壤的主要温室气体 CO2、CH4 和 N2O 排放研究.
     环境科学,17(1):85-92.
    69. 田大伦,康文星,文仕知等著,杉木林生态系统学,科学出版社,2003.4.
    70. 田中正之.1992.地球在变暖(石广玉,李昌明译).气象出版社,北京,1~132.
    71. 汪杏芬,李世仪,白克智和匡廷云.1998.CO2 倍增对植物生长和土壤微生物生物量碳、氮的
    
    
    92 干旱地区陆地生态系统碳循环规律研究
     影响,植物学报,40(12):1169~1172.
    72. 汪业茂,1999,中国森林生态系统区域碳循环研究,中国科学院自然资源综合考察委员会博士
     研究生学位论文.
    73. 王风友.1989.森林凋落物量研究综述.生态学进展,6(2):82~89.
    74. 王其兵,李凌浩,刘先华.1998,内蒙古锡林河流域草原土壤有机碳纪碳素的空间异质性分析.
     植物生态学报,22(5):409-414.
    75. 王荣.1992.海洋生物泵与全球变化.海洋科学,99(1):18—21.
    76. 王荣栋,尹经章主编,作物栽培学,新疆科技卫生出版社(K),乌鲁木齐,1997.8.
    77. 王绍强、周成虎,1999,中国陆地土壤有机碳库的估算[J],地理研究,Vol.18,No.4:349-355;
    78. 王效科,冯宗异.2000.中国森林生态系统中植物固定大气碳的潜力.生态学杂志,19(4):72-74.
    79. 王修兰,1996.全球农作物对大气 CO2 及其被增的吸收量估算,气象学报,54:466-426.
    80. 王彦辉,Peter Rademacher, Horst Folster. 1999.环境因子对挪威云杉林土壤有机质分解过程中重
     量和碳的气态损失影响及模型,生态学报,19(5):641~646.
    81. 王周琼,李述刚,程心俊著,草炭绿化荒漠的实践与机理,科学出版社,北京:2002.2.
    82. 王周琼,李述刚,程心俊著,荒漠绿洲农田生态系统中养分循环,科学出版社,北京:2002.2.
    83. 王周琼,李述刚,程心俊著,有机无机复合与荒漠化防治,科学出版社,北京:2003.10.
    84. 往事供,杨德保,周玉素,巴特尔,辛春兰.1995,我国西北地区“94.4”沙尘暴成因探讨,中
     国沙漠,15(4):332-338.
    85. 文启凯主编,农田土壤高效持续利用与管理,新疆大学出版社,2001.12.
    86. 吴建国,2002,土地利用变化对土壤有机碳的影响,中国林业科学研究院森林生态研究所博士
     论文.
    87. 萧祖荫,于贵瑞,1990,耕作制度基本原理与优化设计方法,辽宁科学技术出版社,沈阳,1~
     257.
    88. 谢香方主编,北疆铁路沿线区域综合开发与整治,新疆人民出版社,乌鲁木齐:1997.9.
    89. 谢云.1997,中国的农业发展与全球变化.北京师范大学学报(自然科学版),33(3):422-426
    90. 徐华,蔡祖聪,李小平.2000.冬作季节土地管理对水稻土 CH4排放季节变化的影响.应用生态学
     报,11(2):215~218.
    91. 许大全,光合作用效率,上海科学技术出版社,上海.2002.6.
    92. 许大全,李德耀、邱国雄等,1987,毛竹叶片光合作用的气孔限制研究,植物生理学报,13:
     92~95
    93. 亚历山大,1983,土壤微生物导论,广西农学院农业微生物学教研组译,科学出版社,北京:1~
     285.
    94. 姚槐应,1999,红壤微生物量在土壤-黑麦草系统中的肥力意义,应用生态学报,10(6):725~
     728.
    95. 叶笃正,陈泮勤主编,中国的全球变化预研究,地震出版社,北京:1992.11.
    
    
    参考文献 93
    96. 蚁伟民,丁明懋,张祝平等,1994,鼎湖山黄果厚壳桂群落的凋落物及其氮素动态,植物生态
     学报,18(3):228~235.
    97. 殷士学,1983,土壤微生物生物量及其与养分循环关系的研究进展,土壤学进展,21(4):1~
     8.
    98. 于贵瑞,全球变化与陆地生态系统碳循环和碳蓄积,气象出版社,2003.5.
    99. 于强,陆佩玲,刘建栋.1999.作物光温生产力模型及南方水稻适宜生长期的数值分析,自然资
     源学报,14(2):163~168.
