Zr-Ta-Nb-Ti-W-N多主元薄膜组织结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高Ti6Al4V合金的耐磨性能,本文采用多靶磁控溅射与等离子体基注氮方法在Ti6Al4V合金表面分别制备了四元TaNbTiW合金薄膜,(TaNbTiW)N氮化物薄膜,五元ZrTaNbTiW合金薄膜和(ZrTaNbTiW)N氮化物薄膜。采用X射线荧光光谱(XRF)、X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等分析手段对薄膜的化学成分,元素价态、相组成和微观结构进行了分析,研究了薄膜的摩擦磨损性能并对其机理进行了分析。
     通过磁控溅射在Ti6Al4V合金上制备了TaNbTiW合金薄膜,并对薄膜的组织结构与性能进行了研究。研究表明,TaNbTiW合金薄膜为简单的体心立方结构且各衍射峰的位置随着Ta、Nb含量的减少及Ti、W含量的增加逐渐向高角度方向移动。TaNbTiW合金薄膜在500,700和900℃退火时具有良好的相稳定性和抗氧化性能,且随着Ti和W含量的增加薄膜的抗氧化性能增强。场发射扫描电子显微镜(FESEM)分析结果显示,TaNbTiW合金薄膜的表面为颗粒状,断面为柱状晶结构。在Ti6Al4V合金基体上沉积的TaNbTiW合金薄膜的最大硬度为5.2GPa,较基体硬度提高了13%左右。摩擦系数较基体有所上升,但比磨损率较基体下降了17%。
     采用磁控溅射和等离子体基注氮方法制备了(TaNbTiW)N氮化物薄膜。XPS结果表明,TaNbTiW合金薄膜注氮后形成了Ta-N、Nb-N、Ti-NO、Ta-O化学键和Ta~(0+)、W~(0+)价态。XRD结果表明,(TaNbTiW)N薄膜由体心立方和面心立方固溶体组成。TaNbTiW合金薄膜注氮后,其硬度和弹性模量都有显著提高且随着注氮时间的增加而增大,Ta_(25.4)Nb_(13.4)Ti_(20.9)W_(40.3)注氮3h试样具有最大的硬度和弹性模量,其值分别达到9.0和154.1GPa。注氮之后摩擦系数较合金薄膜有显著降低,耐磨性能较合金薄膜和基体Ti6Al4V都有明显提高,注氮1h薄膜具有最小的比磨损率,较四元合金薄膜降低了200%,较基体Ti6Al4V下降了223%。氮化物薄膜的磨损机理主要是磨粒磨损,同时也存在粘着磨损。
     采用多靶磁控溅射制备了五元ZrTaNbTiW合金薄膜。XRD分析结构表明,ZrTaNbTiW合金薄膜为简单的体心立方或非晶相。当薄膜中Zr含量超过35at%时,出现非晶相。该薄膜在500、700和900℃退火无相转变发生,具有良好的相稳定性,且随着Ti和W含量的增加,薄膜的抗氧化性能提高。FESEM分析结果表明,ZrTaNbTiW合金薄膜的表面形貌为颗粒状,断面形貌为柱状晶。随着Zr含量的增多,表面颗粒逐渐变小,断面柱状晶结构逐渐变致密。ZrTaNbTiW合金薄膜的最大硬度为6.7GPa。ZrTaNbTiW合金薄膜的摩擦系数为0.35左右,较基体Ti6Al4V合金高,但比磨损率显著低于基体Ti6Al4V,最大下降了2倍多,其磨损机制主要为磨粒磨损和粘着磨损,同时伴有轻微的氧化磨损。
     采用多靶磁控溅射和等离子体基注氮方法制备了(ZrTaNbTiW)N氮化物薄膜。XPS分析结果表明,薄膜中存在Ta-N、Nb-N、Ti-N、Zr-N、Zr-O化学键和Nb~(0+)、W~(0+)价态。XRD结果显示,五元合金薄膜ZrTaNbTiW注氮之后相结构为体心立方和面心立方组成的固溶体。(ZrTaNbTiW)N薄膜的断面为宽度约为30nm的柱状晶。注氮后,薄膜的硬度和弹性模量都有显著提高,最大硬度和弹性模量分别达到13.5和178.9GPa,耐磨性能较其合金薄膜ZrTaNbTiW和基体Ti6Al4V都有较大的提高,比磨损率分别下降了3.6倍和5倍。
     通过对TaNbTiW合金薄膜分别注N,加入Zr元素,加Zr元素后注N分析发现,TaNbTiW合金薄膜注氮后,薄膜中形成了面心立方结构的氮化物,晶体结构由原来的体心立方转变为体心立方和面心立方的混合固溶体。Zr元素加入TaNbTiW合金薄膜后,薄膜的晶格畸变增大,当Zr、Ta、Nb、Ti和W各元素含量属于高熵薄膜范畴时,薄膜具有较高的混合熵,晶格畸变和高的混合熵导致薄膜中形成非晶相。在TaNbTiW薄膜中加入Zr元素后注N,薄膜中不但形成了面心立方的氮化物而且显著增大了薄膜的混合熵,薄膜的晶体结构为面心立方和体心立方固溶体。TaNbTiW薄膜具有较高的硬度和耐磨性能,且随着Zr元素的加入,N离子的注入,Zr元素加入之后注N,薄膜的硬度和耐磨性能呈现依次增大趋势。
In order to improve the wear resistance of Ti6Al4V alloy, multi-target magnetronsputtering and nitrogen plasma based ion implantation are used to preparedquaternary TaNbTiW alloy films,(TaNbTiW)N nitride films, quinary ZrTaNbTiWalloy films and (ZrTaNbTiW)N nitride films. The chemical composition, chemicalbonds, constituent phase, microstructure are investigated using X-ray fluorescencespectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), XRD, SEM andTEM techniques. Wear properties and its mechanism of the films are analyzed.
