调亏灌溉对大豆生理、生态特征及产量品质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调亏灌溉作为一种新型的灌溉理论,与传统灌溉概念的区别在于根据作物的遗传和生态特性,在作物生长的某一适当阶段,人为主动地对其施加一定程度的水分胁迫,通过作物自身的变化实现高水分利用率。同时调控光合产物在营养器官和生殖器官之间的分配比例,提高其经济价值。
    黑龙江省已被农业部列入“大豆振兴计划”的示范区之一,推行大豆专一品种区域规模种植。但黑龙江省由于降水时空分布不均及春夏旱频繁的原因,使大豆的产量、品质受到了影响,难以应对激烈的市场竞争。本试验通过对水量的调控,研究了调亏灌溉的时期、强度和方式对于大豆的影响,以及补偿效应的产生、作用规律等,以期为大豆生产中水分的合理利用及品质的改善提供理论依据。通过本试验得到了以下结论。
    1 调亏灌溉对大豆生长指标的影响:(1)对株高的影响:苗期、开花期的适度调亏,显著降低了大豆的株高。在恢复供水后大豆株高出现快速增长现象。中、重度水分胁迫处理在恢复供水后株高的日增长量高于轻度处理。(2)对干物重的影响:水分胁迫处理显著降低了大豆的干物重。恢复正常灌溉后,大豆干物重和荚重的日增加量高于对照,表现出补偿效应。鼓粒期的水分胁迫处理推迟了大豆干物重增长的时间。(3)对根冠比的影响:苗期和开花期的水分胁迫处理使大豆的根冠比增大,但在鼓粒期大豆根冠比的变化是先增大后减小。
    2 调亏灌溉对大豆生理指标的影响:(1)对根活力的影响:苗期和开花期调亏处理对大豆的根活力影响较大。大豆根活力随控水强度的增大而增强。对照根活力下降的速度高于水分胁迫处理。(2)对叶绿素含量的影响:水分胁迫时间的延长及强度的增大使大豆的叶绿素含量增加。恢复供水后,大豆的叶绿素含量有降低的趋势,但与对照相比无显著差异。
    3 调亏灌溉对大豆产量的影响。苗期和开花期水分胁迫处理对大豆产量影响不大。东农42鼓粒期轻度处理和东农163开花期轻度处理的大豆产量略高于对照。
    4 调亏灌溉对大豆品质的影响。调亏处理显著增加了东农42的脂肪含量和东农163的蛋白质含量,但对东农42的蛋白质含量和东农163的脂肪含量无显著影响。
As a new irrigation theory, regulated deficit irrigation (RDI) was different from traditional irrigation ones. According to genetic and ecological characteristic of crops, deficit water supply at a certain extent could be imposed on them in a proper stage, and they would increase the Water Use Efficiency (WUE) through improving themselves. It also could regulate the ratio between nutrient organs and procreation organs, and increased their economic values.
    Heilongjiang province had been authorized by agricultural ministry to become a example for the plan to improve soybean production, and pushed large-scale territorial planting for single variety. But the yield and quality of soybean in Heilongjiang province were affected by odds of precipitation in time and space and frequent drought in spring or summer, and difficult to cope with others in drastic market competition. This experiment had studied on the effect of stage, intensity and measure of RDI on soybean by controlling irrigation, and occurrence, effect rules of compensative effects to offer academic arguments for making use of water reasonably and improving quality of soybean. The experiment drawed conclusions as follows:
    1 Effect of Regulated Deficit Irrigation on growing indexes of soybean. (1)On plant height: Moderate water stress treatments declined the plant height of soybean significantly in seedling stage and blooming stage. The plant height of soybean grew quickly after resuming water supply. When moderate and high water stress treatments restarted water supply, day increasement of theirs are more than that of light water stress treatments. (2)On root/shoot ratios: Water stress treatments in seedlings and blooming stage increased the root/shoot ratio of soybean, but change of root/shoot ratio of soybean in pod-filling stage increased firstly, and then decreased. (3)On dry matter: Water stress treatments declined the dry matter of soybean significantly. Day increasement of the dry matter and pod weight were more than that of check treatment after resuming normal irrigation, which showed compensative effects. Water stress treatments in pod-filling stage deferred the growing period of dry matter.
