燕麦β-葡聚糖的体内代谢和抗运动疲劳作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燕麦β-葡聚糖具有降低心血管疾病风险的功能特性,但对燕麦β-葡聚糖的药代动力学特性和抗疲劳功能特性尚不清楚。本试验从定莜四号裸燕麦麸皮中制备燕麦β-葡聚糖,对其纯度、分子量大小、结构进行了鉴定;利用异硫氰酸荧光素标记β-葡聚糖,探索其在大鼠体内代谢、组织分布和排泄状况;利用Trolox当量的方法评价燕麦β-葡聚糖(OG)和荧光标记燕麦β-葡聚糖(OG-FITC)在体外的抗氧化能力;利用大鼠的耐力训练动物模型,评价燕麦β-葡聚糖的抗疲劳作用及对运动疲劳的防护机制。本研究取得以下主要结果:
     (1)燕麦麸皮利用碱提酸沉、酶法去杂和去离子水透析相结合,经冷冻干燥制备的燕麦β-葡聚糖样品的得率为8.22%,提取率为77.40%,纯度为92.58%,重均分子量为1.92×105Da。红外吸收光谱(Fourier Translation Infrared spectroscopy,FTIR)分析表明所得样品具有燕麦β-葡聚糖的特有结构。
     (2)利用异硫氰酸荧光素(FITC)与燕麦β-葡聚糖(OG)分子之间的共价偶联,成功地得到了含有荧光因子FITC的荧光标记燕麦β-葡聚糖(OG-FITC)。OG-FITC为橙红色粉末状固体,与OG具有相同的溶解性; OG-FITC中FITC的取代度为0.68%;OG和OG-FITC的重均分子量(Mw)分别为192.2kDa和192.4kDa,表明荧光标记物FITC对OG的分子量影响很小。
     (3)燕麦β-葡聚糖的药代动力学分析表明:大鼠单次灌胃给予300mg/kg OG-FITC,血药浓度—时间曲线数据采用非房室模型计算药代动力学参数,揭示燕麦β-葡聚糖在大鼠体内呈线性动力学特征。燕麦β-葡聚糖在大鼠体内吸收代谢较慢,半衰期较长,生物利用度相对较高。排泄试验表明,燕麦β-葡聚糖在体内代谢吸收时间主要集中在4-10h,且在10h左右排泄速率达到最高,燕麦β-葡聚糖主要以粪便的形式代谢排出体外。
     (4)燕麦β-葡聚糖组织分布试验表明:大鼠单次灌胃给予300mg/kg OG-FITC,灌胃后2h,OG-FITC能分布到所有主要组织中,在胃和肠道中分布最高,在心脏和肝脏组织中也有一定分布;给药后6h,胃和肠道组织中的浓度下降最明显,而在大脑、脾和肌肉中浓度明显上升,表明燕麦葡聚糖在这个阶段主要参与了脾脏和骨骼肌组织的吸收代谢;灌胃后24h,大部分组织中燕麦β-葡聚糖的浓度均明显降低,附睾脂肪中的β-葡聚糖降低不大,可能与脂肪在正常的机体生理活动中较少的参与新陈代谢有关。脑组织中能够检测到大量燕麦β-葡聚糖的存在,表明燕麦β-葡聚糖能够穿过血脑屏障,参与大脑的神经调控。
     (5)燕麦β-葡聚糖的耐力运动评价结果表明:与对照组(NC)相比,燕麦β-葡聚糖组(OG)可以极显著增加大鼠的力竭跑步时间,降低血清尿素氮水平、血清肌酸激酶活力(P<0.01);显著增加肝脏糖原含量、血清游离脂肪酸含量和乳酸脱氢酶活力,降低血清尿素氮水平(P<0.05)。提示燕麦β-葡聚糖具有显著的抗疲劳特性,与中等强度训练相结合能够更好的增加机体对运动强度的适应性,提高机体耐力,延缓疲劳的发生。
     (6)燕麦β-葡聚糖对运动大鼠体内氧化应激的研究表明:与NC组大鼠相比,燕麦β-葡聚糖显著提高OG组大鼠血清过氧化氢酶活力的作用(P<0.05),极显著提高OG组大鼠骨骼肌组织匀浆的SOD酶活力(P<0.01);显著降低OG组大鼠血清羟自由基的含量(P<0.05),极显著降低OG组大鼠骨骼肌组织匀浆的MDA含量(P<0.01)。燕麦β-葡聚糖具有降低大鼠运动引起的氧化应激程度,减少肝脏和肌肉组织的细胞损伤的作用;与运动训练相结合能更好的增强大鼠机体的抗氧化体系,维持机体的氧化—抗氧化体系的平衡。
     (7)燕麦β-葡聚糖及其荧光标记物的体外抗氧化结果得出:DPPH自由基清除能力分别为33.07μmol TE/g和35.55μmol TE/g,清除羟自由基的能力分别为52.95μmolTE/g和46.45μmol TE/g,抗氧化能力指数分别为35.53μmol TE/g和34.07μmol TE/g。表明燕麦β-葡聚糖及其荧光标记物具有较强的自由基清除能力,两者在自由基清除能力方面不存在显著差异(P>0.05),表明荧光标记对其体外抗氧化特性影响较小。
     (8)综上研究表明,燕麦β-葡聚糖的荧光标记物具有稳定、方便快捷、准确检验生物样本的特性,药代动力学结果揭示其在肝脏、肌肉和脂肪中均有存在;抗疲劳研究提示其可通过直接增加血清游离脂肪酸、肝糖原和肌糖原,参与体内的能量代谢,间接调节乳酸脱氢酶的提高和肌酸激酶的降低,减少乳酸和尿素氮等代谢产物的累积或加速消除;其抗氧化作用能够增加机体抗氧化酶活力的提高和减少脂质过氧化物的产生,提高了机体对氧化应激的适应程度。表明燕麦β-葡聚糖可以直接参与能量代谢和提高机体的抗氧化能力,从而具有提高机体运动耐力,延缓疲劳发生的作用。
Oat β-glucan has the feature of reducing the risk of cardiovascular disease, however, it isnot clear about its metabolic and anti-fatigue effects. In this study, oat β-glucan was isolatedfrom oat bran, which is made from “Ding you si” naked oat. Its purity, molecular weight andstructure were identified. By using fluorescein isothiocyanate labeled β-glucan, itsmetabolism, tissue distribution and excretion in rats were investigated. Also, in vitro anti-oxidant abilities of oat β-glucan(OG)and fluorescent labeling of oat β-glucan(OG-FITC)were evaluated using Trolox equivalent method. Moreover, endurance training model in ratwas used to estimate anti-fatigue effect and the protective mechanism of oat β-glucan. Themain results of this study were obtained as follows:
     (1)Oat β–glucan was isolated from inactivated enzyme oat bran, the sample was madeby the method of alkali dissolution and aci deposition, purified by adding different enzymeand dialysis by deionized water, then freeze dried. The yield of oat β-glucan was8.22%.Extraction rate was77.40%, and the purity was92.58%. The average molecular weight was1.92×105Da. IR analysis showed that the samples had the characteristic structure of oatβ-glucan.
     (2)Oat β-glucan (OG) has been successfully labeled with fluorescein isothiocyanateby the covalent coupling between fluorescein isothiocyanate (FITC) and oat β-glucan.OG-FITC was orange red powder, and had the same solubility as OG; substitution degree ofFITC in OG-FITC was0.68%. The average molecular weight (Mw) weight of OG andOG-FITC were192.2kDa and192.4kDa, respectively, suggesting that fluorescence markerFITC had little effect on the molecular weight of OG.
     (3)Study on pharmacokinetics of oat β-glucan showed that: After rats were orallyadministered with300mg/mg OG-FITC, plasma concentration-time data was used to do thecalculation of pharmacokinetic parameters by using a compartmental model. Results showedthat oat β-glucan in rats were metabolized slowly, and had longer absorption half-life andhigher bioavailability. Oat β-glucan was mainly metabolized in the4-10h, and the excretionrate reached the highest around10h. Oat β-glucan was mainly excreted from feces after oraladministration.
