离子液体电沉积法构筑硅锗有序大孔结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅锗是一种很重要的半导体材料,具有很高的折射率,且其折射率可以通过改变其中锗的含量来调节。通过将硅锗填充至蛋白石结构的胶体晶体模板内可构筑反蛋白石结构有序大孔的硅锗产物,可能实现完全带隙光子晶体的制备。但在这个研究方向上存在着两个难题,第一是目前已有的制备硅锗的研究手段均存在着能耗高、需特殊设备等问题;第二是在构筑硅锗有序大孔结构的过程中常用手段面临填充率低下的难题。
     本文以简易的电沉积为制备手段,探讨以离子液体为溶剂制备硅锗并填充模板实现有序大孔结构的构筑,得到的有序大孔产物很好的反向复制了模板的结构。其中主要针对硅锗制备的工艺条件、填充深度(膜厚)与表面形貌的关系、叠层有序大孔产物的制备和高温条件下制备硅锗二维有序产物四个方面来进行研究。本文的主要研究内容如下:
     采用循环伏安法确定离子液体[EMIm]Tf2N和Py1,4Tf2N的电化学行为,结果表明该电化学过程属于非传质控制的准可逆过程,主要有两个还原峰,在-1.3V出现的还原峰对应的是Ge~(4+)至Ge~(2+)的还原过程,在-1.9V处对应的是硅锗共沉积峰;XPS测试结果表明产物中Si被完全氧化,而薄膜内部Ge为非完全氧化态;Raman测试结果显示产物中Ge的光学模在280cm-1处,属于非晶态。对氧化产物进行了高真空氢气还原处理,XPS结果显示产物中的Ge被部分还原,同时Raman结果表明其结晶度增大,但高真空处理对产物内部Si元素的价态无明显改善。
     研究了聚苯乙烯(polystyrene,PS)模板的光学性质,其中光通过PS模板后在~300°的空间内有较均匀的分布;结合Bragg-Snell方程对胶体晶体模板的带隙进行了分析,发现实际测量的带隙位置与计算值有6.7%的偏差;讨论了完全填充产物的形貌随填充厚度的变化情况,讨论得到当表面孔为圆形、近似三角形和反向三角形时对应的填充厚度分别为层数),并分析了产生这种形貌的原因。
     探讨了制备有序大孔硅锗产物的可行性和制约因素,发现电解液对PS模板具有更好的润湿性,因而产物优先生长在微球表面;研究了沉积电位对制备过程的影响,发现在沉积电位小、沉积电流较大的情况下PS模板被破坏无法得到周期性结构,主沉积电位-1.9V为最佳实验电位;研究了模板的排列方式、模板与基底间的结合力和微球尺寸对产物的影响,发现直径400nm以下的微球组装的模板不适用于硅锗的填充,而通过填充与基底间结合力弱的模板得到的产物与硅锗薄膜的性质相似。
     率先尝试了在离子液体中制备Si/Ge和Al/Ge叠层有序大孔产物,研究发现第一叠层与基底的结合力对得到的产物质量起决定性作用。其中由于Si4+和Ge~(4+)的电化学行为接近,Si/Ge叠层的制备与硅锗薄膜类似。而在对Al/Ge叠层的研究中,由于Al的生长速度较快,可通过调节Ge层的厚度、Al的沉积电位、Al的沉积时间等因素获得不同形貌的Al/Ge叠层有序大孔结构。产物中的Al按照“岛状”模式生长,获得的厚度较大的Al/Ge产物可以做为陷光材料。
     探索了在高温情况下进行离子液体电沉积制备硅锗和有序大孔硅锗的情况。在薄膜的制备过程中,温度促使生成较大、抗氧化性能较好的产物颗粒,Raman和XPS测试验证了这一结论。高温情况下制备的有序大孔结构具有“渔网”状的形貌,通过对机理的研究发现这一升温过程伴随着PS模板的软化和四氯化硅、四氯化锗的挥发过程;分析研究过程发现,产物的厚度不随电沉积时间的延长发生改变;同时对得到的有序大孔产物进行光谱表征,研究结果表明产物可以作为光栅和微棱镜使用,产生较纯的单色光。
SixGe1-xis a very important semiconductor with high refractive index whichcould be adjusted by varying the content of Ge. Ordered macroporous SixGe1-xcouldbe obtained by filling the voids of the opaline photonic crystals, which makes itpossible to achieve complete band gap. However, there are two obstacles on thisresearch. First, special equipments are necessary to get SixGe1-xand the energyconsumption in normal methods is extremely high. Low filling ratio is the otherproblem faced when an ordered macroporous Si_xGe_(1-x)is prepared.