    100. 袁道先,2001,地球系统的碳循环和资源环境效应,第四纪研究,Vol.21,No.3:223-230;
    101. 曾天勋,1986,森林养分循环,生态科学,1:69~73.
    102. 张家宝,史玉光等著,新疆气候变化及短期气候预测研究,气象出版社,北京:2002.7.
    103. 张万儒主编,中国主要造林树种土壤条件,中国科学技术出版社,北京:1998.9.
    104. 张小全,徐德应著,森林生长和产量生理生态模型,中国科学技术出版社,北京:2002.6.
    105. 张远辉,王伟强,陈立奇,2000,海洋二氧化碳的研究进展,15(5):113~330.
    106. 郑循华,王明星,王跃思.1997.华东稻田 CH4和 N2O 排放.大气科学,21(2):231~237.
    107. 朱新广,张其德.1999.Nacl 对光合作用的研究进展,物理学通报,16(4):332~338.
    108.邹琦主编,作物抗旱生理生态研究,山东科学技术出版社,济南 1994.12.
    109. Abrahamsen P and Hansen S.2000. DAISY: An open soil-crop-atmosphere stem model.
     Environmental Modeling and Software, 15:113-330.
    110. Amthor J S. 1994.Scaling CO2-photosynthesis relationships from the leaf to the canopy.
     Photosynthesis Research, 39:321~350.
    111. Anderson D W, Sagger S, Bettany J R and Stewart J W B.1981.Particle size fractions and their use in
     studies of soil organic matter: 1. The nature and distribution of forms of carbon, nitrogen, and sulfur.
     Soil Science Society of America Journal, 45:62-72.
    112. Andren O and Katter T. 1997.ICBM: the introductory carbon balances. Ecological Alpplication, 7(4):
     1226-1236.
    113. Arrouays D, Deslais W, Badeeau V.2001.The carbon content of topsoil and its geographical
     distributionin France. Soil Use and Management, 17:7-11.
    114. Atjay G L, Ketner P, 1979.Terre strait Parlay production and photomaps. In the global carbon cycle
     John Wiley and sons: Chichest, 129-128.
    115. Aubinet M, Grelle A, Ibrom A, Rannik, Moncrieff J, Foken T, Kowalski AS, Martin P H, Berbigier P,
     Bernhofer C, Clement R, Elbers J, Granier A, Grunnwald T, Morgenstern K , Pilegaard K, Rebmann C,
     Snijders W, Valentini R and Vesala T. 2000.Esitimater of the annual net carbon and water exchage of
     European forests: The EUROFLUX methodology. Advances in Ecological Research, 30:113-175.
    116. Bacastow R, Maier R E.1990.Ocean circulation model of the carbon cycle. Climate Dynamics,
     4:95-125.
    
    
    94 干旱地区陆地生态系统碳循环规律研究
    117. Baker D N, J R Lambert, J M Mckinion.1983.GOSSYM: A simulator of cotton crop growth and yield,
     S.C. Expt. Bull. Technical Bulletin No.1089, S.C. Agricultural Experiment Station, December.
    118. Baldochi D D, Hicks B B, Meyers T P.1988, Measuring biosphere-atmosphere exchanges of
     biologically related gases with micrometeorological methods. Ecology, 69:1331-1340.
    119. Batjes N H, Sombroek W G, 1997. Possibilities for carbon sequestration in tropical and subtropical
     soils. Global Change Biology,3: 161-173.
    120. Beare, M H, Cabrera, M L, Capbell, C A, Coleman D C.1994, Aggregate-protected and unprotected
     organic matter pools in conventional-and no-tillage soils. Soil Sci.Soc.Aam.J, 58: 787-795.
    121. Biederbeck V O. Janzen H H.1994, Labile soil organic matter as influenced by cropping practices in
     an arid enviroment. Soil Biology Biochemistry, 26:1647-1656.
    122. Bohn H L.1976.Estimate of organic carbon in world soils. Sci. Sco.Am.J.40: 468-470.
    123. Buringh P.1984. Original carbon in soils of the world. In: Wood well G M, (ed). The Role of
     Terrestrial Vegetation in the Global Carbon Cycle. John Wiley&Sons, 23:247.
    124. Businger J A, 1986.Evaluation of the accuracy with which dry deposition can be measured with
     current micrometeorological techniques. J Clam Apply Meteorol, 25:1100-1124.
    125. Buyanovsky G A, Wagner G H.1998.changing role of cultivated land in the global carbon cycle,
     Biol.Fertil.Soils, 27:242-245.