     (4)Results on tissue distribution indicated that: OG-FITC was widely distributed totissues of most organs in rats2h after intravenous administration of300mg/kgOG-FITC.The concentration in stomach and intestine plasma was the most highest in alltissues, and also was abundant in liver and heart.The concentration in stomach and intestinedegraded rapidly after6h,and increased rapidly in brain, spleen, and skeletal muscle,suggesting that oat β-glucan was involved mainly in the spleen and skeletal musclemetabolism. For most tissues,oat β-glucan concentrations had significantly decreased in24hafter oral administration, while the oat β-glucan concentration in fat was not decreasedsignificantly. This may be associated with the fact that fat was less participated in metabolism.β-Glucan was also be detected in brain,which means β-glucan could cross the blood brainbarrier and participate in the brain's neural regulation.
     (5)Evaluation on anti-fatigue effect of oat β-glucan suggested that: Compared withcontrol group (NC), oat β-glucan group (OG) could increase the exhaustive running time,and reduce serum urea nitrogen and serum creatine kinase of rats significantly (P <0.01).Also, it could increase the liver glycogen contents, serum free fatty acid content and lactatedehydrogenase enzyme activity, and reduce serum urea nitrogen levels significantly (P <0.05). Results showed that oat β-glucan has significant anti-fatigue properties, by combinedwith oat β-glucan and moderate intensity training, it could improve the body's endurance,delay fatigue.
     (6)Research on antioxidantive of oat β-glucan in vitro and in vivo showed that: Oatβ-glucan has strong antioxidant properties in vitro, which can effectively scaveng DPPH,Hydroxyl free radical, and owned higher oxygen radical absorbing capacities compared withTrolox. The results also showed that the antioxidant properties of β-glucan after fluorescentlabeling treatment did not change significantly. Results in vivo indicated that Oat β-glucancould reduce exercise-induced oxidative stress levels, and decrease cell injury of liver andmuscle tissue in rat model. Compared with the NC group, oat β-glucan treatment (OG)could enhance serum catalase activity significantly (P <0.05), increase SOD activity ofskeletal muscle homogenates significantly (P <0.01); and reduce serum hydroxyl radicalcontent (P <0.05) and MDA content in skeletal muscle homogenates significantly (P <0.01). Oat β-glucan combined with exercise training could reduce exercise-induced oxidativestress levels and decrease cell injury of liver and muscle tissue much better than β-glucanalone in rats.
     (7)All in all, OG-FITC has excellent properties on stability, effective and exactlyinspection in biology sample test. First, study on pharmacokinetics showed that oat β-glucancan distribute in liver, skeletal muscle and epididymis fat. Second, research on anti-fatigue indicated that oat β-glucan can directly supply energy by improving the content of glycogenin liver and skeletal muscle and serum free fatty acid, and indirecty reduce/remove harmfulmetabolites such as decrease the lactid acid in serum by improve the activity of lacticdehydrogenase and reduce the content of urea nitrogen in serum. Third, the antioxidant of oatβ-glucan can improve adaptment of body on exercise induced oxidative stress, by increase theactivity of antioxidant enzyme and decrease the production of lipid peroxide. In conclusion,oat β-glucan could significantly enhance exercise capacity and prolong occurance ofexercise-induced-fatigue by directly engage in energetic metabolism and improve antioxidantcapacity of rats.
引文
爱迪,凯志华.1998.氧自由基-疾病和衰老[J].自由基生命科学进展,(1):36-37.
    毕秋芸,彭莉,王启荣.2006.递增负荷训练后大鼠血清CK及其同工酶, LDH, ALT, AST活性变化.中国运动医学杂志,25(5):593-595.
    鲍敏,罗桂花,曾阳,陈振宁,陈志,王勤.2006.藏药翁布对运动小鼠超氧化物歧化酶活性及脂质过氧化作用的影响.中成药,27(11):1348-1350.
    程超,李伟.2006.几种植物水溶性多糖的体外抗氧化作用.食品工业科技,27(9):63-65.
    陈中举,张燕玲,黄金瑛,李忠信.2005.荧光标记生物大分子及其应用.国外医学:生物医学工程分册,27(6):348-352.
    董吉林,申瑞玲.2005.裸燕麦麸皮的营养组成分析及β-葡聚糖的提取.山西农业大学学报:自然科学版,25(001):70-73.
    董吉林,郑坚强,申瑞玲.2007.燕麦β-葡聚糖的黏性及其在冰淇淋中的应用.食品研究与开发,28(7):193-196.
    董吉林,陈明,申瑞玲,刘延奇.2011.燕麦β-葡聚糖对STZ致Ⅱ型糖尿病小鼠胰岛素抵抗的影响.郑州轻工业学院学报:自然科学版,26(2):5-8.
    杜亚军.2006a.燕麦膳食纤维咀嚼片的工艺研究.粮油食品科技,14(5):37-38.
    杜亚军.2006b.燕麦膳食纤维汉堡肉饼的研制.肉类工业,(1):29-31.
    杜亚军,贾玉.2004.燕麦膳食纤维在蛋糕中的应用.粮油食品科技,12(006):7-8.
    段中华,乔有明.2007.不同因子对燕麦β-葡聚糖提取纯度影响的研究.食品科技,32(8):122-126.
    范妮.2007.壳聚糖—海藻酸盐微球荧光标记反应研究[D]:西北大学.
    冯炜权,谢敏豪,王香生.2006.运动生物化学研究进展:北京体育大学出版社.
    高瞩,姚慧源,郭贯新.2001.燕麦可溶性膳食纤维降糖机理的初步探讨.粮食与饲料工业,23(2):47-48.
    高旭,李丽芬,刘斌钰.2010.黄芪多糖对小鼠应激能力和自由基代谢的影响.中国预防医学杂志,(2):120-121.
    顾芳,秦宜德,董华胜,李素萍,刘慧,袁斌.2006.乳源免疫调节肽对小鼠抗氧化和抗疲劳作用研究.营养学报,28(4):326-328.
    管骁,姚惠源.2002.燕麦麸中β-葡聚糖提取工艺的研究.食品科技,1063-65.
    管骁,姚惠源,李景军,徐斐.2009.燕麦β-葡聚糖研究进展.食品科学,30(15):231-237.
    韩丽春,侯金风,纪志华.1993.肉苁蓉对小鼠血清肌酸激酶和骨骼肌超微结构的影响.中国中药杂志,18(12):743-745.
    侯冬岩,回瑞华,刘晓媛,唐蕊,朱永强.2004.荞麦,大麦和燕麦抗氧化性能的比较.食品科学,25(10):54-55.
    黄相国,葛菊梅.2004.燕麦(Avena sativa L.)的营养成分与保健价值探讨.麦类作物学报,24(4):147-149.
    贾建波.2003.燕麦生物乳的研制.食品科学,24(2):79-82.
    江钟立.2004.代谢综合征与运动疗法.中国康复医学杂志,19(4):244-245.
    江钟立,陈家伟,朱红军,张勤,励建安,周士枋.2005.运动和胰岛素对高血糖大鼠骨骼肌JNK和p38信号传导系统的调节作用.中国康复医学杂志,18(2):69-71.
    敬继红.2006.一次性大运动量训练对散手运动员生化指标的监控研究.天津体育学院学报,21(004):346-348.
    梁莹,崔炳群,张素娟.2011.燕麦β-葡聚糖在发酵酸奶中的应用.中国食品添加剂,(1):178-181.
    刘文胜,胡新中,徐超,薛秋梅.2010.不同灭酶处理对燕麦粉品质的影响.麦类作物学报,30(3):564-567.
    刘丽丹,田凤美,刘玉.2009.高血压病患者非药物治疗依从性的研究进展.解放军护理杂志,26(3):36-37.
    胡新中.2005.燕麦食品加工及功能特性研究进展.麦类作物学报,25(5):122-124.
    胡新中,魏益民,任长忠.2009.燕麦品质与加工. M:科学出版社.
    胡新中,罗勤贵,欧阳韶晖,郑建梅,张国权.2006.裸燕麦酶活性抑制方法及品质比较.中国粮油学报,21(5):46-50.
    胡新中.2007.燕麦的酶活性及其食品加工过程中抑制工艺的研究.[D]:[博士学位论文]:西北农林科技大学.
    李长河,修世超,蔡光起.2004.高速超高速磨削工艺及其实现技术.金刚石与磨料磨具工程,(4):16-20.