     In this paper, ionic liquids are used as solvent to prepare SixGe1-xfilm andordered macroporous Si_xGe_(1-x)through electrical deposition, the obtained materialwell retains the ordered macroporous structure of the templates. The fabricationconditions and the relationship between the infiltration depth (film thickness) andthe morphology are systematically studied. The preparation of the laminatedsemiconductor layer at room temperature is briefly discussed as well as thefabrication of two-dimensional ordered macroporous SixGe1-xat elevatedtemperature. The main contents of this paper are as follows:
     Ionic liquid [EMIm]Tf_2N and Py_(1,4)Tf_2N are used as solvent while siliconchloride and germanium chloride are used as solute. Cyclic voltammetry is used toevaluate the electrochemical behaviors of ionic liquids on ITO, copper and platinumsputter-coated silicon substrates. The reduction potentials and the control step of theelectrode reaction are studied on ITO substrate. The results present that theelectrochemical process is a non-mass transfer limited reaction and there are tworeduction peaks during the process. The peak centered at-1.3V is correlated with thereduction of Ge(IV) to Ge(II), and a more negetive wave centered at-1.9V could becontributed to the co-deposition of silicon and germanium.
     XPS results reveal that silicon contained in product is totally oxidized whilegermanium is partially oxidized. In Raman analysis, the peak at280cm~(-1)corresponds to longitudinal optical phonon vibration of amorphous Ge-Ge. Thepartially oxidized film is heated under high vacuum with rather low hydrogen partialpressure. The heat-treated products are then analysed by XPS and Raman, the resultsillustrate that GeO_2could be partially reduced to GeO and Ge. However, the thermaltreatment has no impact on SiO_2.
     The optical properties of polystyrene template are studied to get theinformation on the spatial distribution of light incidents on the ordered structure.The deviation between the measured position of bandgap and the calculated one according to Bragg-Snell equation is6.7%. The observed surface morphology of3-D ordered macroporous products along the (111) direction is discussed in terms ofsubsequently increasing film thickness. Models are set up to help with fullunderstanding of the evolution of the morphology (the shapes of the pore mouthsand pore walls). When the film thickness is
     Feasibility and constraints of the preparation of ordered macroporous SixGe1-xare investigated. The contact angles of the solvent on PS template and on ITOsubstrate are tested, confirming that the solvent has better wettability to PS templateand the product is deposited around the microspheres priorly. The effect ofdeposition potential is studied, the result reveals that the ordered structre of thetemplate is destroyed if a more negative potential is applied during the deposition.The potential of-1.9V is more suitable for the co-deposition of silicon andgermanium. The effect of packing modes of templates, the adhesion of the templateto substrate and the diameters of PS spheres are also studies. The results indicate
     that the deposit could not be infiltrated into the interstitial space of templateassembled from PS spheres with diameters smaller than400nm, and the physicalproperties of SixGe1-xobtained if the adhesion is weak is similar to film product.Si/Ge laminated and Al/Ge laminated ordered macroporous materials areprepared for the first time. The adhesion of the first layer to substrate plays aimportant role in determining the morphology of the product. For the fabrication ofSi/Ge laminated ordered macroporous material, Ge layer is deposited on PS-coatedITO substrate first, and then Si layer is deposited on the top of the Ge layer.However, the deposition of Al/Ge laminated ordered macroporous layers is morecomplicated for the fast deposition rate of aluminum. Al/Ge laminated product can
     be obtained by modifying the thickness of germanium deposit, the depositionpotential and the deposition time of aluminum. The growth mode of aluminum isVolmer-Weber, leaving an uneven film surface.Research on the electrodeposition of SixGe1-xfilm and ordered macroporous Si_xGe_(1-x) in ionic liquid at elevated temperature is carried out. XPS and Ramanresults reveal that the grain sizes of the product are increased as the temperatureincreases, so does the resistance of the particles to oxide. Atwo-dimensional orderedmacroporous film is prepared through electrodeposition at elevated temperature. Theformation of the2-D architecture could be due to the soften of polystyrene templateaccompanied with the evaporation of silicon chloride and germanium chloride.Moreover, the thickness of the product is limited to a radiu of the PS spheres.Product obtained by this method could used as gratings, generating monochromaticlight.
引文
[1] Williams RC, Smith KM. Crystallizable Insect Virus[J]. Nature,1957,179:119-120.
    [2] Sanders JV. Colour of Precious Opal[J]. Nature,1964,204:1151-1153.