     Quaternary TaNbTiW alloy films are deposited on Ti6Al4V alloy by magnetronsputtering. Structure and performance of the films are investigated. XRD shows thatthe films have body-centered cubic (BCC) structure, and the diffraction peaks areshift to higher angle with the decreasing of Ta, Nb content and increasing of Ti, Wcontent. The films that annealed at500,700,900℃have good phase stability andoxidation resistance, and the oxidation resistance is enhanced with the increasing ofTi, W content. The field emission scanning electron microscope (FESEM)observation shows that the top surface of the films is granular-like structure, and thecross-section is columnar structure. The maximum hardness of the film deposited onTi6Al4V is5.2GPa; it is increased about13%compared to Ti6Al4V substrate. Thefriction coefficient of the films is higher than Ti6Al4V alloy, but the wear rate isdecreased17%.
     (TaNbTiW)N films are prepared by combining of magnetron sputtering depositionand nitrogen plasma based ion implantation (N-PBII). XPS investigations indicatesthat the nitride films are like composed of Ta-N, Nb-N, TiNxOy, TaOx, Ta and W.XRD shows that the nitride films are composed of BCC and FCC solid solutionstructures. The hardness and modulus of the nitride films are increased withincreasing implantation time and the hardness and modulus of alloy filmTa_(25.4)Nb_(13.4)Ti_(20.9)W_(40.3)implanted3h reaches maximum values of9.0and154.1GPaafter nitrogen implantation. The friction coefficient and the wear rate of(TaNbTiW)N films are significantly decreased compared to TaNbTiW alloy filmsand substrate Ti6Al4V. The1h nitrogen implantation film has minimal wear rate. Ascompared to alloy film and substrate, it is decreased200%and223%, respectively.The wear mechanism of the nitride film is abrasive wear, accompanied by adhesivewear.
     Quinary ZrTaNbTiW alloy films are prepared by multi-targets magnetronsputtering. XRD shows that the alloy films ZrTaNbTiW are simple BCC structure or amorphous. When the atomic percent of Zr exceeded35%, the films are exhibitedamorphous phase. The films that annealed at500,700,900℃have good phasestability and oxidation resistance, and the oxidation resistance is enhanced with theincreasing of Ti, W content. FESEM analysis results show that the top surface of thefilms is granular-like structure, and the cross-section is columnar structure. Thesurface particles gradually become small and columnar crystal gradually becomesdense with the increasing of Zr content. The maximum hardness of the filmdeposited on Ti6Al4V alloy is6.7GPa. The friction coefficient of the films is about0.35, higher than Ti6Al4V alloy. But the wear rate is significantly lower thanTi6Al4V alloy; it is decreased more than2times. The wear mechanism is mainlyabrasive wear and adhesive wear, accompanied by oxidative wear.
     Multi-element (ZrTaNbTiW)N films are prepared by multi-target magnetronsputtering deposition and nitrogen plasma based ion implantation (PBII). It is seenthat a mixture of ZrN, TaN, TiN, Nb-N, ZrO_2, Ta, Nb and W is formed. Afternitrogen implantation, the alloy films (ZrTaNbTiW)N are composed of BCC andFCC solid solution and the width of columnar grain is about5nm. The hardness andmodulus of the films are improved significantly after nitrogen ion implantation andreach maximum values of13.5and178.9GPa, respectively. The (ZrTaNbTiW)Nfilms have better wear resistance than its ZrTaNbTiW alloy films and Ti6Al4Vsubstrate, the wear rate is decreased3.6times and5times, respectively.