    李福川,耿美玉,李英霞,李静,苗本春,管华诗.2002.海洋硫酸多糖911的荧光标记研究.高等学校化学学报,23(9):1704-1708.
    栗红瑜,马晓凤,刘森,边俊生,许光映.2008.裸燕麦麸中β-葡聚糖提取工艺的优化.农产品加工.学刊,(5):44-46.
    李清云,王常青.2005.燕麦纤维对糖耐量和减肥作用研究.山西大学学报:自然科学版,28(4):421-424.
    李万坤,闫鸿斌,才学鹏,郭福存.2007. β-葡聚糖的免疫增强作用机理研究进展.中国畜牧兽医,34(7):151-155.
    刘刚,刘英,陈季旺,田向东.2009.燕麦淀粉理化性质的研究.中国粮油学报,23(3):86-89.
    刘焕云,李慧荔,温志英.2008.莜麦麸中β-葡聚糖提取工艺的优化.食品科学,29(3):237-240.
    刘亚伟,食品工业.2001.淀粉生产及其深加工技术:中国轻工业出版社.
    宁鸿珍,齐啸,贾春媚,刘英利,李清钊,陈刚.2008.燕麦β-葡聚糖抗氧化及降血脂作用的研究.食品科技,33(9):153-155.
    欧阳萍.2004.运动性疲劳发生机制及其防治对策.沈阳体育学院学报,23(3):324-326.
    潘妍.2010.生物转化提取燕麦β-葡聚糖及其化妆品功效研究.[D]:北京工商大学.
    潘妍,吴昊.2009.正交优化燕麦β-葡聚糖提取及其分子特性研究.北京工商大学学报:自然科学版,27(005):5-9.
    彭长连,陈少薇,林植芳,林桂珠.2000.用清除有机自由基DPPH法评价植物抗氧化能力.生物化学与生物物理进展,27(6):658-661.
    秦波.2009.燕麦素的生物合成及应用前景.麦类作物学报,29(006):1119-1122.
    曲祥春,何中国,郝文媛,栾天浩,李玉发.2006.我国燕麦生产现状及发展对策.杂粮作物,26(003):233-235.
    阮定国.2012.灌服蜂胶对训练小鼠骨骼肌自由基代谢的影响.韶关学院学报,32(12):63-66.
    申瑞玲,董吉林,李文全.2009.燕麦β-葡聚糖对高脂血症大鼠胆固醇代谢的影响.中国食品学报,9(3):14-19.
    申瑞玲,王章存,姚惠源.2005.燕麦β-葡聚糖对小鼠肠道菌群的影响.食品科学,26(2):208-212.
    申瑞玲,姚惠源.2003.谷物β-葡聚糖的提取和纯化[J].粮食与饲料工业,8019.
    盛伟,方晓阳,吴萍.2008.白灵菇,杏鲍菇,阿魏菇多糖体外抗氧化活性研究.食品工业科技,(5):103-105.
    孙存普,生物学,张建中,段绍瑾,王爱国.1999.自由基生物学导论:中国科学技术大学出版社.
    孙元琳,陕方,赵立平.2012.谷物膳食纤维——戊聚糖与肠道菌群调节研究进展.食品科学,33(09).
    谭萍,方玉梅,王毅红,张春生.2011.苦荞麦多糖的抗氧化作用.食品研究与开发,32(4):5-8.
    王海宽,赵新淮.2001.天然食品对自由基的清除能力.东北农业大学学报,32(2):181-187.
    石碧,狄莹.2000.植物多酚:科学出版社.
    王景梓,徐贵发.2006.单不饱和脂肪酸与冠心病的关系.食品与药品,7(10A):21-23.
    汪海波,刘大川,汪海婴,谢笔钧,崔邦梓.2005.燕麦-葡聚糖对糖尿病大鼠的血糖及糖代谢功能的影响研究.食品科学,26(8).
    汪海波,谢笔钧,刘大川.2004.燕麦中β-葡聚糖及抗氧化成分研究进展.粮食与油脂,(8):16-19.
    王立峰,何荣,袁建,鞠兴荣.2012.薏米中酚类提取物测定及抗氧化能力指数分析.食品科学,33(01).
    王勇,吴鹤群,习雪峰.2010.黄柳菇多糖干预对运动大鼠自由基代谢水平的影响及对骨骼肌保护作用分析.淮北煤炭师范学院学报:自然科学版,31(003):30-33.
    魏决,罗雯,尹洪.2010.燕麦麸皮中β-葡聚糖的提取工艺研究.食品科技,(007):228-231.
    吴成林,高平洋.2003.中药人参对提高大鼠运动能力及抗疲劳的实验研究.四川体育科学,(1):10-10.
    吴风亮,陈卫涛,张若鸿,张柏林.2005.共轭亚油酸的生理功效及其在乳品中的强化途径.中国乳品工业,32(11):24-30.
    熊正英,唐量.2003.芦荟对运动训练小鼠骨骼肌自由基代谢及运动能力的影响.中国运动医学杂志,22(2):182-183.
    徐超.2009.燕麦对小鼠抗疲劳作用研究[D]:[硕士学位论文]:西北农林科技大学.
    徐超,胡新中,罗勤贵,张正茂.2009.燕麦对小鼠抗疲劳作用的研究.中国粮油学报,24(9):36-38.
    许申鸿,杭瑚.2000.一种筛选自由基清除剂的简便方法.中草药,31(2):96-97.
    严明强,张红兵.2008. β-葡聚糖在化妆品中的应用.香料香精化妆品,(6):31-34.
    杨娟,吴谋成.2001.香菇蛋白多糖抗疲劳作用研究.营养学报,23(4):350-353.
    杨卫东,吴晖,赖富饶,陆玲,王蓓蓓,刘志雄.2007.燕麦β-葡聚糖的物理特性和生理功能研究进展[J].现代食品科技,23(8):90-93.
    筱声.2005.燕麦的保健功能.药物与人,14(12):20-21.
    游祖持.2003.日本研制燕麦EX新食品[J].中外食品加工技术,77-8.
    翟爱华,张莉姝,王东.2008.777超声辅助提取燕麦麸皮中β-葡聚糖的工艺研究.黑龙江八一农垦大学学报,20(5):61-64.
    翟凤国,周福波,付惠.2004.蜂花粉抗疲劳作用的实验研究.牡丹江医学院学报,25(5):8-10.
    张东杰,冯昆,张爱武,刘研研.2003.刺五加茶饮料抗疲劳作用的实验研究.营养学报,25(3):309-311.
    张丽萍,翟爱华.2004.燕麦的营养功能特性及综合加工利用.食品与机械,(2):55-57.
    张培培,樊明涛,胡新中,甄红敏,徐超.2010.燕麦全粉和燕麦β-葡聚糖对大鼠生长和血液生化指标的影响.中国粮油学报,(009):27-31.
    张伟敏,钟耕,王炜.2005.单不饱和脂肪酸营养及其生理功能研究概况.粮食与油脂,313-15.
    赵世锋,田长叶,王志刚,李云霞.2008.我国燕麦生产和科研现状及未来发展方向.杂粮作物,27(6):428-431.
    赵文红,邓泽元,范亚苇,李静,阮征.2010.阿魏酸体外抗氧化作用研究.食品科学,31(1):219-223.
    郑建仙.2005.功能型膳食纤维. M:北京:化学工业出版社.
    钟捷,翟祖康.1998.口服葡苷聚糖对短链脂肪酸生成及其结肠细胞增殖的影响.中华消化杂志,18(004):232-234.
    朱红军,江钟立.2005.运动与氧化应激的预适应.中国康复医学杂志,18(2):122-124.
    左绍远.1995.云南产螺旋藻多糖抗氧化抗疲劳作用的实验研究.中国生化药物杂志,16(6):255-258.
    Adlercreutz H, H rk nen M, Kuoppasalmi K, N veri H, Huhtaniemi I, Tikkanen H, Remes K, Dessypris A,Karvonen J.1986. Effect of training on plasma anabolic and catabolic steroid hormones and theirresponse during physical exercise. International Journal of Sports Medicine,727.
    Aguiló A, Tauler P, Fuentespina E, Tur J A, Córdova A, Pons A.2005. Antioxidant response to oxidativestress induced by exhaustive exercise. Physiology&behavior,84(1):1-7.