    [3] Darragh PJ, Gaskin AJ, Terrell BC, Sanders JV. Origin of Precious Opal[J].Nature,1966,209:13-16.
    [4] St ber W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheresin Micron Size Range[J]. Journal of Colloid Interface Sciences,1968,26:62-69.
    [5] Philipse AP. Solid Opaline Packings of Colloidal Silica Spheres[J]. Journal ofMaterial Science Letters,1989,8(12):1371-1373.
    [6] Ohtaka K. Energy Band of Photons and Low-Energy Photon Diffraction[J].Physical Review B,1979,19(10):5057-5067.
    [7] Ohtaka K. Seattering Theory of Low-Energy Photon Diffraction[J]. Journal ofPhysical Chemistry,1980,13(4):667-680.
    [8] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics andEleetronics[J]. Physical Review Letters,1987,58(20):2059-2062.
    [9] John S. Strong Localization of Photons in Certain Disordered DieleetricSuperlattices[J]. Physical Review Letters,1987,58(23):2486-2489.
    [10] Yablonovitch E, Gmitter TJ. Photonic Band Strueture: the Face Centered CubicCase Employing Nonspherical Atoms[J]. Physical Review Letters,1991,67(17):2295-2298.
    [11] Ho KM, Chan CT, Soukoulis CM. Existance of a Photonic Gap in PeriodicDielectric Structures[J]. Physical Review Letters,1990,65(25):3152-3155.
    [12] Yablonovitch E, Gmitter TJ. Photonic Band Structure: the Face CenteredCubiC Case. Physical Review Letters,1989,63(18):1950-1953.
    [13] Wang DY, Caruso RA, Caruso F. Synthesis of Macroporous Titania andInorganic Composite Materials from Coated Colloidal Spheres-A Novel Routeto Tune Pore Morphology[J]. Chemistry of Materials,2001,13:364-371.
    [14] Li JG, Chang YH, Lin YS, Kuo SW. Templating Amphiphilic Poly(EthyleneOxide-b-Epsilon-Caprolactone) Diblock Copolymers Provides OrderedMesoporous Silicas with Large Tunable Pores[J]. RSC Advances,2012,2(33):12973-12982.
    [15] Marlow F, Dong WT. Engineering Nanoarchitectures for Photonic Crystals[J].ChemPhysChem,2003,4:549-554.
    [16] Vlasov A, Yao N, Norris DJ. Synthesis of Photonic Crystals for OpticalWavelengths from Semiconductor Quantum Dots[J]. Advanced Materials,1999,11(2):165-169.
    [17] Sadakane M, Takahashi C, Kato N, Ogihara H, Nodasaka Y, Doi Y, Hinatsu Y,Ueda W. Three-Dimensionally Ordered Macroporous (3DOM) Materials ofSpinel-Type Mixed Iron Oxides. Synthesis, Structural Characterization, andFormation Mechanism of Inverse Opals with a Skeleton Structure[J]. Bulletionof the Chemical Society of Japan,2007,80(4):677-685.
    [18] Judith EGJ,Wijnhoven and Willem LV. Preparation of Photonic Crystals Made ofAir Spheres in Titania[J]. Science,1998,281:802-804.
    [19] Wang H, Yan K, Xie J, Duan M. Fabrication of ZnO Colloidal Photonic Crystalby Spin-Coating Method[J]. Materials Science in Semiconductor Processing,2008,11(2):44-47.
    [20] Wang TW, Sel O, Djerdj I, Smarsly B. Preparation of a Large MesoporousCeO2with Crystalline Walls Using PMMA Colloidal Crystal Templates[J].Colloid and Polymer Science,2006,285(1):1-9.
    [21] Antonioli D, Eeregibus S, Panzarasa G. PTFE-PMMA Core-Shell ColloidalParticles as Building Blocks for Self-Assembled Opals: Synthesis, Propertiesand Optical Response[J]. Polymer International,2012,61(8):1294-1301.
    [22] Míguez H, Meseguer F, López C, Misfsud A, Moya JS, Vázque L. Evidence ofFCC Crystallization of SiO2Nanospheres[J]. Langmuir,1997,13(23):6009-6011.
    [23] Meseguer F, Blanco A, Míguez H, García-Santamaría F, Ibisate M, López C.Synthesis of Inverse Opals[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2001,202:281-290.
    [24] Gebhardt R, Holzmuller W, Zhong Q, Muller-Buschbaum P, Kulozika U.Structural Ordering of Casein Micelles on Silicon Nitride Micro-Sieves duringFiltration[J]. Colloids and Surfaces-B-Biointerfaces,2011,88(1):240-245.