    2 Effect of Regulated Deficit Irrigation on physiological indexes of soybean. (1)On root vitality: The treatments of Regulated Deficit Irrigation had strong effect on root vitality of soybean. The root vitality of soybean increased with augment of intensity of water stress treatments. The declining rate of root vitality for check treatment was higher than that of water stress treatments. (2)On chlorophyll: Prolonging time and augment of intensity for water stress increased chlorophyll content of soybean. Chlorophyll content of soybean tended to decline after resuming water supply, but it showed no difference significantly comparison with check treatment.
    3 Effect of Regulated Deficit Irrigation on yield of soybean: The water stress treatments in seedling stage and flowering stage had no obvious effect on yield of soybean. The yields of light treatment of Dongnong42 in pod-filling stage and of Dongnong163 in flowering stage were higher than that of check treatment.
    4 Effect of Regulated Deficit Irrigation on quality of soybean: The treatments of Regulated Deficit Irrigation increased the fat content of Dongnong42 and protein content of Dongnong163 significantly, but had no significant effect on protein content of Dongnong42 and fat content of Dongnong163.
    
    
    
    
引文
蔡焕杰,邵光成,张振华. 不同水分处理对膜下滴灌棉花生理指标及产量的影响[J].西北农林科技大学学报(自然科学版),2002,30(4):29~32
    蔡焕杰,康绍忠,张振华,柴红敏,胡笑涛,王健. 作物调亏灌溉的适宜时间与调亏程度的研究[J]. 农业工程学报,2000,16(3):24~27
    陈晓远,罗远培. 开花期复水对受旱冬小麦的补偿效应研究[J]. 作物学报,2001,27(4):512~516
    陈玉民,孙景生,肖俊夫. 节水灌溉的土壤水分控制标准问题研究[J]. 灌溉排水,1997,16(1):24~28
    邓西平. 渭北地区冬小麦的有限灌溉与水分利用研究[J]. 水土保持研究,1999,6(1):41~46
    高向阳,杨根平,许志强,徐凤彩. 水分胁迫下钙对大豆膜脂过氧化保护酶系统的影响[J]. 华南农业大学学报,1999,20(2):7~12
    郭相平,康绍忠,索丽生. 苗期调亏处理对玉米根系生长影响的试验研究[J]. 灌溉排水,2001,20(1):25~27
    郭相平,康绍忠,索丽生. 苗期调亏处理对玉米根系生长影响的试验研究[J]. 灌溉排水,2001,20(1):25~27
    郭相平,康绍忠. 调亏灌溉—节水灌溉的新思路[J]. 西北水资源与水工程,1998,9(4):22~25
    郭相平,康绍忠. 玉米调亏灌溉的后效性[J]. 农业工程学报,2000,16(4):58~60
    郝瑞莲,张全民,韩英. 土壤水份胁迫对夏大豆养分吸收及产量影响的研究[J]. 大豆通报,1998,4:12