     Through studying on the nitrogen implantation in TaNbTiW films, Zr additionin TaNbTiW films, and Zr addition then nitrogen in TaNbTiW films, respectively. Itis found that FCC nitrides are formed in the TaNbTiW films after nitrogenimplantation. The structure of the films is changed to FCC and BCC solid solution.After Zr addition in TaNbTiW films, the lattice distortion is increased. When thecontent of the each element Zr, Ta, Nb, Ti and W are in the range of the high entropyfilms, the films have high mixing entropy. So the lattice distortion and high mixingentropy lead to the formation of amorphous phase. When the TaNbTiW films addedZr then nitrogen implanted, not only BCC nitrides formation but also significantlyincreases the mixing entropy of the films. The structure of the films is BCC andFCC solid solution. The TaNbTiW films have high hardness and wear resistance,and with the Zr addition, nitrogen implantation, Zr addition then nitrogenimplantation, the hardness and wear resistance presents successively increasingtrend.
引文
[1]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2005:1-2.
    [2] Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K. RefractoryHigh-entropy Alloys[J]. Intermetallics,2010,18:1758-1765.
    [3] Inoue A, Nakamura T, Nishiyama N, Masumoto T. Mg-Cu-Y Bulk AmorphousAlloys with High Tensile Strength Produced by a High-Pressure Die CastingMethod[J]. Materials Transactions, JIM,1992,33:937-945.
    [4] Inoue A, Zhang T, Masumoto T. Preparation of Bulky AmorphousZr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal andMechanical Properties[J]. Materials Transactions, JIM,1995,36:391-398.
    [5] Lu Z P, Goh T T, Li Y, Ng S C. Glass Formation in La-based La-Al-Ni-Cu-(Co)Alloys by Bridgman Solidification and Their Glass Forming Ability[J]. ActaMater,1999,47:2215-2224.
    [6] He G, Eckert J, Hagiwara M. Mechanical Properties and Fracture Behavior ofthe Modified Ti-based Bulk Metallic Glass-forming Alloys[J]. MaterialsLetters,2006,60:656-661.
    [7] Greer A L. Confusion by Design [J]. Nature,1993,366:303-304.
    [8] Ranganathan S. Alloyed Pleasures: Multimetallic Cocktails[J]. CurrentScience,2003,85:1404-1406.
    [9] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsai C H, Chang S Y.Nanostructured High-entropy Alloy with Multi-Principal Elements NovelAlloy Design Concepts and Outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303.
    [10] Li C, Li J C, Zhao M, Jiang Q. Effect of Alloying Elements on Microstructureand Properties of Multiprincipal Elements High-entropy Alloys[J]. Journal ofAlloys and Compounds,2009,475:752-757.
    [11]徐祖耀,李麟著.材料热力学[M],北京:科学出版社,2005:15.
    [12] Zhang Y, Zhou Y J. Solid Solution Formation Criteria for High EntropyAlloys[J]. Materials Science Forum Vo1s,2007,561-565:1337-1339.
    [13] Varalakshmi S, Kamaraj M, Murty B S. Synthesis and Characterization ofNanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by MechanicalAlloying[J]. Journal of Alloys and Compounds,2008,460:253-257.
    [14] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang SY. Nanostructured High-entropy Alloys with Multiple Principal Elements:Novel Alloy Design Concepts and Outcomes[J]. Advanced EngineeringMaterials,2004,6:299-303.
    [15] Huang P K, Yeh J W, Shun T T, Chen S K. Multi-principal Element Alloyswith Improved Oxidation and Wear Resistance for Thermal Spray Coating[J].Advanced Engineering Materials,2004,6:74-78.
    [16] Hsu C Y, Yeh J W, Chen S K, Shun T T. Wear Resistance and HighTemperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy withBoron Addition[J]. Metallurgical and Materials Transactions A,2004,35A:1465-1469.
    [17] Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, ChangSY. Microstructure Characterization of AlxCoCrCuFeNi High-entropy AlloySystem with Multiprincipal Elements[J]. Metallurgical and MaterialsTransactions A,2005,36:881-893.
    [18] Tong C J, Chen M R, Chen S K, Yeh J W, Shun T T, Lin S J, Chang S Y.Mechanical Performance of the AlxCoCrCuFeNi High-entropy Alloy Systemwith Multiprincipal Elements[J]. Metallurgical and Materials Transactions A,2005,36A:1263-1271.
    [19] Zhang H, Pan Y, He Y Z, Jiao H S. Microstructure and Properties of6FeNiCoSiCrAlTi High-entropy Alloy Coating Prepared by Laser Cladding[J].Applied Surface Science,2010,257:2259-2263.
    [20] Lopez M F, Jimenez J A, Gutierrez A. Corrosion Study of Surface-modifiedVanadium-free Titanium Alloys[J]. Electrochimica Acta,2003,48:1395-1401.
    [21]孟祥军.钛合金在舰船上的应用[J].舰船科学技术,2001,2:23-27.