    [25] Pichumani M, Bagheri P, Poduska KM, Gonzalez-Vinas W, Yethiraj A.Dynamics, Crystallization and Structures in Colloid Spin Coating[J]. SoftMatter,2013,9(12):3220-3229.
    [26] Srivastava AK, Kim M, Kim SM, Kim MK, Lee K, Lee YH, Lee MH, Lee SH.Dielectrophoretic and Electrophoretic Force Analysis of Colloidal Fullerenesin a Nematic Liquid-Crystal Medium[J]. Physical Review E,2009,80(5):051702.
    [27] Yoshihisa S, Tsutomu S, Katsuhiro T. Colloidal Crystallization by aCentrifugation Method[J]. Journal of Crystal Growth,2011,318(1):780-783.
    [28] Jiang P, Bertone JF, Hwang KS, Colvin VL. Single-Crystal ColloidalMultilayers of Controlled Thickness[J]. Chemistry of Materials,1999,11(8):2132-2140.
    [29] Dimitrov AS, Nagayama K. Continuous Convective Assembling of FineParticles into Two-Dimensional Arrays on Solid Surfaces[J]. Langmuir,1996,12(5):1303-1311.
    [30] Cai ZY, Teng JH, Xia DY, Zhao XS. Self-Assembly of Crack-Free SilicaColloidal Crystals on Patterned Silicon Substrates[J]. The Journal of PhysicalChemistry C,2011,115(20):9970-9976.
    [31] Sun ZQ, Yang B. Farbrication Colloidal Crystals and Construction of OrderedNanostructures[J]. Nanoscale Research Letters,2006,1(1):46-56.
    [32] Ge DT, Li Y, Yang LL, Fan Z, Liu C, Zhang X. Improved Self-Assemblythrough UV/Ozone Surface-Modification of Colloidal Spheres[J]. Thin SolidFilms,2011,519(15):5203-5207.
    [33] Ye XZ, Qi LM. Two-Dimensionally Patterned Nanostructures Based onMonolayer Colloidal Crystals: Controllable Fabrication, Assembly, andApplications[J]. Nano Today,2011,6(6):608-631.
    [34] Sakamoto JS, Dunn B. Hierarchical Battery Electrodes Based on Inverted OpalStructures[J]. Journal of Material Chemistry,2002,12(10):2859-2861.
    [35] Vu A, Qian YQ, Andreas S. Porous Electrode Materials for Lithium-IonBatteries-How to Prepare Them and What Makes Them Special[J]. AdavancedEnergy Materials,2012,2:1056-1085.
    [36] Doherty CM, Caruso RA, Smarsly BM, Drummond CJ. Colloidal CrystalTemplating to Produce Hierarchically Porous LiFePO4Electrode Materials forHigh Power Lithium Ion Batteries[J]. Chemistry of Materials,2009,21:2895-2903.
    [37] Ma DL, Cao ZY, Wang HG, Huang XL, Wang LM, Zhang XB.Three-Dimensionally Ordered Macroporous FeF3and its in Situ HomogenousPolymerization Coating for High Energy and Power Density Lithium IonBatteries[J]. Energy and Environmental Science,2011,5:8538-8542.
    [38] Nishimura S, Abrams N, Lewis BA, Halaoui LI, Mallouk TE, Benkstein KD,Lagemaat J, Frank AJ. Standing Wave Enhancement of Red Absorbance andPhotocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled toPhotonic Crystals[J]. Journal of the American Chemical Society,2003,125:6306-6310.
    [39] Bermel P, Luo CY, Zeng LR, Kimerling LC, Joannopoulos JD. ImprovingThin-Film Crystalline Silicon Solar Cell Efficiencies with Photonic Crystals[J].Optical Express,2007,15(25):16986-17000.
    [40] Bielawny A, Miclea PT.3D Photonic Crystal Intermediate Reflector forMicromorph Thin-Film Tandem Solar Cell[J]. Physica Status SolidiA-Applications and Materials Science,2008,205(12):2796–2810.
    [41] Prieto B, Galiana PA, Postigo C, Algora JL. Enhanced Quantum Efficiency ofGe Solar Cells by a Two-Dimensional Photonic Crystals NanostructuredSurface[J]. Applied Physics Letters,2009,94:191102.
    [42] Das K, Lagoudas DC, Whitcom JD. Analysis of a Nano-Porous Multi-LayerFilm for Thermal Radiation Barrier Coatings[J]. Applied Nanoscience,2011,1:173-188.