    何剑中,王焕校. 弱光和水分胁迫下大豆气孔对湿度变化的响应[J]. 云南大学学报,1997,19(4):421~425
    胡笑涛,梁宗锁,康绍忠,蔡焕杰. 模拟调亏灌溉对玉米根系生长及水分利用效率的影响[J]. 灌溉排水,1998,17(2):11~15
    金平. 有机肥对水分胁迫下大豆几种生理指标和茎叶组织超微结构的影响[J]. 大豆科学,1997,16(1):76~79
    景蕊莲,胡荣海. 作物抗旱性的根系研究[J]. 国外农学,1995,3:37~39
    康绍忠,史文娟,胡笑涛,梁银丽. 调亏灌溉对于玉米生理指标及水分利用效率的影响[J]. 农业工程学报,1998,4:82~87
    李光华,安顺清,林日暖. 夏大豆与水分关系试验研究[J]. 应用气象学报,1995,6:55~61
    李贵全,杜维俊,孔照胜,程舜华,郭显荣. 不同大豆品种抗旱生理生态的研究[J]. 山西农业大学学报,2000,20(3):197~200
    李跃强,盛承发. 植物超补偿效应[J]. 植物生理学通讯,1996,32(6):457~464
    梁森,韩莉,李慧娴,连伟. 水稻旱作栽培方式及调亏灌溉指标试验研究[J]. 干旱
    
    
    地区农业研究,2002,20(2):13~19
    林琪,石岩,位东斌. 土壤水与冬小麦产量形成的关系及节水灌溉方案[J]. 华北农学报,1998,13(3):1~4
    刘安能,孟兆江. 玉米调亏灌溉效应及其优化农艺措施[J]. 农业工程学报,1999,15(3):107~112
    孟凯,张兴义. 东北北部黑土区大豆耗水特征的研究[J]. 大豆科学,1997,16(3):274~276
    孟兆江,刘安能,庞鸿宾,王和洲,贾大林. 夏玉米调亏灌溉的生理机制与指标研究[J]. 农业工程学报,1998,4:88~92
    慕自新,梁宗锁,张岁岐. 土壤干湿交替下作物补偿生长的生理基础及其在农业中的应用[J]. 植物生理学通讯,2002, 38(5):511~516
    山仑. 旱地农业技术发展趋向[J]. 中国农业科学,2002,35(7):848~855
    史文娟,胡笑涛,康绍忠. 干旱缺水条件下作物调亏灌溉技术研究状况与展望[J]. 干旱地区农业研究,1998,16(2):84~88
    汤莹,郭永杰,蔡得荣. 调亏灌溉对河西绿洲春小麦生长发育和产量的影响[J]. 甘肃农业科技,2002,6:22~25
    王晶英,殷奎德,李国兰,杨方人,李秀文. 大豆伤根补偿效应及内源激素变化的研究[J]. 黑龙江八一农垦大学学报,1996,8(4):31~35
    王延宇,王鑫,赵淑梅. 大豆丰产节水灌溉技术[J]. 吉林农业科学,1998,4:44~48
    魏虹,林魁,李凤民,张荣,原保忠. 有限灌溉对半干旱区春小麦根系发育的影响[J]. 植物生态学报,2000,24(1):106~110
    吴旭红,王玉梅,张百忱. 不同品种大豆幼苗抗旱性的研究初报[J]. 齐齐哈尔师范学院学报,1996,16(4):54~58
    谢甫绨,董钻,孙艳环,王晓光. 不同生育时期干旱对大豆生长和产量的影响[J]. 沈阳农业大学学报,1994,25(1):13~16
    徐淑琴,宋军,吴砚. 大豆需水规律及喷灌模式探讨[J]. 节水灌溉,2003,3:23~25
    杨鹏辉,李贵全,郭丽,吴慎杰. 干旱胁迫对不同抗旱大豆品种花荚期质膜透性的影响[J]. 干旱地区农业研究,2003,21(3):127~130
    杨庆凯. 论大豆蛋白质与油分含量品质的变化及影响的因素[J]. 大豆科学.2000,16(4):386~391
    于佩锋,程哲. 大豆花荚脱落的原因及防止措施[J]. 作物栽培,2003,7:14~15
    曾得超,彼得·杰里编著. 果树调亏灌溉密植节水增产技术研究与开发[M]. 北京:北京农业大学出版社,1994:5~6,13~14
    张岁岐,山仑,薛青武. 氮磷营养对小麦水分关系的影响[J]. 植物营养与肥料学报,2000,6(2):147~151
    张喜英,由懋正,王新元. 不同时期水分调亏及不同调亏程度对冬小麦产量的影响[J]. 华北农学报,1999,14(2):1~5
    赵丽英,邓西平,山仑. 开花前后变水条件对春小麦的补偿效应[J]. 应用与环境生
    
    
    物学报.2002,8(5): 478~481
    邹琦,孙广玉,王滔. 干旱条件下大豆叶水分状况与渗透调节[J]. 大豆科学,1994,13(4):312~320
    Smiciklas.K.D等. 水分胁迫和豆荚位置对大豆种子质量的影响[J]. 国外农学-大豆,程兵译1994,(1):31~32.