    [22] Boyer R R. An Overview on the Use of Titanium in the Aerospace Industry[J].Materials Science and Engineering A.1996,213:103-114.
    [23]赵永庆.钛合金的研究与发展[J]. Ti工业进展,2005,22:17-20.
    [24]赵树萍,吕双坤,郝文杰,等.钛合金及其表面处理[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [25]草道英武等编.程敏,赵克德,屈翠芬译.金属钛及其应用.北京:冶金工业出版社,1989,2-20.
    [26]秦林,李哲,马连军,田林海,刘道新,唐宾. Ti6Al4V合金渗镀Cr-Mo表面改性层组织结构及其耐磨性能研究[J].稀有金属材料与工程,2009,38(12):2226-2229.
    [27] Feng X G, Sun M R, Ma X X, Tang G Z. Structure and TribologicalPerformance by Nitrogen and Oxygen Plasma Based Ion Implantation onTi6Al4V Alloy[J]. Applied Surface Science,2011,257:9904-9908.
    [28]冷崇燕,张旭,周荣,张荟星,吴先映. Ta离子注入Ti6Al4V合金耐磨性研究[J].稀有金属材料与工程,2008,37(3):556-560.
    [29]印永嘉,奚正楷,李大珍.物理化学简明教程[M].北京:高等教育出版社,1992,191-253.
    [30]汪志诚.热力学统计物理[M].北京:高等教育出版社,2004,3-62.
    [31] Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang SY. Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloyswith Multiprincipal Metallic Elements[J]. Metallurgical and MaterialsTransactions A,2004,35(A):2533-2536.
    [32] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J. Anomalous Decrease inX-ray Diffraction Intensities of Cu-Ni-Al-Co-Cr-Fe-Si Alloy Systems withMulti-principal Elements[J]. Materials Chemistry and Physics,2007,103:41-46.
    [33]余永宁.金属学原理[M].北京:冶金工业出版社,2010,169-214.
    [34] Cantor B, Chang I T H, Knight P, Vincent A J B. Microstructural Developmentin Equiatomic Multicomponent Alloys[J]. Materials Science and EngineeringA,2004,375-377:213-218.
    [35] Ren B, Liu Z X, Shi L, Cai B, Wang M X. Structure and Properties of(AlCrMnMoNiZrB0.1)Nx Coatings Prepared by Reactive DC Sputtering[J].Applied Surface Science,2011,257:7172-7178.
    [36] Lin M I, Tsai M H, Shen W J, Yeh J W. Evolution of Structure and Propertiesof Multi-component (AlCrTaTiZr)Ox Films[J]. Thin Solid Films,2010,518:2732-2737.
    [37] Senkov O N, Wilks G B, Scott J M, Miracle D B. Mechanical Properties ofNb25Mo25Ta25W25and V20Nb20Mo20Ta20W20Refractory High EntropyAlloys[J]. Intermetallics,2011,19:698-706.
    [38] Liang S C, Tsai D C, Chang Z C, Sung H S, Lin Y C,Yeh Y J, Deng M J, ShieuF S. Structure and Mechanical Properties of Multi-element (TiVCrZrHf)NCoatings by Reactive Magnetron Sputtering[J]. Applied Surface Science,2011,258:399-403.
    [39]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006,516-524.
    [40] Dearnaley G. Ion Bombardment and Implantation[J]. Reports on Progress inPhysics,1969,32(2):405-491.
    [41] Conrad J R, Radtke J L, Dodd R A, et al. Plasma Source Ion‐ImplantationTechnique for Surface Modification of Materials [J]. Journal of AppliedPhysics,1987,62(11):4591-4596.
    [42]蔡珣.等离子体基离子注入技术发展及其应用[J].表面工程及其热处理专辑,2005,4:33-35.
    [43] BertóTi I, Mohai M, TóTh A, et al. Nitrogen-PBII Modification ofUltra-High Molecular Weight Polyethylene: Composition, Structure andNanomechanical Properties[J]. Surface and Coatings Technology,2007,201,(15):6839-6842.
    [44] Kobayashi T, Yokota T, Kato R, et al. Surface Modification of SiliconeMedical Materials by Plasma-Based Ion Implantation[J]. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materialsand Atoms,2007,257(1):128-131.
    [45] Follstaedt D M, Pope L E, Knapp J A, Picraux S T, Yost F G. TheMicrostructure of Type304Stainless Steel Implanted with Titanium andCarbon and Its Relation to Friction and Wear Tests[J]. Thin Solid Films,107(3):259-267.
    [46] Yost F G, Picraux S T, Follstaedt D M, Pope L E, Knapp J A. The Effects ofN+Implantation on The Wear and Friction of Type304and15-5PH StainlessSteels[J]. Thin Solid Film,1983,107(3):287-295.