    Ahlquist L E, Bassett D R, Sufit R, Nagle F J, Thomas D P.1992. The effect of pedaling frequency onglycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cyclingexercise. European journal of applied physiology and occupational physiology,65(4):360-364.
    Ahmad A, Anjum F M, Zahoor T, Nawaz H, Ahmed Z.2010. Extraction and characterization of β-d-glucanfrom oat for industrial utilization. International journal of biological macromolecules,46(3):304-309.man P, Rimsten L, Andersson R.2004. Molecular weight distribution of β-glucan in oat-based foods.Cereal chemistry,81(3):356-360.
    Autio K.1996. Functional aspects of cereal cell wall polysaccharides. FOOD SCIENCE ANDTECHNOLOGY-NEW YORK-MARCEL DEKKER-,227-264.
    Bae I Y, Lee S, Kim S M, Lee H G.2009. Effect of partially hydrolyzed oat [beta]-glucan on the weightgain and lipid profile of mice. Food Hydrocolloids,23(7):2016-2021.
    Balakrishnan S, Anuradha C.1998. Exercise, depletion of antioxidants and antioxidant manipulation. Cellbiochemistry and function,16(4):269-275.
    Barbosa A M, Steluti R M, Dekker R F H, Cardoso M S, Corradi da Silva M.2003. Structuralcharacterization of Botryosphaeran: a (1→3;1→6)-β-d-glucan produced by the ascomyceteousfungus, Botryosphaeria. Carbohydrate research,338(16):1691-1698.
    Battilana P, Ornstein K, Minehira K, Schwarz J, Acheson K, Schneiter P, Burri J, Jequier E, Tappy L.2001.Original Communications-Mechanisms of action of b-glucan in postprandial glucose metabolism inhealthy men. European journal of clinical nutrition,55(5):327-333.
    Beer M U, Arrigoni E, Amado R.1996. Extraction of Oat Gum from Oat Bran: Effects of Process on Yield,Molecular Weight Distribution, Viscosity and (1->3)(1->4)-D-Glucan Content of the Gum. Cerealchemistry,73(1):58-62.
    Beer M U, Wood P J, Weisz J.1997a. Molecular Weight Distribution and (1→3)(1→4)-β-d-GlucanContent of Consecutive Extracts of Various Oat and Barley Cultivars. Cereal chemistry,74(4):476-480.
    Beer M U, Wood P J, Weisz J, Fillion N.1997b. Effect of Cooking and Storage on the Amount andMolecular Weight of (1→3)(1→4)-β-d-Glucan Extracted from Oat Products by an In VitroDigestion System1. Cereal chemistry,74(6):705-709.
    Behall K M, Scholfield D J, Hallfrisch J.2005. Comparison of hormone and glucose responses ofoverweight women to barley and oats. Journal of the American college of nutrition,24(3):182-188.
    Belcastro A N, Bonen A.1975. Lactic acid removal rates during controlled and uncontrolled recoveryexercise. Journal of applied physiology,39(6):932-936.
    Bell S, Goldman V M, Bistrian B R, Arnold A H, Ostroff G, Forse R A.1999. Effect of β-glucan from oatsand yeast on serum lipids. Critical reviews in food science and nutrition,39(2):189-202.
    Belury M A.2002. Dietary Conjugated Linoleic Acid in Health: Physiological Effects and Mechanisms ofAction1. Annual Review of Nutrition,22(1):505-531.
    Bhatty R.1995. Laboratory and pilot plant extraction and purification of β-glucans from hull-less barleyand oat brans. Journal of Cereal Science,22(2):163-170.
    Bigland-Ritchie B.1979. Factors contributing to quantitative surface electromyographic recording and howthey are affected by fatigue. The American review of respiratory disease,119(2Pt2):95.
    Braaten J, Scott F, Wood P, Riedel K, Wolynetz M, Brule D, Collins M.2009. High β‐Glucan Oat Branand Oat Gum Reduce Postprandial Blood Glucose and Insulin in Subjects With and Without Type2Diabetes. Diabetic Medicine,11(3):312-318.
    Brennan C S.2005. Dietary fibre, glycaemic response, and diabetes. Molecular nutrition&food research,49(6):560-570.
    Brennan C S, Cleary L J.2005. The potential use of cereal (1→3,1→4)-β-D-glucans as functional foodingredients. Journal of Cereal Science,42(1):1-13.
    Brooks G A, Brauner K, Cassens R G.1973. Glycogen synthesis and metabolism of lactic acid afterexercise. American Journal of Physiology--Legacy Content,224(5):1162-1166.
    Brown G D, Gordon S.2003a. Fungal β-glucans and mammalian immunity. Immunity,19(3):311-315.
    Brown G D, Herre J, Williams D L, Willment J A, Marshall A S J, Gordon S.2003b. Dectin-1mediates thebiological effects of β-glucans. The Journal of experimental medicine,197(9):1119-1124.
    Burkus Z, Temelli F.1998. Effect of extraction conditions on yield, composition, and viscosity stability ofbarley β-glucan gum. Cereal chemistry,75(6):805-809.
    Burrows V D.1986. Breeding oats for food and feed: conventional and new techniques and materials.
    Byrne B, Dankert J.1979. Volatile fatty acids and aerobic flora in the gastrointestinal tract of mice undervarious conditions. Infection and immunity,23(3):559-563.
    Cadden A, Sosulski F, Olson J.1983. Physiological responses of rats to high fiber bread diets containingseveral sources of hulls or bran. Journal of food science,48(4):1151-1156.
    Carr J, Drekter I.1956. Estimation of total cholesterol in the serum. Clin. Chem,2353.
    Cazzola R, Russo‐Volpe S, Cervato G, Cestaro B.2003. Biochemical assessments of oxidative stress,erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentarycontrols. European journal of clinical investigation,33(10):924-930.
    Chaouloff F.1997. Effects of acute physical exercise on central serotonergic systems. Medicine&Sciencein Sports&Exercise.
    Chen H L, Haack V S, Janecky C W, Vollendorf N W, Marlett J A.1998. Mechanisms by which wheat branand oat bran increase stool weight in humans. The American journal of clinical nutrition,68(3):711-719.
    Cheng Z, Moore J, Yu L.2006. High-throughput relative DPPH radical scavenging capacity assay. Journalof agricultural and food chemistry,54(20):7429-7436.
    Clarkson P M, Hubal M J.2002. Exercise-induced muscle damage in humans. American journal ofphysical medicine&rehabilitation,81(11):S52-S69.
    Clarkson P M, Tremblay I.1988. Exercise-induced muscle damage, repair, and adaptation in humans.Journal of applied physiology,65(1):1-6.
    Coggan A R, Coyle E F.1989. Metabolism and performance following carbohydrate ingestion late inexercise. Med Sci Sports Exerc,21(1):59-65.
    Conlay L, Sabounjian L, Wurtman R.1992. Exercise and neuromodulators: choline and acetylcholine inmarathon runners. International Journal of Sports Medicine,13S141.
    Coyle E F, Coggan A R, Hemmert M, Ivy J L.1986. Muscle glycogen utilization during prolongedstrenuous exercise when fed carbohydrate. Journal of applied physiology,61(1):165-172.
    Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K, Grinton S.1993. High intensitytraining-induced changes in skeletal muscle antioxidant enzyme activity. Medicine and science insports and exercise,25(10):1135.
    Cui S W.2000. Polysaccharide gums from agricultural products: Processing, structures&functionality:CRC Press.
    Cui S W.2001. Cereal non-starch polysaccharides. I.(1-3)(1-4)-β-d-Glucans. Polysaccharide gums fromagricultural products: processing, structures and functionality. Technomic Publishing Co., Lancaster,United Kingdom,103-166.
    Cui W, Wood P, Blackwell B, Nikiforuk J.2000. Physicochemical properties and structural characterizationby two-dimensional NMR spectroscopy of wheat β-D-glucan—comparison with other cerealβ-D-glucans. Carbohydrate Polymers,41(3):249-258.
    Dávalos A, Gómez-Cordovés C, Bartolomé B.2004. Extending applicability of the oxygen radicalabsorbance capacity (ORAC-fluorescein) assay. Journal of agricultural and food chemistry,52(1):48-54.