    Acevedo E, Hsiao T C, Henderson D W. Immediate and subsequent growth responses of maize leaves to changes in water stress[J]. Plant Physiol, 1971, 48: 631~636
    Annandale J.G,Campbell G.S,Olivier F.C,Jovanovic N.Z. Predicting crop water uptake under full and deficit irrigation: An example using pea ( Pisum sativumL. cv. Puget)[J]. Irrig. Sci, 2000, 19: 65~72
    Anne-Maree, Boland, etc. The effect of regulated deficit irrigation on tree water use and growth of peach[J]. Journal of Horti cultural Science, 1993, 68(2): 261~264
    Bastiaanssen W.G, Bandara K.M. Evaporative depletion assessments for irrigated watersheds in Sri Lanka[J]. Irrig Sci, 2001, 21: 1~15
    Blackman P G, Davies W J. Root to shoot communication in maize plants of the effects of soil drying[J]. J Exp Bot, 1985, 36: 39~48
    Bruce D.L, Kenneth A.S, Stephen M.S, William H.O. Deficit irrigation strategies using midday stem water potential in prune[J]. Irrigation Sci, 2001, 20: 47~54
    Chalmers D J and B van den Ende. Productivity of peach trees factors affecting dry-weight distribution during tree growth[J]. Ann Bot, 1975, 39: 423~432
    Chalmers D J and Wilson I B. Productivity of peach trees: tree growth and water stress in relation to fruit growth and assimilate demand[J]. Ann Bot, 1978, 42: 285~294
    Chalmers D J, Burge P H, Mitchell P D. The mechanism of regulation of ‘Bartlett’ pear fruit and vegetative growth by irrigation withholding and regulated deficit irrigation[J]. Journal of the American Society for Horticultural Science, 1986, 11(6): 944~947
    Chalmers D J, Mitchell P D, Jerie P H. The physiology of growth control of perch an pear trees using reduced irrigation[J]. Acta Horticulture, 1984, 146: 143~148
    Domingo R, Ruiz-Sánchez, Sánchez-Blanco M J, Torrecillas A. Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation[J]. Irrig Sci, 1996, 16: 115~123
    Fábio M. D, Rodolfo A. L, Emerson A. S, Marcelo E. L. Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffee canephora Pierre[J]. Trees, 2002, 16: 555~558
    Ghahraman B, Sepaskhah A.R. Use of a water deficit sensitivity index for partial irrigation scheduling of wheat and barley[J]. Irrig Sci, 1997, 18: 11~16
    Harris. A possible explanation of plant yield increases following insect damage[J]. Agro-Ecosystems, 1974, 1: 219~225
    Hsiao T C et al. Maize leaf elongation: continuous measurement and close dependence
    
    
    on plant water status[J]. Science, 1970, 48: 631~636
    Hudak C M, Patterson R P. Vegetative growth analysis of a drought-resistant soybean plant introduction[J]. Crop Sci, 1995, 35: 464~471
    Jonse M M, Turner N C. Osmotic ajustment in leaves of sorghum in response to water deficits[J]. Plant Physiol, 1978, 61: 122
    Lalonde S, Beebe D U, Saini H S. Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit[J]. Sex Plant Repeod, 1997, 10: 40~48
    LiS-H, Huguet J-G, Schoch P G,etal. Response of peach tree growth and cropping to soil water deficit at various phenological stages of fruit development[J]. J Hortic Sci, 1989, 64: 541~552
    Mateos L. Assessing whole-field uniformity of stationary sprinkler irrigation systems[J]. Irrig Sci, 1998, 18: 73~81
    Patterson R P. Growth and specific nodule activity of soybean during application and recovery of leaf moisture stress[J]. Plant Physiol, 1979, 64: 551~556
    Rawson H M, Turner N C. Irrigation timing and relationship between leaf area and yield in sunflowers[J]. IrriSci, 1983, 4: 167~175
    Ray N G, George J F. Introductory plant physiology[M]. New Jersey: Prentice-Hall INC Engle-wood, 1976: 414~456
    Razi H, Assad M T. Comparison of selection criteria in normal and limited irrigation in sunflower[J]. Kluwer Academic Publishers, 1999, 105: 83~90
    Stanhill G. Irrigation in Israel: past achievements, present challenges and future possibilities[J]. Water Use Efficiency in Agriculture. Rehovot, Israel. Priel Publishers, 1992: 63~77
    Turner N C. Plant water relations and irrigation management[J]. AgriWater Manag, 1990, 17: 59~75
    Vu J C et al. Drought stress and elevated CO2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosyhthetic rates[J]. Plant Physilo, 1987, 83: 573~578