两种手性农药在水生生物体内的立体选择性环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每年使用的大量农药中,手性农药的使用量也在上升,手性农药对映体在生物过程中存在较大的差异性,使之表现出不同的环境行为和生态毒理,为此,对它们的使用与环境安全的研究逐渐成为环境毒理学的研究热点。禾草灵(diclofop methyl, DM)是现在仍然大量使用的一种芳氧苯氧丙酸类(Aryloxyphenoxypropionates, AOPP)除草剂。目前大部分AOPP除草剂以外消旋形式生产使用,其作用机理、环境风险的研究都是基于外消旋体,针对非靶标生物在对映体水平上的毒理与环境风险知之甚少。有机氯农药六六六(Hexachlorocyclohexane, HCH)是二战后大量使用的一种杀虫剂,因其具有较长的半衰期和较高的生物富集性,因而在禁用长达数十年后仍可在各种环境基质及生物体中检测到,给生态系统带来了严重的风险。环糊精是一类重要的污染修复剂,同时,环糊精具有手性识别功能,它对手性污染物的对映体选择性环境行为会产生不对称的影响。研究手性农药对映体水平上的生态毒理和环境行为,以最大限度的减缓,控制或修复农药残留物对生态系统的影响,对手性农药的合理使用和正确评价生态安全均有重要的意义。本论文对α-六六六在麦穗鱼和鲫鱼体内的选择性富集、代谢及在各组织器官中的动态分布等环境行为进行了研究;探索了禾草灵、禾草灵酸对映体的水生毒理和对映体选择性环境行为,考察了环糊精对禾草灵毒理和环境行为的影响。
     选用三种淡水鱼和大型蚤考察了禾草灵对映异构体及禾草灵酸的选择性毒性。制备了禾草灵/β-环糊精包合物,并对包合物进行表征;考察包合物对禾草灵毒性的影响。从急性毒性结果来看,禾草灵都显示了一定程度的对映体差异:三种鱼类的试验结果为R-禾草灵的毒性高于S构型;而大型溞的急性毒性结果与此相反,S-禾草灵的毒性高于R-禾草灵。包合后的禾草灵的毒性显著减弱,对受试生物的LC50均有不同程度的增大,96h的毒性不足原来的1/4。环糊精可用于禾草灵的污染修复,包合作用可以降低禾草灵的水生态风险,
     考察两种染毒方式,第一种加入禾草灵原药,第二种加入等摩尔量的环糊精/禾草灵包合物,禾草灵在泥鳅体内的立体选择性环境行为。第一种染毒方式,泥鳅体内的禾草灵会立即转化为禾草灵酸,没有检测到禾草灵母体,禾草灵酸的两个对映单体含量差别显著,禾草灵酸对映体的代谢较快,半衰期约为0.3d,且R-DC降解速率快于S-DC;第二种染毒方式在初期阶段的泥鳅体内可以检测到生成的禾草灵酸和少量禾草灵母体。禾草灵的两个对映体含量接近,泥鳅在摄取包合物时没有立体选择性吸收。禾草灵/环糊精包合物较禾草灵原药不易被泥鳅吸收。在泥鳅体内检测到的禾草灵酸含量较低。禾草灵酸对映体代谢较缓慢,半衰期在1.2--1.5天,R-DC代谢速率慢于S-DC。
     采用体外肝微粒体孵育方式,对禾草灵外消旋体和单体及禾草灵酸在泥鳅肝微粒体中的酶促反应动力学和立体选择性代谢行为进行了研究,首先建立了禾草灵/禾草灵酸对映体在新型键合的手性色谱柱Chiralpak IC上的同时拆分的分析方法;肝微粒体酶促反应结果显示泥鳅肝微粒体催化禾草灵酸对映体的生成速率是不同的,且生成禾草灵酸的过程具有立体选择性。S-DM降解速率是其对映体的约4倍,在整个孵育时间内未观察到禾草灵酸的降解。反应过程中禾草灵对映体保持构型稳定,没有手性翻转现象。
     从毒性、生理生化和降解过程三个方面研究了环糊精对禾草灵对映体和四尾栅藻相互作用的影响,结果显示禾草灵对四尾栅藻的急性毒性存在立体选择性,S-禾草灵的毒性高于R-禾草灵;加入环糊精可以明显降低禾草灵对四尾栅藻的毒性,禾草灵对四尾栅藻SOD和CAT酶的活力有选择性诱导作用;加入环糊精后会改变禾草灵对四尾栅藻生理指标的影响。在培养单体禾草灵的试验中发现,生成的S-禾草灵酸部分转化为R-禾草灵酸,但R-禾草灵酸不会转化为S-禾草灵酸。环糊精会促进R-禾草灵酸的降解,并有助于S-禾草灵酸向R-禾草灵酸的单向转化。
     运用手性毛细管气相色谱柱结合GC-ECD,考察了α-六六六对映体麦穗鱼体内的立体选择性行为。体外暴露实验结果显示α-六六在麦穗鱼体内富集迅速,平均在1-2天内达到最大富集浓度,最大BCF1d为830,之后进入浓度逐渐降低并伴随重吸收的过程:α-六六六在泥鳅体内的代谢符合一级动力学,半衰期为1.2天左右;麦穗鱼在富集和代谢过程中均有不同程度的对映体选择性,(+)-α-HCH较(-)-α-HCH被优先吸收和代谢,导致富集阶段体内EF值大于0.5,而头部的α-六六六在代谢过程中EF值逐渐减小至0.5以下。
     对单次经口暴露α-HCH在鲫鱼体内的富集动态和分布规律研究发现,鲫鱼对α-HCH的富集很快,各组织器官中均可以检测到α-HCH的分布,且肝胰脏、肾脏和脑组织的富集能力最高;肝脏等组织器官中α-HCH的药代动力学用二室模型拟合结果较好;α-HCH在鲫鱼肝脏中富集和代谢最快,各组织器官中的半衰期从数小时到数天不等;α-HCH在鲫鱼体内的分布和代谢具有一定立体选择性,其中肝胰脏、肾脏和脑组织中选择性最明显,且脑组织中的手性分异和其他器官不同,显示出对(-)α-HCH的选择性积累。