    126. Capbell C A, McConkey B G, Zenter R P.1995.Carbon sequestration in a brown chernozem as affected
     by tillage and roatation. Can. J. Soil Sci.75: 449-458.
    127. Capbell C A, Zentner R P.1993.Soil organic matter as influenced by crop rotation and fertilization.
     Soil Sci.Am.J, 57:1034-1040.
    128. Carter M R, Gregorich E G, Angers D A, Donald R G, Bolinder M A.1998.Organic C and N storage,
     and organic C fractions, in adjacent cultivated and forested soils of eastern Canada. Soil And Tillage
     Research, 47(3-4):
    129. Cerling T E.1992.Use of carbon isotopes in pale sols as an indicator of the P (CO2) of the pale
     atmosphere, Global Biochem.Changes, 6:312-315.
    130. Christensen B T.1995.Matching measurable soil organic matter fractions with conceptual pools in
     simulation models of carbon turnover: revision of model structure. In: Powlson, D. S. Smith, P. and
     Smith, J.U. (eds), Evaluation of Soil Organic Matter Models, NATOASI Series 1,38:SpeingerVerlag,
     Berlin, pp.143-160.
    131. Cole C V, Cerri C, Minami K, Mosier A, Rosenberg N J and Sauerbeck D.1996.Agricultural options
     for mitigation of greenhouse gas emission, Chapter23,Climate change 1995: Impacts Adaptations and
     Mitigation of Climate Change,pp.745-771,Report of IPCC Working Group Ⅱ,Cambridge University
     Press, Cambridge, U.K., p.880.
    132. Houghton R A, Skole D L, Carbon. In: The Earth As Transformed by Human Action (eds Turner B L,
    
    
    参考文献 95
     Clark W C, Kater R Wetal). Cambridge University Press, 1990. 393~408.
    133. Manabe S, Tang W and Fu L L.Century.1993 Scale effects of increased atmospheric CO2 on the ocea-
     atmosphere system. Nature, 364:215-218.
    134. Marl and G, Brenkert A and Olivier J G J.1999.CO2 form fossil fuel burning: a comparison of ORNL
     and EDGAR estimates of national emissions. Environmental Science and Policy, In press.
    135. Mathes K and Secondary TH.1985.Soil respiration during secondary sussession influences of
     temperature and moisture Soil Biol. Biochem, 17(2): 205- 211.
    136. Mc Claugherty C A, Pastor J, Aber J D and Melillo J M.1985.Forest litter decomposition in relation to
     soil nitrogen dynamics and litter quality. Ecology, 66:266-275.
    137. Mccarrthy J L, Brewer P G and Feldman G.1986.Global ocean flux. Oceanus, 29(4):16-26.
    138. Mchale P J, Mitchell M J and Bowles F P .1998.Soil warming in a northen hardwood forest: trace gas
     fluxes and leaf litter decomposition. Canadian Journal of Forest Research, 28:1365-1372.
    139. Menzel A and Fabian P.1999.Growing season extended in Europe. Nature, 397:659.
    140. Moina J A E, Clapp C E, shaffeer M J, Chichester F W and Larson W E .1983.NCSOIL, a model of
     nitrogen and carbon transformations in soil : description, calibration, and behavior. Soil Science.
     Society of America Journal, 47:85-91.
    141. Myneni R B, keeling C D, Tucker C J, Asrar G and Nemani R R.1997.Increased Plant growth in the
     northern high latitudes form 1981to 1991.Nature, 386:698-702.
    142. Nakane K, Tsubota H and yamamoto.1984.Cycling of soil carbon in a Japanese Red Pine Forest I.
     Before a clear-felling. Botany Managemeut, 97:39-60.
    143. Niklinska M, Maryanski M and laskowski R.1999.Effect of temperature on humus respiration rate and
     nitrogen mineralization: implication for global climate change. Biogeochemistry, 44:239-257.
    144. Oughton R A, Skole D L, Carbon. In: The Earth As Transformed by Human Action (eds Turner B L,
     Clark W C, Kater R Wetal ). Cambridge University Press, 1990.393~408.
    145. Parton W J and Rasmussen PE.1994.Long-term effects of crop management in wheat fallow:
     CENTURY model simulations, Soil Science Society of America Journal, 58:530-536.
    146. Parton W J, Persson J and Anderson D W.1983.Simulation of organic matter changes in Swedish soils.
     In : Lauenroth W K, Skogerboe G V and Flug M,(Eds.), Elsevier , Amsterboe G V and Flug
     M,(Eds.), Elsevier, Amsterdam,511-516.