    [47] Bodart F, Terwagne G, Piette M. Migration Studies ofNitrogen-implanted-iron by Improved Depth Profiling[J]. Materials Scienceand Engineering,1987,90:111-117.
    [48] Lei M K, Zhu X M. Comparative Corrosion Resistance of Plasma-basedLow-energy Nitrogen Ion Implantation Austenitic Steel[J]. Surface&CoatingsTechnology,2007,201:6865-6868.
    [49] Zeng Z M, Zhang T, Tang B Y, Tian X B, Chu P K. Improvement ofTribological Properties of9Cr18Bearing Steel Using Metal and NitrogenPlasma-immersion Ion Implantation[J]. Surface and Coatings Technology,1999,115:234-238.
    [50]夏立芳.材料的等离子体基离子注入表面改性[J].材料热处理学报,2001,22:42-45.
    [51] Liao J X, Xia L F, Sun M R, Liu W M, Xu T, Yang C R, Chen H W, Fu C L,Leng W J. Structure Characteristics of2024Aluminum Alloy Plasma-basedIon Implanted with Nitrogen then Titanium[J]. Applied Surface Science,2005,240:71-76.
    [52] Figueroa R, Abreu C M, Cristobal M J, Pena G. Effect of Nitrogen andMolybdenum Ion Implantation in the Tribological Behavior of AA7075Aluminum Alloy[J]. Wear,2012,276-277:53-60.
    [53] Ueda M, Silva M M, Otani C, Reuther H, Yatsuzuka M, Lepienski C M, BerniL A. Improvement of Tribological Properties of Ti6Al4V by Nitrogen PlasmaImmersion Ion Implantation[J]. Surface and Coatings Technology,2003,169-170:408-410.
    [54] Silva G, Ueda M, Otani C, Mello C B, Lepienski C M. Improvements of TheSurface Properties of Ti6Al4V by Plasma Based Ion Implantation at HighTemperatures[J]. Surface&Coatings Technology,2010,18-19:3018-3021.
    [55] Berberich F, Matz W, Kreissig U, Richter E, Schell N, Moller W. StructuralCharacterisation of Hardening of Ti-Al-V Alloys after Nitridation by PlasmaImmersion Ion Implantation[J]. Applied Surface Science,2001,179:13-19.
    [56] Aryasomayajula A, Valleti K, Aryasomayajula S, Bhat D G. Pulsed DCMagnetron Sputtered Tantalum Nitride Hard Coatings for TribologicalApplications[J]. Surface&Coatings Technology,2006,201:4401-4405.
    [57] Yang J H, Cheng M F, Luo X D, Zhang T H. Surface Properties andMicrostructure of Implanted TiN Films Using MEVVA Ion Source[J].Materials Science and Engineering A,2007,445-446:558-562.
    [58] Du X K, Wang T M, Wang C, Chen B L, Zhou L. Microstructure and OpticalCharacterization of Magnetron Sputtered NbN Thin Films[J]. Chinese Journalof Aeronautics,2007,20:140-144.
    [59] Havey K S, Zabinski J S, Walck S D. The Chemistry, Structure, and ResultingWear Properties of Magnetron-sputtered NbN Thin Films[J]. Thin SolidFilms,1997,303:238-245.
    [60] Re M D, Gouttebaron R, Dauchot J P, Leclere P, Terwagne G, Hecq. Study ofZrN Layers Deposited by Reactive Magnetron Sputtering[J]. Surface andCoatings Technology,2003,174-175:240-254.
    [61] Braic V, Vladescu A, Balaceanu M, Luculescu C R, Braic M. NanostructuredMulti-element (TiZrNbHfTa)N and (TiZrNbHfTa)C Hard Coatings[J]. Surface&Coatings Technology,2012,211:117-121.
    [62] Huang P K, Yeh J W. Effects of Nitrogen Content on Structure andMechanical Properties of Multi-element (AlCrNbSiTiV)N Coating[J]. Surface&Coatings Technology,2009,203:1891-1896.
    [63] Dolique V, Thomann A L, Brault P, Tessier Y, Gillon P. ComplexStructure/Composition Relationship in Thin Films of AlCoCrCuFeNi HighEntropy Alloy[J]. Materials Chemistry and Physics,2009,117:142-147.
    [64] Zhang H, Pan Ye, He Y Z, Jiao huisheng. Microstructure and Properties of6FeNiCoSiCrAlTi High-Entropy Alloy Coating Prepared by Laser Cladding[J].Applied Surface Science,2011,257:2259-2263.
    [65] Zhang H, Pan Ye, He Y Z. Synthesis and Characterization of FeCoNiCrCuAlloy Coatings by Laser Cladding[J]. Materials and Design,2011,32:1910-1915.
    [66]朱海云,孙宏飞,李业超.多主元高熵合金的研究现状与发展[J].新材料产业,2008,9:67-70.