    Dan'ko I I.1968. Exercise therapy as a means of restoring homeostasis]. Voprosy kurortologii, fizioterapii, ilechebno fizichesko kultury,33(2):105.
    Davies K J A, Quintanilha A T, Brooks G A, Packer L.1982. Free radicals and tissue damage produced byexercise. Biochemical and biophysical research communications,107(4):1198-1205.
    Davis J M, Bailey S P.1997. Possible mechanisms of central nervous system fatigue during exercise.Medicine and science in sports and exercise,29(1):45.
    Dawkins N, Nnanna I.1993. Oat Gum and β‐Glucan Extraction from Oat Bran and Rolled Oats:Temperature and pH Effects. Journal of food science,58(3):562-566.
    De Groot A, Luyken R, Pikaar N.1963. Cholesterol-lowering effect of rolled oats. The Lancet,282(7302):303-304.
    Drzikova B, Dongowski G, Gebhardt E.2005. Dietary fibre-rich oat-based products affect serum lipids,microbiota, formation of short-chain fatty acids and steroids in rats. British Journal of Nutrition,94(06):1012-1025.
    Elias A, Wilson A.1993. Exercise and gonadal function. Human reproduction,8(10):1747-1761.
    Evans D, Subramoniam A, Rajasekharan S, Pushpangadan P.2002. Effect of Trichopus zeylanicus leafextract on the energy metabolism in mice during exercise and at rest. Indian Journal of Pharmacology,34(1):32-37.
    Fenglin H, Ruili L, Liang M.2004. Free radical scavenging activity of extracts prepared from fresh leavesof selected Chinese medicinal plants. Fitoterapia,75(1):14-23.
    Finaud J, Lac G, Filaire E.2006. Oxidative stress: relationship with exercise and training. Sports medicine,36(4):327-358.
    Fitts R, Metzger J.1988. Principles of Exercise Biochemistry. Karger, Basle,212.
    Food U.1997. Drug Administration. FDA final rule for federal labeling: health claims: oats and coronaryheart disease. Fed Regist,62(15):3584e601.
    Fu X, Ji R, Dam J.2010. Antifatigue effect of coenzyme Q10in mice. Journal of medicinal food,13(1):211-215.
    Fukuda K, Strauss S E, Hickie I, Sharpe M C, Dobbins J G, Komaroff A.1995. The chronic fatiguesyndrome. Journal of Chronic Fatigue Syndrome,1(2):67-84.
    Fushiki T, Matsumoto K, Inoue K, Kawada T, Sugimoto E.1995. Swimming endurance capacity of mice isincreased by chronic consumption of medium-chain triglycerides. The Journal of nutrition,125(3):531.
    Güler M.2003. Barley grain β-glucan content as affected by nitrogen and irrigation. Field crops research,84(3):335-340.
    Gerald M.1978. Effects of (+)-amphetamine on the treadmill endurance performance of rats.Neuropharmacology,17(9):703-704.
    Green C.(2004). Value and functionality capture for oats.51:109-113.
    Guerra Dore C M P, Azevedo T C G, de Souza M C R, Rego L A, de Dantas J, Silva F R F, Rocha H A O,Baseia I G, Leite E L.2007. Antiinflammatory, antioxidant and cytotoxic actions of [beta]-glucan-richextract from Geastrum saccatum mushroom. International immunopharmacology,7(9):1160-1169.
    Guo Z, Xing R, Liu S, Yu H, Wang P, Li C, Li P.2005. The synthesis and antioxidant activity of the Schiffbases of chitosan and carboxymethyl chitosan. Bioorganic&medicinal chemistry letters,15(20):4600-4603.
    Gutiérrez A, Prieto A, Martínez A T.1996. Structural characterization of extracellular polysaccharidesproduced by fungi from the genus Pleurotus. Carbohydrate research,281(1):143-154.
    Hallfrisch J, Behall K M.2000. Mechanisms of the effects of grains on insulin and glucose responses.Journal of the American college of nutrition,19(suppl3):320S-325S.
    Hamilton M T, Booth F W.2000. Skeletal muscle adaptation to exercise: a century of progress. Journal ofapplied physiology,88(1):327-331.
    Haralambie G, Berg A.1976. Serum urea and amino nitrogen changes with exercise duration. Europeanjournal of applied physiology and occupational physiology,36(1):39-48.
    Haramizu S, Mizunoya W, Masuda Y, Ohnuki K, Watanabe T, Yazawa S, Fushiki T.2006. Capsiate, anonpungent capsaicin analog, increases endurance swimming capacity of mice by stimulation ofvanilloid receptors. Bioscience, biotechnology, and biochemistry,70(4):774-781.
    Hlebowicz J, Darwiche G, Bj rgell O, Almér L O.2008. Effect of muesli with4g oat β-glucan onpostprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized crossovertrial. Journal of the American college of nutrition,27(4):470-475.
    Holloszy J O.1967. Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptakeand respiratory enzyme activity in skeletal muscle. Journal of Biological Chemistry,242(9):2278-2282.
    Holloszy J O, Coyle E F.1984. Adaptations of skeletal muscle to endurance exercise and their metabolicconsequences. Journal of applied physiology,56(4):831-838.
    Hong F, Yan J, Baran J T, Allendorf D J, Hansen R D, Ostroff G R, Xing P X, Cheung N K V, Ross G D.2004. Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity ofantitumor monoclonal antibodies in murine tumor models. The Journal of Immunology,173(2):797-806.
    Hoover R, Senanayake S.1996. Composition and physicochemical properties of oat starches. FoodResearch International,29(1):15-26.
    Howarth N C, Huang T, Roberts S B, McCrory M A.2005. Dietary fiber and fat are associated with excessweight in young and middle-aged US adults. Journal of the American Dietetic Association,105(9):1365.
    Howarth N C, Saltzman E, Roberts S B.2001. Dietary fiber and weight regulation. Nutrition reviews,59(5):129-139.
    Hromádková Z, Ebringerová A, Sasinková V, andula J, H balová V, Omelková J.2003. Influence of thedrying method on the physical properties and immunomodulatory activity of the particulate (1→3)-β-d-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers,51(1):9-15.
    Hu X, Xing X, Ren C.2010. The effects of steaming and roasting treatments on β‐glucan, lipid and starchin the kernels of naked oat (Avena nuda). Journal of the Science of Food and Agriculture,90(4):690-695.
    Hu X, Xing X, Zhen H.2012. Enzyme deactivation treatments did not decrease the beneficial role of oatfood in intestinal microbiota and short‐c hain fatty acids: an in vivo study.Journal of the Science ofFood and Agriculture.
    Hu X Z, Wei Y, Ren C, Zhao J.2009. Relationship between kernel size and shape and lipase activity ofnaked oat before and after pearling treatment. Journal of the Science of Food and Agriculture,89(8):1424-1427.
    Huang D, Ou B, Hampsch-Woodill M, Flanagan J A, Prior R L.2002. High-throughput assay of oxygenradical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with amicroplate fluorescence reader in96-well format. Journal of agricultural and food chemistry,50(16):4437-4444.
    Inglett G, Newman R.1994. Oat β-glucan-amylodextrins: Preliminary preparations and biologicalproperties. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum),45(1):53-61.
    Ip C, Scimeca J A, Thompson H.1995. Effect of timing and duration of dietary conjugated linoleic acid onmammary cancer prevention.
    Issekutz B, Miller H.(1962). Plasma free fatty acids during exercise and the effect of lactic acid. InProceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biologyand Medicine (New York, NY), vol.110, pp.237-239: Royal Society of Medicine.
    Jackson M.1993. Free radicals and muscle damage. British medical bulletin,49(3):630-641.
    Jacobs L R, Lupton J R.1986. Relationship between colonic luminal pH, cell proliferation, and coloncarcinogenesis in1,2-dimethylhydrazine treated rats fed high fiber diets. Cancer research,46(4Part1):1727-1734.
    Janzen E, Davis E.1982. Detection of free radicals by spin-trapping using the nitroxyl method. Freeradicals and cancer. New York: Marcel Dekker, Inc,397-422.
    Ji L L.1995. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radical Biologyand Medicine,18(6):1079-1086.
    Ji L L.(1999). Antioxidants and oxidative stress in exercise. Royal Society of Medicine,222:283-292.