    [43] Lee HS, Kubrin R, Zierold R, Petrov AY, Nielsch K, Schneider GA, Eich M.Thermal Radiation Transmission and Reflection Properties of Ceramic3DPhotonic Crystals[J]. Journal of the Optical Society of America B-OpticalPhysics,2012,29(3):450-457.
    [44] Li ZY, Yang LL, Ge DT, Ding YB, Pan L, Zhao JP, Li Y. Magnetron SputteringSiC Films on Nickel Photonic Crystals with High Emissivity for HighTemperature Applications[J]. Applied Surface Science,2012,259:811-815.
    [45] Luo Q, Liu Zj, Li L, Xie SH, Kong JL, Zhao DY. Creating Highly OrderedMetal, Alloy, and Semiconductor Macrostructures by Electrodeposition, IonSpraying, and Laser Spraying[J]. Advanced Materials,2001,13(4):286-289.
    [46] Li ZY, Ge DT, Yang LL, Liu X, Ding YB, Pan L, Zhao JP, Li Y. FacileSynthesis and Improved Photoluminescence of Periodic SiC Nanorod Arraysby SiO2Templates-Assisted Magnetron Sputtering Method[J]. Journal ofAlloys and Compounds,2012,537:50-53.
    [47] Asoh H, Uehara A, Ono S. Fabrication of Porous Silica withThree-Dimensional Periodicity by Si Anodization[J]. Japanese Journal ofApplied Phyics,2004,43(9A-B): L1159-L1161.
    [48] Asoh H, Arai F, Ono S. Effect of Noble Metal Catalyst Species on theMorphology of Macroporous Silicon Fromed by Metal-Assisted ChemicalEtching[J]. Electrochimica Acta,2009,54:5142-5148.
    [49] Asoh H, Fujihara K, Ono S. Triangle Pore Arrays Fabricated on Si(111)Substrate by Sphere Lithography Combined with Metal-Assisted ChemicalEtching and Anisotropic Chemical Etching[J]. Nanoscale Research Letters,2012,7:406.
    [50] Blanco A, Chomski E, Grabtchak S, Ibisate M, John S. Large-Scale Synthesisof a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgapnear1.5Micrometres[J]. Nature,2000,405(25):437-440.
    [51] Kim H, Han B, Choo J, Cho J. Three-Dimensional Porous Silicon Particles forUse in High-Performance Lithium Secondary Batteries[J]. AngewandteChemie International Edition,2008,47:10151-10154.
    [52] Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J. Assembly ofLarge-Area, Highly Ordered, Crack-Free Inverse Opal Films[J]. AppliedPhysical Sciences,2010,107(23):10354-10359.
    [53] Liu X, Zhang Y, Ge DT, Zhao JP, Li Y, Endres F. Three-Dimensionally OrderedMacroporous Silicon Films Made by Electrodeposition form an Ionic Liquid[J].Physical Chemistry Chemcial Physics,2012,14(15):5100-5105.
    [54] Esmanski A, Ozin GA. Three-Dimensionally Silicon Inverse-Opal-BasedMacroporous Materials as Negative Electrodes for Lithium Ion Batteries[J].Advanced Functional Materials,2009,19:1999-2010.
    [55] Míguez H, Meseguer F, López C, Holgado M, Andreasen G, Mifsud A, Fornés.Germanium FCC Structure from a Colloidal Crystal Template[J]. Langmuir,2000,16:4405-4408.
    [56] Míguez H, Chomski E, Carcía-Santamaría F, Ibisate M, John S, López C.Photonic Bandgap Engineering in Germanium Inverse Opals by ChemicalVapor Deposition[J]. Advanced Materials,2001,13(21):1634-1637.
    [57] Shimmin RG, Vajtai R, Siegel RW, Braun PV. Room-Temperature Assembly ofGermanium Photonic Crystals through Colloidal Crystal Templating[J].Chemistry of Materials,2007,19:2102-2107.
    [58] Meng XD, Rihab AS, Zhao JP, Borissenko N, Li Y, Endres F. Electrodepositionof3D Ordered Macroporous Germanium from Ionic Liquids: A FeasibleMethod to Make Photonic Crystals with a High Dielectric Constant[J].Angewandte Chemie-International Edition,2009,48(15):2701-2707.
    [59] Park MH, Kim K, Kim J, Cho J. Flexible Dimensional Control ofHigh-Capacity Li-Ion-Battery Anodes: From0D Hollow to3D PorousGermanium Nanoparticle Assemblies[J]. Advanced Materials,2010,22:415-418.
    [60] García-Santamaría F, Ibisate M, Rodríguez I, Meseguer F, López C. PhotonicBand Engineering in Opals by Growth of Si/Ge Multilayer Shell[J]. AdvancedMaterials,2003,15(10):788-792.