    [67] Yao C Z, Wei B H, Zhang P, Lu X H, Liu P, Tong Y X. Facile Preparation andMagnetic Study of Amorphous Tm-Fe-Co-Ni-Mn Multicomponent AlloyNanofilm[J]. Journal of Rare Earths,29:133-137.
    [68] Chen T K, Wong M S. Structure and Properties of Reactively-sputteredAlxCoCrCuFeNi Oxide Films[J]. Thin Solid Films,2007,516:141-146.
    [69] Lai C H, Lin S J, Yeh J W, Chang S Y. Preparation and Characterization ofAlCrTaTiZr Multi-element Nitride Coatings[J]. Surface&CoatingsTechnology,2006,201:3275-3278.
    [70] Cheng K H, Lai C H, Lin S J, Yeh J W. Structural and Mechanical Propertiesof Multi-element (AlCrMoTaTiZr)Nx Coatings by Reactive MagnetronSputtering[J]. Thin Solid Films,2011,519:3185-3190.
    [71] Chang Z C, Liang S C, Han Sheng, Chen Y K, Shieu F S. Characteristics ofTiVCrAlZr Multi-element Nitride Films Prepared by Reactive Sputtering[J].Nuclear Instruments and Methods inPhysics Research B.2010,268:2504-2509.
    [72] Chen T K, Wong M S, Shun T T, Yeh J W. Nanostructured Nitride Films ofMulti-element High-entropy Alloys by Reactive DC Sputtering[J]. Surface&Coatings Technology,2005,200:1361-1365.
    [73] Shun T T, Hung C H, Lee C F. Formation of Ordered/DisorderedNanoparticles in FCC High Entropy Alloy[J]. Journal of Alloys andCompounds,2010,493:105-109.
    [74] Senkov O N, Wilks G B, Scott J M, Miracle D B. Mechanical Properties ofNb25Mo25Ta25W25and V20Nb20Mo20Ta20W20Refractory High EntropyAlloys[J]. Intermetallics,2011,19:698-706.
    [75] Li C, Li J C, Zhao M, Jiang Q. Effect of Alloying Elements on Microstructureand Properties of Multiprincipal Elements High-entropy Alloys[J]. Journal ofAlloys and Compounds,2009,475:752-757.
    [76] Chen T K, Shun T T, Yeh J W, Wong M S. Nanostructured Nitride Films ofMulti-element High-entropy Alloys by Reactive DC Sputtering[J]. Surface&Coatings Technology,2004,188-189:193-200.
    [77] Tsai D C, Chang Z C, Kuo L Y, Lin T J, Lin T N, Shieu F S. Solid SolutionCoating of (TiVCrZrHf)N with Unusual Structural Evolution[J]. Surface andCoatings Technology,2013,217:84-87.
    [78] Lin S Y, Chang S Y, Huang Y C, Shieu F S, Yeh J W. Mechanical Performanceand Nanoindenting Deformation of (AlCrTaTiZr)NCy Multi-componentCoatings Co-sputtered with Bias[J]. Surface and Coatings Technology,2012,206:5096-5102.
    [79] Lai C H, Cheng K H, Lin S J, Yeh J W. Mechanical and TribologicalProperties of Multi-element (AlCrTaTiZr)N Coatings[J]. Surface&CoatingsTechnology,2008,202:3732-3738.
    [80] Cheng K H, Weng C H, Lai C H, Lin S J. Study on Adhesion and WearResistance of Multi-element (AlCrTaTiZr)N Coatings[J]. Thin Solid Films,2009,517:4989-4993.
    [81] Cheng K H, Weng C H, Lai C H, Lin S J. Study on Adhesion and WearResistance of Multi-element (AlCrTaTiZr)N Coatings[J]. Thin Solid Films,2009,517:4989-4993.
    [82] Ren B, Shen Z G, Liu Z X. Structure and Mechanical properties ofmulti-element (AlCrMnMoNiZr)Nx coatings by reactive magnetronsputtering[J]. Journal of Alloy and Compounds,2013,560:171-176.
    [83] Chang S Y, Lin S Y, Huang Y C, Wu C L. Mechanical Properties,DeformationBehaviors and Interface Adhesion of(AlCrTaTiZr) Nx Multi-componentCoatings[J]. Surface&Coatings Technology,2010,204:3307-3314.
    [84] Broszeit E, Matthes B, Herr W, Kloos K H. Tribological Properties of RFSputtered Ti-B-N Coatings Under Various Pin-on-disc Wear Test Conditions[J].Surface and Coatings Technology,1993,58(18):29-35.
    [85]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992:17-24.
    [86] Brewe D E, Hamrock B J. Simplified Solution for Elliptical-ContactDeformation Between Two Elastic Solids[J]. Transactions of the ASME,1977,99(4):485-487.