    147. Pieter P T and Peter S B.1995. 气侯变化与二氧化碳永恒.AMBIO, 24(6): 375-377.
    148. Post W M , Izaurralde R C, Mann L K and BIlls N.1998.Monitoring and verifying soil organic Carbon
     sequestration. In: Rosenberg N, Izaurralde RC, Malone EL, (Eds.), Carbon sequestration in
     soil .Columbus: battelle Press,41-66.
    149. Post W M, Emanuel W R and Zinke P J, Stangenberger AG.1982.Soil carbon pools and life zones.
     Nature, 298:156-159.
    
    
    96 干旱地区陆地生态系统碳循环规律研究
    150. Post W M, Emanuel W R, Zinke P Jetal. Soil carbon Pools and life zones, Nature, 1982, 298,
     156~159.
    151. Post W M, Peng T H, Emanuel W Retal. The Global Carbon Cycle. American Scientist, 1990, 78:
     310~326.
    152. Post W M, Peng T H, Emanuell W R, King A W, Date V H and DeAngelis DL.1990.The Global
     carbon Cycle .American Scientist,78:310-326.
    153. Powlson D S and Jenkinson D S.1976.The effect of biotical treatment on metabolism in soil II. Gama
     irradiation, autoclaving, air-drying and fumigation. Soil Biology and Biochemistry,8:179-188.
    154. Prentice I C, Farquar G D, Fasham M J R, oulden M L, Heimann M, Jaramillo V J, Kheshgi H S, Le
     quere C, Scholes R J and Wallace D W R.2001.In: Houghton J T and Yihui D (Eds.), Climate
     Chang 2001:the scientific basis. The Intergovernmental Panel on Climate Chang (IPCC) third
     assessment report. Cambridge University Press, Cambridge, U K,183-237.
    155. Prentice K C and Fung I Y .1990.The sensitivity of terrestrial carbon storage to climate change. Nature,
     46:48-51.
    156. Radke J K, Shaffer M J and Saponara J.1991.Application of the
     Nitrogen-Tillage-Residue-Management (NTRM) model to low-input and conventional agricultural
     systems. Ecological Modeling, 55:241-255.
    157. Raich J W and Potter C S.1995.Global Patterns of carbon dioxide emissions form soil, Global
     Biogechemical Cycles, 9(1): 23-36.
    158. Raich J W and Schelesinger W H.1992.The global carbon dioxide flux in soil respiration and its
     relationship to vegetation and climate. Tellus, 44B: 81-99.
    159. Ramankutty N and Foley J A.1999.EStimating historical changes in global land cover: Croplands
     form1700 to 1992.Global Biogeochemical Cycles, 13:997-1027.
    160. Ramankutty N, Foley J A.1998.Characterizin patterns of global land use: An analysis of global
     croplands date. Global Biogeochemical Cycles, 12:667-685.
    161. Randerson J T, Thompson M V, Conway TJ, Fung I Y and Field C B.1997.The contribution of
     terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global
     Biogeochemical. Cycles, 11:535-560.
    162. Ritchie J T, Godwin D C and Otter-Nacke S.1986.CERES-Wheat:A Simulation Model of Wheat
     Growth and .Department, CERES Model Description .Department of Crop and Soil Science,
     Michigan Sate University, Easst Lansing.
    163. Rodhe H, Charlson R and CraWford E.1997.Svante Arrhenius and the Ereenhouse Effect. AMBIO,
     26(1): 2-5.
    164. Rojas K W, Ma L, Hanson J D and Ahuja L R. 2000.RZWQM98 Use Guide .In : Ahuja L R, RojasK W,
     Hanson J D, Shanffer M J and Ma L,(Eds.),Root Zone Water Resources Publication LLC, Highands
    
    
    参考文献 97
     Ranch, CO,327-364.
    165. Sarmiento J L and Orr J C.1992.A perturation simulation of CO2 uptake in an ocean general
     circulation model. Journal of Geophysical, 97:3621-3645.
    166. Schimel D S .1995.Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1:77-91.
    167. Schimel D S Brawell B H, Mckeown R, Ojima DS, Parton W J and Pulliam W.1996.Climate and
     nitrogen controls on the geography and timescales of terrestrial biogeochemical cycles, 10:677-692.
    168. Schmel D S, Brown V B, Hibbard K A, Lund C P and Archer S .1995.Aggretation of species
     properties in biogeochemical models: an experimental approach. In: Jones C G, Lawson J H J.H.
     Lawson, (Eds.), Ling Species and ecosystems. Chapman and Hall. New Youk, U.S.A.209-214
    169. Schuze E and Heimann M.1998.Carbon and water exchange of terrestrial ecosystems. In the context of
     global change. Cambridge University Press, Cambridge.