    Johansson L, Virkki L, Maunu S, Lehto M, Ekholm P, Varo P.2000. Structural characterization of watersoluble β-glucan of oat bran. Carbohydrate Polymers,42(2):143-148.
    Jung K, Kim I H, Han D.2004. Effect of medicinal plant extracts on forced swimming capacity in mice.Journal of ethnopharmacology,93(1):75-81.
    Jung K A, Han D, Kwon E K, Lee C H, Kim Y E.2007. Antifatigue effect of Rubus coreanus Miquelextract in mice. Journal of medicinal food,10(4):689-693.
    Karlsson J, Nordesjo L, Jorfeldt L, Saltin B.1972. Muscle lactate, ATP, and CP levels during exercise afterphysical training in man. Journal of applied physiology,33(2):199-203.
    Karpovich P V, Hale C J.1951. Manual artificial respiration. Pedagogical and fatigue factors involved in itsuse. Journal of applied physiology,4(6):472-475.
    Keenan J M, Pins J J, Frazel C, Moran A, Turnquist L.2002. Oat ingestion reduces systolic and diastolicblood pressure in patients with mild or borderline hypertension: a pilot trial. J Fam Pract,51(4):369.
    Kerckhoffs D A J M, Hornstra G, Mensink R P.2003. Cholesterol-lowering effect of β-glucan from oat branin mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread andcookies. The American journal of clinical nutrition,78(2):221-227.
    Kim H, Park S, Han D S, Park T.2003. Octacosanol supplementation increases running endurance time andimproves biochemical parameters after exhaustion in trained rats. Journal of medicinal food,6(4):345-351.
    Kim S, Park S H, Lee H N, Park T.2008. Prunus mume extract ameliorates exercise-induced fatigue intrained rats. Journal of medicinal food,11(3):460-468.
    Kirwan J P, O’Gorman D, Evans W J.1998. A moderate glycemic meal before endurance exercise canenhance performance. Journal of applied physiology,84(1):53-59.
    K Hakkinen, A Pakarinen, M Alen H, Kauhanen, P V Komi.1987. Relationships between training volume,physical performance capacity, and serum hormone concentrations during prolonged training in eliteweight lifters. Int. J. Sports Med,8(Suppl1):61-65.
    Knuckles B E, Chiu M C M.1999. β-Glucanase activity and molecular weight of β-glucans in barley aftervarious treatments. Cereal chemistry,76(1):92-95.
    Knudsen K E B, Jensen B B, Hansen I.1993. Digestion of polysaccharides and other major components inthe small and large intestine of pigs fed on diets consisting of oat fractions rich in β-D-glucan. BritishJournal of Nutrition,70(02):537-556.
    Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. Antioxidant Activity of β-Glucan. ISRNPharmaceutics,2012.
    Koz M, Erba D, Bilgihan A e, Aricio A.1992. Effects of acute swimming exercise on muscle anderythrocyte malondialdehyde, serum myoglobin, and plasma ascorbic acid concentrations. Canadianjournal of physiology and pharmacology,70(10):1392-1395.
    Kuwahara H, Horie T, Ishikawa S, Tsuda C, Kawakami S, Noda Y, Kaneko T, Tahara S, Tachibana T,Okabe M.2010. Oxidative stress in skeletal muscle causes severe disturbance of exercise activitywithout muscle atrophy. Free Radical Biology and Medicine,48(9):1252-1262.
    Laine R, Salminen S, Benno Y, Ouwehand A C.2003. Performance of bifidobacteria in oat-based media.International journal of food microbiology,83(1):105-109.
    Lehne G, Haneberg B, Gaustad P, Johansen P, Preus H, Abrahamsen T.2005. Oral administration of a newsoluble branched β‐1,3‐D‐g lucanis well tolerated and can lead to increased salivaryconcentrations of immunoglobulin A in healthy volunteers. Clinical&Experimental Immunology,143(1):65-69.
    Lemon P, Mullin J.1980. Effect of initial muscle glycogen levels on protein catabolism during exercise.Journal of applied physiology,48(4):624-629.
    Lemon P W R.1991. Effect of exercise on protein requirements. Journal of Sports Sciences,9(1):53-70.
    Li M, DongLian C, HuaiXing L, BenDe T, Ying W, SuPing P.2009. Protective effects of salidroside onoxidative damage in fatigue mice. Journal of Chinese Integrative Medicine,7(3):237-241.
    Li W, Wang Q, Cui S W, Burchard W, Yada R.2007. Carbanilation of cereal β-glucans for molecularweight determination and conformational studies. Carbohydrate research,342(11):1434-1441.
    Lieber R L, Schmitz M C, Mishra D, Fridén J.1994. Contractile and cellular remodeling in rabbit skeletalmuscle after cyclic eccentric contractions. Journal of applied physiology,77(4):1926-1934.
    Liu S, Willett W C, Manson J A E, Hu F B, Rosner B, Colditz G.2003. Relation between changes in intakesof dietary fiber and grain products and changes in weight and development of obesity amongmiddle-aged women. The American journal of clinical nutrition,78(5):920-927.
    Lu H K, Hsieh C C, Hsu J J, Yang Y K, Chou H N.2006. Preventive effects of Spirulina platensis onskeletal muscle damage under exercise-induced oxidative stress. European journal of appliedphysiology,98(2):220-226.
    Luhaloo M, M rtensson A C, Andersson R, man P.1998. Compositional analysis and viscositymeasurements of commercial oat brans. Journal of the Science of Food and Agriculture,76(1):142-148.
    M lkki Y, Cho S, Dreher M.2001a. Oat fiber: production, composition, physicochemical properties,pHysiological effects, safety, and food applications. Handbook of dietary fiber,497-517.
    M lkki Y, Virtanen E.2001b. Gastrointestinal effects of oat bran and oat gum: A review. LWT-Food Scienceand Technology,34(6):337-347.
    MacArthur L, D’appolonia B.1979. Comparison of oat and wheat carbohydrates. II. Starch. Cereal Chem,56(5):458-461.
    Maclaren D O N P M, Gibson H, Parry-Billings M, Edwards R H T.1989. A review of metabolic andpHysiological factors in fatigue. Exercise and sport sciences reviews,17(1):29-66.
    Maki K, Galant R, Samuel P, Tesser J, Witchger M, Ribaya-Mercado J, Blumberg J, Geohas J.2006.Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism andbiomarkers of oxidative stress in men and women with elevated blood pressure. European journal ofclinical nutrition,61(6):786-795.
    Mantovani M S, Bellini M F, Angeli J P F, Oliveira R J, Silva A F, Ribeiro L R.2008. β-Glucans inpromoting health: Prevention against mutation and cancer. Mutation Research/Reviews in MutationResearch,658(3):154-161.
    Martin H, Peers F.1953. Oat lipase. Biochemical Journal,55(3):523.
    Mazza G.1998. Functional foods: biochemical and processing aspects: CRC.
    McCleary B V, Codd R.2006. Measurement of (1→3),(1→4)‐β‐D‐glucan in barley and oats: Astreamlined enzymic procedure. Journal of the Science of Food and Agriculture,55(2):303-312.
    Meena D, Das P, Kumar S, Mandal S, Prusty A, Singh S, Akhtar M, Behera B, Kumar K, Pal A.2012.Beta-glucan: an ideal immunostimulant in aquaculture(a review). Fish Physiology and Biochemistry,1-27.
    Meira D A, Marques Pereira P C, Marcondes-Machado J, Mendes R P, Barraviera B, Pellegrino Jr J,Rezkallah-Iwasso M T, Serrao Peracoli M T, Castilho L M, Thomazini I.1996. The use of glucan asimmunostimulant in the treatment of paracoccidioidomycosis. American journal of tropical medicineand hygiene,55(5):496-503.
    Miller S, Fulcher R.1994. Distribution of (1leads to3),(1leads to4)-beta-D-glucan in kernels of oatsand barley using microspectroflurometry. Cereal chemistry,71.
    Miller S, Wood P, Pietrzak L, Fulcher R.1993. Mixed Linkage-Glucan, Protein Content, and KernelWeight in Avena Species. Cereal chemistry,70231-231.
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science,7(9):405-410.