    [87] Yamamura Y, Tawara H. Energy Dependence of Ion-induced Sputtering YieldsFrom Monatomic Solids at Normal Incidence[J]. Atomic Data and NuclearData Tables,1996,62:149-253.
    [88] Sree K S. Principles of Physical Vapor Deposition of Thin Films, ElsevierScience, Great Britain,2006.
    [89] Mahan J E. Physical Vapor Deposition of Thin Films, John Wiley&Sons,New York,2000.
    [90] Okamoto H, Scott W W, Fleming M A. Binary Alloy Phase Diagrams, ASMInternational, Materials Park,1996.
    [91] Pearson W B. A Handbook of Lattice Spacing and Structures of Metals andAlloys, vol2. Pergamon Press,New York,NY,1967.
    [92] Daams J L C, Villars P, Vucht J H N. Atlas of Crystal Structure Types forIntermetallic Phases, ASM International, Metals Park, OH,1991.
    [93] Kasper J S. International Tables for X-ray Crystallography, vol3, KynochPress, Birmingham, England,1968.
    [94] Takeuchi A, Inoue A. Mixing Enthalpy of Liquid Phase Calculated byMiedema’s Scheme and Approximated with Sub-regular Solution Model forAssessing Forming Ability of Amorphous and Glassy Alloys[J].Intermetallics,2010,18:1779-1789.
    [95] Choi J H, Lee J Y, Kim J H. Phase Evolution in Aluminum Nitride Thin Filmson Si(100) Prepared by Radio Frequency Magnetron Sputtering[J]. Thin SolidFilms,2001,384:166-172.
    [96] Zhang J X, Chen Y Z, Cheng H, Uddin A, Yuan S, Pita K, Andersson T G.Interface Study of AlN Grown on Si Substrates by Radio-frequency MagnetronReactive Sputtering[J]. Thin Solid Films,2005,471:336-341.
    [97] Speight J G. Lange’s Handbook of Chemistry, sixteenth ed., McGraw-Hill,Michigan,2004.
    [98] Sundgren J-E, Hentzell H G T. A Review of the Present State of Art in HardCoatings Grown From the Vapor Phase[J]. Journal of Vacuum Science andTechnology A,1986,4:2259-2279.
    [99] Sproul W D, New Routes in the Preparation of Mechanically Hard Films[J].Science,1996,273:889-892.
    [100] PalDey S, Deevi S C. Single Layer and Multilayer Wear Resistant Coatings of(Ti,Al)N: a Review[J]. Materials Science and Engineering A,2003,342:58-79.
    [101] Holleck H. Material Selection for Hard Coatings[J]. Journal of VacuumScience and Technology A,1986,4:2661-2669.
    [102] Pierson H O. Handbook of Refractory Carbides and Nitrides[M]. Noyes, NewJersey,1996.
    [103] Sundgren J-E. Structure and Properties of TiN Coatings[J]. Thin Solid Films,1985,128:21-24.
    [104] Petrov I, Hultman L, Sundgren J-E, Greene J E. Polycrystalline TiN FilmsDeposited by Reactive Bias Magnetron Sputtering: Effects of IonBombardment on Resputtering Rates, Film Composition, andMicrostructure[J]. Journal of Vacuum Science and Technology A,1992,10:265-272.
    [105] Petrov I, Barna P B, Hultman L, Greene J E. Microstructural Evolution DuringFilm Growth[J]. Journal of Vacuum Science and Technology A,2003,21:117-128.
    [106] Endrino J L, Palacin S, Aguirre M H. Determination of the Local Environmentof Silicon and the Microstructure of Quaternary CrAl(Si)N Films[J]. ActaMaterialia,2007,55:2129-2135.
    [107] Kim S K, Vinh P V. Deposition of Superhard TiAlSiN Thin Films by CathodicArc Plasma Deposition[J]. Surface and Coatings Technology,2005,200:1391-1394.
    [108] Tsai M H, Lai C H, Yeh J W, Gan J Y. Effects of Nitrogen Flow Ratio on theStructure and Properties of Reactively Sputtered (AlMoNbSiTaTiVZr)NxCoatings[J]. Journal of Physics D: Applied Physics,2008,41:235402.
    [109] Tavares C J, Rebouta L, Andritschky M, Ramos S. MechanicalCharacterisation of TiN/ZrN Multi-layered Coatings[J]. Journal of MaterialsProcessing Technology,1999,93:177-183.
    [110] Jensen H, Sorensen G, Mannike I, Muktepavela F, Sobota J. ReactiveSputtering of Nanostructured Multilayer Coatings and Their TribologicalProperties[J]. Surface and Coatings Technology,1999,119:1070-1075.