    170. Schuze E, Wirth C and Heimann M.2000.Managing Forest After Kyoto. Science, 289:2058-2059.
    171. Semenov S M, Kounina I M and Koukhta B A.1998.An ecological analysis of anthropogenic changes
     in ground –level concentrations of O3, SO2, and CO2 in Europe. Do lady Biological Sciences,
     361:344-347.
    172. Semenov S M, Kounina I M and Koukhta B A.1999.Tropospheric ozone and plant growth in Europe.
     Meteorology and Hydrology Publishing Center, Moscow, Russia, 208(in Russian).
    173. Shaffer M J and Ma L.2001.Carbon and nitrogen dynamics in upland soils. In: Shaffer M J, Ma L
     and Hansed S (eds.), modeling Carbon and Nitrogen Dynamical for Soil. In: Shaffer M J, Ma L and
     Nitrogen Dynamics for soil Management. Lewis Publishers, Boca Raton, FL, 1-10.
    174. Shaffer M J, Bartling P N S and Ascough Ⅱ J C.2000a.Object-oriented simulation of integrated
     whole farms: GPFARM framework. Computers and Electronics in Agriculture, 28:29-49.
    175. Shaffer M J, Larson WE.1987.A soil-Crop Simulation Model for nitrogen, Tillage, and Crop Residue
     Management. U S. Department of Agriculture, Conservation Research Report, No: 34-1:103.
    176. Shaffer M J, Rojas K, DeCoursey D G and Hebson C S.2000b.Nutrient Chemsitry Processes-OMNI.
     In root Zone Water Quality Model. Water Resources Public Inc., Englewood, CO, chap. 5:119-144.
    177. Shen S M, Pruden G and Jenkinson D S.1984.Mineralization and immobilization of nitrogen in
     fumigated soil and the measurement of microbial biomass nitrogen. Biology and Biochemisty,
     16(5):437-444.Siegenthaler U, Sarmiento J L.1993.Atmopheric carbon dioxide and the
     ocean.Nature,365:119-125.
    178. Siegenthaler U Oeschger H.1987. Biospheric CO2 emissions during the past 200 yeaes reconstructed
     by disconsolation of ice core data. Tell us, 39B: 140-154.
    179. Siegenthaler U, joos F .1992.Use of a simple model for studying oceanic tracer distributions and the
     global carbon cycle, Talus, 44B: 186-207.
    180. Smith T M, Shugart H H, Bonan G B and Simith J B.1992.Modeling the potential response of
    
    
    98 干旱地区陆地生态系统碳循环规律研究
     vegetation to global Climate Change: The Ecological consequences. Academic Press, London, 93-116.
    181. Sombroke W G, Nachtergaele F O, Hebel A.1993.Amount, dynamics and sequestering of carbon in
     tropical and subtropical soils. AMBIO, 22(7): 417-426.
    182. Sundquist E t.1993. The global carbon dioxide budget. Science, 259:934-941.
    183. Swft M J, Heal O W and Anderson J M.1979. Decomposition in terrestrial ecosystem. University of
     California Press, Berkeley, Calidornia, USA.
    184. Tain H, MelilloJ, Kicklighter D, McGuire A D, Hellfrich J, Moore IIIB and Vorosmarty C.1998.Effect
     of internal climate variability on carbon storage in Amazonian ecosystems. Nature, 396:664-667.
    185. Takahashi T, Goddard D and Suther land, D W.1986.Sessonal and geographic variability of carbon
     dioxide sink /source in the oceanic areas. Journal of Geophysical Research, 91:10 517-10 527.
    186. Tans P , Fung I Y and Takahashi T.1990.Obervational constraints on the global; atmospheric carbon
     dioxide budget. Science, 247:1431-1438.
    187. Tans P and Wallace D WR.1999.Carbon cycle research after Kyoto. Tellus, 51B: 562-571.
    188. Tans P . Conway T J and Nakazawa T.1989.Latitudinal distribution of the source and sinks of
     atmospheric carbon dioxide derived form surface observations and an atmospheric transport model.
     Journal of Geophysical Resrarch, 94:5151-5173.
    189. Waring R H, Schlesinger W H.1985.Forest ecosystems: concepts and management. Academic Press,
     New York, USA.
    190. Watson R T, Rodhe H, Oeschger H and Siegenthaler U. Greenhous gases and aerosols, In: Houghton
     JT, Jenkins G J and Ephraums J (Eds.), Climate Change (IPPC) Scientific Assessment, Cambridge
     University Press, 1990,1-40.