    [61] Song T, Jeon Y, Samal M, Han H, Park H, Ha J, Yi DK, Choi JM, Chang H,Choi YM, Paik U. A Ge Inverse Opal with Porous Walls as an Anode forLithium Ion Batteries[J]. Energy and Envrionmental Science,2012,5:9028.
    [62] Wilkes JS. A Short History of Ionic Liquids-from Molten Salts to NeotericSolvents[J]. Green Chemistry,2002,4:73-80.
    [63] Fuller J, Carlin RT, Delong HC, Haworth D. Structure ofl-Ethyl-3-Methylimidazolium Hexafluorophosphate-Model forRoom-Temperature Molten-Salts[J]. Journal of the Chemical Society-ChemicalCommunications,1994,3:299-300.
    [64] Currie M, Estager J, Licence P, Men S, Nockemann P, Seddon KR,Swadzba-Kwasny M, Terrade C. Chlorostannate(II) Ionic Liquids: Speciation,Lewis Acidity, and Oxidative Stability[J]. Inorganic Chemistry,2013,52(4):1710-1721.
    [65] Fujita K, Murata K, Masuda M, Nakamura N, Ohno H. Ionic Liquids Designedfor Advanced Applications in Bioelectrochemistry[J]. RSC Advances,2012,2(10):4018-4030.
    [66] Wang H, Gurau G, Rogers RD. Ionic Liquid Processing of Cellulose[J].Chemical Society Reviews,2012,41(4):1519-1537.
    [67]杨雅立,王晓化,寇元,闵恩泽.不断壮大的离子液体家族[J].化学进展,2003,15(6):471-476.
    [68]董智云.含脲功能化离子液体的合成及其阴离子识别性能[D].上海:华东师范大学,2012:4-5.
    [69] Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJ. An Integrated DigitalMicrofluidic Chip for Multiplexed Proteomic Sample Preparation and Analysisby MALDI-MS[J]. Lab on a Chip,2006,6(9):1213-1219.
    [70]胡晓东.离子液体的电致驱动及变焦离子液体透镜的研究[D].兰州:兰州大学,2012:6-7.
    [71] Qiao K, Deng YQ. Alkylations of Benzene in Room Temperature Ionic LiquidsModified with HCl[J]. Journal of Molecular Catalysis,2001,171:81-84.
    [72] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis andCatalysis[J]. Chemical Reviews,1999,99:2071-2083.
    [73] Ermakov IV, Beri S, Ashour M, Danckaert J, Docter B, Bolk J, Leijtens XJM,Verschaffelt G. Semiconductor Ring Laser with On-Chip Filtered OpticalFeedback for Discrete Wavelength Tuning[J]. IEEE Journal of QuantumElectronics,2012,48(2):129-136.
    [74] Fang P, Zhu DR, Si SH, Xiaohui. Photoelectrochemical SemiconductorBiosensors[J]. Progress in Chemistry,2008,20(4):586-593.
    [75] Genovese MP, Lightcap IV, Kamat PV. Sun-Believable Solar Paint. ATransformative One-Step Approach for Designing Nanocrystalline SolarCells[J]. Acs Nano,2012,6(1):865-872.
    [76] Elwel D. Electrowinning of Silicon from Solutions of Silica in Alkali MetalFluoride/Alkaline Earth Fluoride Eutectics[J]. Solar Energy Materials,1981,5(2):205-210.
    [77] Nohira T, Yasuda K, Ito Y. Pinpoint and Bulk Electrochemical Reduction ofInsulating Silicon Dioxide to Silicon[J]. Nature Materials,2003,2:397-401.
    [78] Yasuda K, Nohira T, Ito Y. Mechanism of Direct Electrolytic Reduction ofSolid SiO2to Si in Molten CaCl2[J]. Electrochemical Society,2005,152(4):69-174.
    [79] Katayama Y, Yokomizo M, Miura T, Kishi T. Preparation of a NovelFluorosilicate Salt for Electrodeposition of Silicon at Low Temperature[J].Electrochemistry,2001,69:834-836.
    [80] Abedin ZE, Borissenko N, Endres F. Electrodeposition of Nanoscale Silicon ina Room Temperature Ionic Liquid. Electrochemcial Communications,2004,6:510-514.
    [81] Borisenko N, Abdin ZE, Endres F. In Situ STM Investigation of GoldReconstruction and of Silicon Electrodeposition on Au(111) in the RoomTemperature Ionic Liquid1-Butyl-Methyl Pyrrolidinium Bis(trifluoromethylSulfonyl)imide. The Journal of Physcial Chemisty B,2006,110:6250-6256.