    [111] Larsson M, Hollman P, Hedenqvist P, Hogmark S, Wahlstrom U, Hultman L.Deposition and Microstructure of PVD TiN-NbN Multilayered Coatings byCombined Reactive Electron Beam Evaporation and DC Sputtering[J]. Surfaceand Coatings Technology,1996,86-87:351-356.
    [112] Moulder J F, Stickle W F, Sobol P E, Bomben K D. Handbook of X-rayPhotoelectron Spectroscopy, Physical Electronics Corporation, Minnesota,1995.
    [113] Chuang J C, Chen M C. Properties of Thin Ta–N Films Reactively Sputteredon Cu/SiO2/Si Substrates[J]. Thin Solid Films,1998,322:213-217.
    [114] Kohli S, McCurdy P R, Rithner C D, Dorhout P K, Dummer A M, Brizuela F,Menoni C S. X-ray Characterization of Oriented β-tantalum Films[J]. ThinSolid Films,2004,469–470:404–409.
    [115] Alfonso J E, Buitrago J, Torres J, Santos B, Marco J F. CrystallographicStructure and Surface Compositionof NbNx Thin Films Grown by RFMagnetron Sputtering[J]. Microelectronics Journal,2008,39:1327-1328.
    [116] Ismail I M, Abdallah B, Abou-Kharroub M, Mrad O. XPS and RBSInvestigation of TiNxOy Films Prepared by Vacuum Arc Discharge[J]. NuclearInstruments and Methods in Physical Research Section B,2012,271:102-106.
    [117] Jouve G, Séverac C, Cantacuzéne S. XPS Study of NbN and (NbTi)NSuperconducting Coatings[J]. Thin Solid Films,1996,287:146-153.
    [118] Wilks J A, Magtoto N P, Kelber J A, Arunachalam V. Interfacial ReactionsDuring Sputter Deposition of Ta and TaN Films on Organosilicate Glass: XPSand TEM Results[J]. Applied Surface Science,2007,253:6167-6184.
    [119] Speight J G. Lange’s Handbook of Chemistry, sixteenth ed., McGraw-Hill,Michigan,2004.
    [120] Wen M, Meng Q N, Yu W X, Zheng W T, Mao S X, Hua M J. Growth, Stressand Hardness of Reactively Sputtered Tungsten Nitride Thin Films[J]. Surfaceand Coatings Technology,2010,205:1953-1961.
    [121] Kiuchi M. Advantages of Dynamic Ion Beam Mixing[J]. Nuclear Instrumentsand Methods in Physical Research Section B,1993,80-81:1343-1348.
    [122] Valleti K, Subrahmanyam A, Joshi S V, Phani A R. Studies on PhaseDependent Mechanical Properties of DC Magnetron Sputtered TaN Thin Films:Evaluation of Super Hardness in Orthorhombic Ta4N Phase[J]. Journal ofPhysics D: Applied Physics,2008,41:0454409(6pp).
    [123] Kieckow F, Kwietniewski C, Tentardini E K, Reguly A, Baumvol J R I. XPSand Ion Scattering Studies on Compound Formation and Interfacial Mixing inTiN/Ti Nanolayers on Plasma Nitrided Tool Steel[J]. Surface and CoatingsTechnology,2006,201:3066-3073.
    [124] Matsuoka M, Isotani S, Sucasaire W, Kuratani N, Ogata K. X-ray Photoele-ctron Spectroscopy Analysis of Zirconium Nitride-like Films Prepared onSi(100) Substrates by Ion Beam Assisted Deposition[J]. Surface and CoatingsTechnology,2008,202:3129-3135.
    [125] Mucha A, Braun M. Requisite Parameters for Optimal Wear Performance ofNitrogen-implanted Titanium and Ti-6Al-4V[J]. Surface and CoatingsTechnology,1992,50:139-139.
    [126]宁铮,赵晴,陈庆龙,朱文辉,王帅星.钛合金化学镀镍层结合力影响因素探讨[J].材料保护,2010,2:33-35.
    [127]于德洋,翁立军,王茹,汪晓萍,华敏奇.中华人民共和国机械行业标准气相沉积薄膜与基体附着力的划痕试验法[M].北京:机械科学研究院出版社,1997:1-4.
    [128] Bull S J. Failure Modes in Scratch Adhesion Testing[J]. Surface and CoatingsTechnology,1991,50:25-32.
    [129] Stallard J, Poulat S, Teer D G. The Study of the Adhesion of a TiN Coating onSteel and Titanium Alloy Substrates Using a Multi-mode Scratch Tester[J].Tribology International,2006,39:159-166.
    [130] Zu X T, Wang Z G, Feng X D, Zhang C F, Zhu S, Yu Q. SurfaceCharacterization of a Ti-2Al-2.5Zr Alloy by Nitrogen Ion Implantation[J].Journal of Alloys and Compounds,2003,351:114-118.