    Miura N N, Adachi Y, Yadomae T, Tamura H, Tanaka S, Ohno N.2003. Structure and biological activitiesof beta-glucans from yeast and mycelial forms of Candida albicans. Microbiology and immunology,47(3):173-182.
    Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, Sugino T, Shirai T, Kajimoto Y, KuratsuneH.2008. Antifatigue effects of coenzyme Q10during physical fatigue. Nutrition,24(4):293-299.
    Mizunoya W, Haramizu S, Shibakusa T, Okabe Y, Fushiki T.2005. Dietary conjugated linoleic acidincreases endurance capacity and fat oxidation in mice during exercise. Lipids,40(3):265-271.
    Moore J, Hao Z, Zhou K, Luther M, Costa J, LiangLi Yu.2005. Carotenoid, tocopherol, phenolic acid, andantioxidant properties of Maryland-grown soft wheat. Journal of agricultural and food chemistry,53(17):6649-6657.
    Murphy E, Davis J, Brown A S, Carmichael M D, Mayer E P, Ghaffar A.2004. Effects of moderateexercise and oat β-glucan on lung tumor metastases and macrophage antitumor cytotoxicity. Journalof applied physiology,97(3):955-959.
    Ohno N, Terui T, Chiba N, Kurachi K, Adachi Y, Yadomae T.1995. Resistance of highly branched (1→3)-β-D-glucans to formolysis. Chemical and pHarmaceutical bulletin,43(6):1057-1060.
    Ou B, Hampsch-Woodill M, Flanagan J, Deemer E K, Ronald L, Huang D.2002. Novel fluorometric assayfor hydroxyl radical prevention capacity using fluorescein as the probe. Journal of agricultural andfood chemistry,50(10):2772-2777.
    Peterson D M.(2004). Oat-a multifunctional grain. Proceedings7thinternational oat conference,21-26.
    Peterson D M, Saigo R, Holy J.1985. Development of oat aleurone cells and their protein bodies. CerealChem,62366-71.
    Peterson D M, Wesenberg D M, Burrup D E.1995. β-glucan content and its relationship to agronomiccharacteristics in elite oat germplasm. Crop science,35(4):965-970.
    Powers S K, Criswell D, Lawler J, Ji L, Martin D, Herb R A, Dudley G.1994. Influence of exercise andfiber type on antioxidant enzyme activity in rat skeletal muscle. American Journal ofPhysiology-Regulatory, Integrative and Comparative Physiology,266(2):R375-R380.
    Powers S K, Jackson M J.2008. Exercise-induced oxidative stress: cellular mechanisms and impact onmuscle force production. Physiological reviews,88(4):1243-1276.
    Powers S K, Ji L, Leeuwenburgh C.1999. Exercise training-induced alterations in skeletal muscleantioxidant capacity: a brief review. Medicine and science in sports and exercise,31(7):987.
    Preece I, Hobkirk R.1953. Non-starchy polysaccharides of cereal grains. III. Higher molecular gums ofcommon cereals. J. Inst. Brew,59(385):I952.
    Qiao D, Ke C, Hu B, Luo J, Ye H, Sun Y, Yan X, Zeng X.2009. Antioxidant activities of polysaccharidesfrom Hyriopsis cumingii. Carbohydrate Polymers,78(2):199-204.
    Rice P J, Adams E L, Ozment-Skelton T, Gonzalez A J, Goldman M P, Lockhart B E, Barker L A, Breuel KF, DePonti W K, Kalbfleisch J H.2005. Oral delivery and gastrointestinal absorption of solubleglucans stimulate increased resistance to infectious challenge. Journal of Pharmacology andExperimental Therapeutics,314(3):1079-1086.
    Rice P J, Lockhart B E, Barker L A, Adams E L, Ensley H E, Williams D L.2004. Pharmacokinetics offungal (1–3)-β-d-glucans following intravenous administration in rats. Internationalimmunopharmacology,4(9):1209-1215.
    Rimsten L, Stenberg T, Andersson R, Andersson A, man P.2003. Determination of β-glucan molecularweight using SEC with Calcofluor detection in cereal extracts. Cereal chemistry,80(4):485-490.
    Rollet-Labelle E, Grange M J, Elbim C, Marquetty C, Gougerot-Pocidalo M A, Pasquier C.1998. Hydroxylradical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free RadicalBiology and Medicine,24(4):563-572.
    Ronald L, Wu X, Schaich K.2005. Standardized methods for the determination of antioxidant capacity andphenolics in foods and dietary supplements. Journal of agricultural and food chemistry,53(10):4290-4302.
    Sakata T.1987. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the ratintestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminaltrophic factors. Br J Nutr,58(1):95-103.
    Saltzman E, Das S K, Lichtenstein A H, Dallal G E, Corrales A, Schaefer E J, Greenberg A S, Roberts S B.2001. An oat-containing hypocaloric diet reduces systolic blood pressure and improves lipid profilebeyond effects of weight loss in men and women. The Journal of nutrition,131(5):1465-1470.
    Sandage B, Sabounjian L, White R, Wurtman R.1992. Choline citrate may enhance athletic performance.Physiologist,35(4):236.
    Schwartz A L.1999. Fatigue mediates the effects of exercise on quality of life. Quality of Life Research,8(6):529-538.
    Sen C K.1995. Oxidants and antioxidants in exercise. Journal of applied physiology,79(3):675-686.
    Sen C K, Atalay M, Hanninen O.1994. Exercise-induced oxidative stress: glutathione supplementation anddeficiency. Journal of applied physiology,77(5):2177-2187.ener G, Ek io lu-Demiralp E, etiner M, Ercan F, Ye en B.2006. β-glucan amelioratesmethotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects.European journal of pharmacology,542(1):170-178.
    Sener G, Toklu H Z, Cetinel S.2007. β-Glucan protects against chronic nicotine-induced oxidative damagein rat kidney and bladder. Environmental Toxicology and Pharmacology,23(1):25-32.
    Shin M S, Lee S, Lee K Y, Lee H G.2005. Structural and biological characterization ofaminated-derivatized oat β-glucan. Journal of agricultural and food chemistry,53(14):5554-5558.
    Sj gaard G.1990. Exercise-induced muscle fatigue: the significance of potassium: Blackwell ScientificPublications.
    Skendi A, Biliaderis C, Lazaridou A, Izydorczyk M.2003. Structure and rheological properties of watersoluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of Cereal Science,38(1):15-31.
    Smith M M, Stone B A.1973. Chemical composition of the cell walls of Lolium multiflorum endosperm.Phytochemistry,12(6):1361-1367.
    Soltys J, Borosková Z, Dubinsky P, Tomasovicová O, Auer H, Asp ck H.1996. Effect of glucanimmunomodulator on the immune response and larval burdens in mice with experimental toxocarosis.Applied parasitology,3(7):161-167.
    Stinard P S, Nevins D J.1980. Distribution of noncellulosic β-D-glucans in grasses and other monocots.Phytochemistry,19(7):1467-1468.
    Tada R, Tanioka A, Iwasawa H, Hatashima K, Shoji Y, Ishibashi K, Adachi Y, Yamazaki M, Tsubaki K,Ohno N.2008. Structural characterisation and biological activities of a unique type β-D-glucanobtained from Aureobasidium pullulans. Glycoconjugate journal,25(9):851-861.
    Takenaka A, Annaka H, Kimura Y, Aoki H, Igarashi K.2003. Reduction of paraquat-induced oxidativestress in rats by dietary soy peptide. Bioscience, biotechnology, and biochemistry,67(2):278-283.
    Temelli F.1997. Extraction and Functional Properties of Barley β‐Glucan as Affected by Temperature andpH. Journal of food science,62(6):1194-1201.
    Terjung R, Baldwin K, Mole P, Klinkerfuss G, Holloszy J.1972. Effect of running to exhaustion on skeletalmuscle mitochondria: a biochemical study. American Journal of Physiology--Legacy Content,223(3):549-554.
    Tester R F, Karkalas J.1996. Swelling and gelatinization of oat starches. Cereal chemistry,73(2):271-277.
    Tharakan B, Dhanasekaran M, Manyam B V.2005. Antioxidant and DNA protecting properties ofanti‐f atigue herb Trichopus zeylanicus.Phytotherapy Research,19(8):669-673.