    [82] Endres F. Electrodeposition of a Thin Germanium Film on Gold from a RoomTemperature Ionic Liquid[J]. Physical Chemistry Chemical Physics,2001,3:3165-3174.
    [83] Martineau F, Namur K, Mallet J, Delavoie F, Endres F, Troyon M, Molinari M.Electrodeposition at Room Temperature of Amorphous Silicon and GermaniumNanowires in Ionic Liquid[J]. Materials Science and Engineering,2009,6:012012.
    [84] Al-Salman R, Mallet J, Molinari M, Fricoteaux P, Martineau F, TroyonM, ElAbedin SZ, Endres F. Template Assisted Electrodeposition of Germanium andSilicon Nanowires in an Ionic Liquid[J]. Physical Chemistry Chemical Physics,2008,10(41):6233-6237.
    [85] Lahiri A, Olschewski M, H fft O, Abedin SZE, Endres F. In SituSpectroelectrochemical Investigation of Ge, Si, and SixGe1-xElectrodepositionfrom an Ionic Liquid[J]. The Journal of Physical Chemistry C,2013,117:1722-1727.
    [86] Lahiri A, Abedin E, Endres F. UV-Assisted Electrodeposition of Germaniumfrom an Air-and Water-Stable Ionic Liquid[J]. The Journal of PhysicalChemsitry C,2012,116:17739-17745.
    [87] Wu MX, Brooks NR, Schaltin S, Binnemans K, Fransaer J. Electrodepositionof Germanium from the Ionic Liquid1-Butyl-1-MethylpyrrolidiniumDicyanamide[J]. Physical Chemistry Chemical Physics,2013,15:4955-4964.
    [88] Im SH, Kim MH, Park OO. Thickness Control of Colloidal Crystlas with aSubstrate Dipped at a Tilted Angle into a Colloidal Suspension[J]. Chemistryof Materials,2003,15:1797-1802.
    [89] Seoane RG, Corderí S, Gómez E, Calvar N, González EJ, Macedo EA,Domínguez á. Temperature Dependence and Structural Influence on theThermophysical Properties of Eleven Commercial Ionic Liquids[J]. Industrialand Engineering Chemistry Research.2012,51:2492-2504.
    [90] El Abedin SZ, Endres F. Free-Standing Aluminium Nanowire ArchitecturesMade in an Ionic Liquid[J]. Chemphyschem,2012,13(1):250-255.
    [91] Endres F, Borisenko N, El Abedin SZ. The Interface IonicLiquid(s)/Electrode(s): In Situ STM and AFM Measurements[J]. FaradayDiscussions,2012,154:221-233.
    [92]孟祥东.锗有序大孔结构的构筑及其光学特性[D].哈尔滨:哈尔滨工业大学,2010:51-52.
    [93]卢俊峰.基于DMH为配位剂的无氰电镀银工艺及电沉积行为研究[D].哈尔滨:哈尔滨工业大学,2007:72-73.
    [94]杨培霞,安茂忠,苏彩娜,王福平.离子液体中钴的电沉积行为[J].物理化学学报,2008,24(11):2032-2036.
    [95] Atkin R, Borisenko N, Druschler M, Abedin SZE, Endres F, Hayes R,Huberwd B and Rolingw B. An in Situ STM/AFM and ImpedanceSpectroscopy Study of the Extremely Pure1-Butyl-1-MethylpyrrolidiniumTris(pentafluoroethyl) Trifluorophosphate/Au(111) Interface: PotentialDependent Solvation Layers and the Herringbone Reconstruction[J]. PhysicalChemistry Chemical Physics,2011,13:6849-6857.
    [96]黄孝瑛.电子衍射分析方法[M].上海:上海科学技术出版社,1976:84-85.
    [97]黄孝瑛.透射电子显微学[M].上海:上海科学技术出版社,1987:277-281.
    [98] Coppari F, Cicco AD, Principi E, Trapananti A, Pinto N, Polian A, Chagnot S,Congeduti A. Combination of Optical and X-Ray Techniques in the Study ofAmorphous Semiconductors under High Pressure: an Upgrade Setup forCombined XAS and XRD Measurements[J]. High Pressure Research,2010,1:28-30.
    [99] Pages O, Souhabi J, Torres VJB, Postnikov AV, Rustagi KC. Re-Examinationof the SiGe Raman Spectra: Percolation/One-Dimensional-Cluster Scheme andab Initio Calculations[J]. Physical Review B,2012,86:045201.
    [100]Danaa A, Tokayb S, Aydinli A,Formation of Ge Nanocrystals and SiGe inPECVD Grown SiNx:Ge Thin Films[J]. Materials Science in SemiconductorProcessing,2006,9:848-852.
    [101]Liu LZ, Wu XL, Shen JC, Li TH, Gao F, Chu PK, Identification of LocalSilicon Cluster Nanostructures inside SixGe1-xAlloy Nanocrystals by RamanSpectroscopy[J]. Chemical Communications,2010,46(30):5539-5541.
    [102]Long E, Azarov A, Klow F, Galeckas A, Kuznetsov AY, Diplas S. GeRedistribution in SiO2/SiGe Structures under Thermal Oxidation: Dynamicsand Predictions[J]. Journal of Applied Physics,2012,111(2):024308.
    [103]Matsui A, Yonenaga I, Sumino K. Czochralski Growth of Bulk Crystal of SiGeAlloys[J]. Journal of Crystal Growth,1998,183:109-116.
    [104]Gesemann B, Schweizer SL, Wehrspohn RB. Thermal Emission Properties of2D and3D Silicon Photonic Crystals[J]. Photonics andNanostructures-Fundamentals and Applications,2010,8:107-111.
    [105]McLachlan M A, Johnson NP, Richard M, et al. Thin Film Photonic Crystals:Synthesis and Characterisation[J]. Journal of Material Chemistry,2004,14:144-150.
    [106]Liu YL, Liu YC, Mu R, Yang H, Shao CL, Zhang JY, LuYM, Shen DZ and FanXW. The Structural and Optical Properties of Cu2O Films Electrodeposited onDifferent Substrates[J]. Semiconductor Science and Technology,2005,20:44-49.
    [107]葛邓腾.聚苯胺光子晶体的制备及其性能研究[D].哈尔滨:哈尔滨工业大学,2011:80-81.
    [108]Judith EGJ,Wijnhoven and Willem LV. Preparation of Photonic Crystals MadeofAir Spheres in Titania[J]. Science,1998,281:802-804.
    [109]Nagpal P, Josephson DP, Denny NR, DeWilde J, Norrisx DJ, Stein A.Fabrication of Carbon/Refractory Metal Nanocomposites as Thermally StableMetallic Photonic Crystals[J]. Journal of Materials Chemistry,2011,21:10836-10843.
    [110]Stein A, Li F, Denny NR. Morphological Control in Colloidal CrystalTemplating of Inverse Opals, Hierarchical Structures, and Shaped Particles[J].Chemical Materials,2008,20(3):649-666.
    [111]Zhao JP, Li Y, Cao Z, Xin WH. Fabrication of Three-Dimensionally OrderedMacroporous Gadolinia-Doped Ceria Films[J]. New Journal of Chemistry,2008,32:1014-1019.
    [112]Hao YW, Zhu FQ, Chien CL, and Searson PC. Fabrication and MagneticProperties of Ordered Marcoporous Nickel Structures[J]. Journal of theElectrochemical Society,2007,152: D65-D69.
    [113]Bartlett PN, Baumberg JJ, Birkin PR, Ghanem MA, Netti MC. Highly OrderedMacroporous Gold and Platinum Films Formed by Electrochemical Depositionthrough Templates Assembled from Submicron Diameter MonodispersePolystyrene Spheres[J]. Chemistry of Materials,2002,14:2199-2208.
    [114]Bartlett PN, Dunford T, Ghanem MA. Templated Electrochemical Deposition ofNanostructured Macroporous PbO2[J]. Journal of Materials Chemistry,2002,12:3130-3135.
    [115]El Abedin SZ, Moustafa EM, Hempelmann R, Natter H, Endres F.Electrodeposition of Nano-and Microcrystalline Aluminum in Three DifferentAir and Water Stable Ionic Liquids[J]. ChemPhysChem,2006,7:1535-1543.
    [116]韩哲文,张德震,杨全兴,王彬芳.高分子科学教程[M].上海:华东理工大学出版社,2002:324.
    [117]Kashi MA, Ramazani A, Doudafkan S, Esmaeily AS. Microstructure andMagnetic Properties in Arrays of ac Electrodeposited FexNi1-xNanowiresInduced by the Continuous and Pulse Electrodeposition[J]. Applied PhysicsA-Materials Science&Processing,2011,102(3):761-764.
    [118]Zhu R, McLachlan M, Reyntjens S, Tariq F, Ryan MP, McComb DW.Controlling the Electrodeposition of Mesoporous Metals for Nanoplasmonic[J].Nanoscale,2009,1:355-359.