    Tohamy A A, El-Ghor A A, El-Nahas S M, Noshy M M.2003. β-Glucan inhibits the genotoxicity ofcyclophosphamide, adriamycin and cisplatin. Mutation Research/Genetic Toxicology andEnvironmental Mutagenesis,541(1):45-53.
    Toklu H Z, ener G, Jahovic N, Uslu B, Arbak S, Ye en B.2006. β-glucan protects against burn-inducedoxidative organ damage in rats. International immunopharmacology,6(2):156-169.
    Tsiapali E, Whaley S, Kalbfleisch J, Ensley H E, Browder I W, Williams D L.2001. Glucans exhibit weakantioxidant activity, but stimulate macrophage free radical activity. Free Radical Biology andMedicine,30(4):393-402.
    V rum K M, Smidsr d O.1988. Partial chemical and physical characterisation of (1→3),(1→4)-β-d-glucans from oat (Avena sativa L.) aleurone. Carbohydrate Polymers,9(2):103-117.
    V rum K M, Smidsr d O, Brant D A.1992. Light scattering reveals micelle-like aggregation in the (1→3),(1→4)-β-d-glucans from oat aleurone. Food Hydrocolloids,5(6):497-511.
    Vasankari T J, Kujala U M, Taimela S, Huhtaniemi I T.1993. Pituitary-gonadal response togonadotropin-releasing hormone stimulation is enhanced in men after strenuous physical exercise.Acta endocrinologica,129(1):9-14.
    Vetvicka V, Vetvickova J.2007. An evaluation of the immunological activities of commercially availableβ1,3-glucans. JANA,10(1):25-31.
    Vos A, M'rabet L, Stahl B, Boehm G, Garssen J.2007. Immune-modulatory effects and potential workingmechanisms of orally applied nondigestible carbohydrates. Critical reviews in immunology,27(2):97.
    Wang H, Weening D, Jonkers E, Boer T, Stellaard F, Small A, Preston T, Vonk R, Priebe M.2008a. A curvefitting approach to estimate the extent of fermentation of indigestible carbohydrates. European journalof clinical investigation,38(11):863-868.
    Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, Gao X, Zhou Y.2010. Anti-fatigue activity of thewater-soluble polysaccharides isolated from Panax ginseng CA Meyer. Journal of ethnopharmacology,130(2):421-423.
    Wang J J, Shieh M J, Kuo S L, Lee C L, Pan T M.2006. Effect of red mold rice on antifatigue andexercise-related changes in lipid peroxidation in endurance exercise. Applied microbiology andbiotechnology,70(2):247-253.
    Wang L, White P.1994. Structure and properties of amylose, amylopectin, and intermediate materials of oatstarches. Cereal chemistry,71.
    Wang Y, Ahmed Z, Feng W, Li C, Song S.2008b. Physicochemical properties of exopolysaccharideproduced by Lactobacillus kefiranofaciens ZW3isolated from Tibet kefir. International journal ofbiological macromolecules,43(3):283-288.
    Wang Y J, Yao S J, Guan Y X, Wu T X, Kennedy J.2005. A novel process for preparation of (1→3)-β-d-glucan sulphate by a heterogeneous reaction and its structural elucidation. CarbohydratePolymers,59(1):93-99.
    Weight A, Burstyn P, Gibney M.1979. Dietary fiber and blood pressure. Br Med J,21541-1543.
    Welch R W.1995. The oat crop: production and utilization: Chapman&Hall Ltd.
    Westerlund E, Andersson R, man P.1993. Isolation and chemical characterization of water-solublemixed-linked β-glucans and arabinoxylans in oat milling fractions. Carbohydrate Polymers,20(2):115-123.
    Wood P, Beer M, Butler G.2000. Evaluation of role of concentration and molecular weight of oat β-glucanin determining effect of viscosity on plasma glucose and insulin following an oral glucose load.British Journal of Nutrition,84(01):19-23.
    Wood P, Paton D, Siddiqui I.1977. Determination of β-glucan in oats and barley. Cereal Chem,54(3):524-533.
    Wood P, Siddiqui I, Paton D.1978. Extraction of high-viscosity gums from oats. Cereal Chem,55(6):1038-1049.
    Wood P, Weisz J, Blackwell B.1991. Molecular characterization of cereal β-D-glucans. Structural analysisof oat β-D-glucan and rapid structural evaluation of β-D-glucans from different sources byhigh-performance liquid chromatography of oligosaccharides released by lichenase. Cereal chemistry,68(1):31-39.
    Wood P, Weisz J, Blackwell B.1994. Structural studies of (1→3),(1→4)-β-D-glucans by13C-nuclearmagnetic resonance spectroscopy and by rapid analysis of cellulose-like regions usinghigh-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cerealchemistry,71(3):301-307.
    Wood P J, Fulcher R, Stone B A.1983. Studies on the specificity of interaction of cereal cell wallcomponents with Congo Red and Calcofluor. Specific detection and histochemistry of (1→3)(,1→4),-β-D-glucan. Journal of Cereal Science,1(2):95-110.
    Wood P J, Webster F.1986. Oat β-glucan: structure, location and properties. Oats: Chemistry andtechnology,121-152.
    Wood P J, Weisz J, Fedec P, Burrows V.1989. Large-scale preparation and properties of oat fractionsenriched in (1links to3)(1links to4)-beta-D-glucan. Cereal chemistry.,66(2):97.
    Woodward J, Fincher G, Stone B.1983. Water-soluble (1→3),(1→4)-β-D-glucans from barley(Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers,3(3):207-225.
    Woolard G R, Rathbone E B, Novellie L.1976. A hemicellulosic β-D-glucan from the endosperm ofsorghum grain. Carbohydrate research,51(2):249-252.
    Wu Z, Ming J, Gao R, Wang Y, Liang Q, Yu H, Zhao G.2011. Characterization and Antioxidant Activity ofthe Complex of Tea Polyphenols and Oat β-Glucan. Journal of agricultural and food chemistry,59(19):10737-10746.
    Xu C, Hu X Z, Zhang Z M, Luo Q G.2009. Antifatigue Effects of Oat on Mice. Journal of the ChineseCereals and Oils Association.
    Ying L.2009. Research Progress on the Extraction and Measurement of Oat β-glucan [J]. Journal of AnhuiAgricultural Sciences,13130.
    Yoshiki Y, Kahara T, Okubo K, Sakabe T, Yamasaki T.2001. Superoxide-and1,1-Diphenyl-2-picrylhydrazyl Radical-scavenging Activities of Soyasaponin. BETA. g Related to Gallic Acid.Bioscience, biotechnology, and biochemistry,65(10):2162-2165.
    You L, Zhao M, Regenstein J M, Ren J.2011. In vitro antioxidant activity and in vivo anti-fatigue effect ofloach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chemistry,124(1):188-194.
    Young S.1986. The clinical psychopharmacology of tryptophan. Nutrition and the Brain,7.
    Yu B, Lu Z X, Bie X M, Lu F X, Huang X Q.2008. Scavenging and anti-fatigue activity of fermenteddefatted soybean peptides. European Food Research and Technology,226(3):415-421.
    Yuan J F, Zhang Z Q, Fan Z C, Yang J X.2008. Antioxidant effects and cytotoxicity of three purifiedpolysaccharides from Ligusticum chuanxiong Hort. Carbohydrate Polymers,74(4):822-827.
    Yun C H, Estrada A, Van Kessel A, Gajadhar A, Redmond M, Laarveld B.1998. Immunomodulatoryeffects of oat beta-glucan administered intragastrically or parenterally on mice infected with Eimeriavermiformis. Microbiology and immunology,42(6):457.
    Zhang M, Zhang L, Wang Y, Cheung P C K.2003. Chain conformation of sulfated derivatives of β-glucanfrom sclerotia of Pleurotus tuber-regium. Carbohydrate research,338(24):2863-2870.
    Zhang P P, Hu X Z, Zhen H M, Xu C, Fan M T.2012. Oat β-glucan Increased ATPases Activity and EnergyCharge in Small Intestine of Rats. Journal of agricultural and food chemistry.
    Zhou M, Robards K, Glennie-Holmes M, Helliwell S.1998. Structure and pasting properties of oat starch.Cereal chemistry,75(3):273-281.