Along with the wide application of pesticides, the usage of chiral pesticides is also on the rise. The enantiomers of chiral pesticides are different in some biological processes and thus pose enantioselective behavior and ecotoxicity to non-target biology. Therefore, for their use and environmental safety, research on enantioselective behaviors has become the new focus of environmental toxicology. Diclofop-methyl (DM) is one kind of AOPP herbicides which is still of massive use. At present most of the AOPP herbicides are produced and used in racemic form. Although there are some reports about degradation and environmental behavior of DM, the reports about aquatic toxicity at the level of enantiomers was rare. Hexachlorocyclohexane (HCII) had been extensively used as a classical organochlorine pesticide and was forbidden in the1960s, but it can be detected for decades in various kinds of environmental samples due to its persistence and higher bioaccumulation, posing a serious risk to ecosystem. Cyclodextrins (CDs) are a kind of very important remediation agents for environmental contamination. CDs also have chiral recognition ability, so they might have an asymmetric impact on the enantioselectivity of chiral contaminants. Our work focused on the environmental behaviors and eco-effects of two chiral pesticides a-HCH and diclofop-methyl, studied their enantioselective bioaccumulation and elimination in several fish and evaluate the effects of β-cyclodextrin on the toxicology of DM.
     Three kinds of freshwater fish as well as daphnia magna were employed to evaluate the aquatic toxicity of DM (diclofop-methyl) enantiomers and diclofop. The acute toxicity of DM shows a certain degree of enantioselectivity:for3species of fish, the acute toxicity of R-DM is higher than that of S-enantiomer; on the contrary, the toxicity of R-DM to daphnia magna was lower than its antipode. The inclusion complex of DM/β-cyclodextrin was prepared in solution and solid phase. The inclusion complexation enhanced the DM water solubility and reduced its acute toxicity to several aquatic organisms.
     In order to investigate the β-cyclodextrin effect on DM enantioselective behaviors in loach, two types of contamination were adopted. One group was spiked with racemic diclofop-methyl and the other was treated with cyclodextrin/DM inclusion complexation. The first group revealed DM in loaches immediately transformed into diclofop and no DM was detected. The concentration of diclofop enantiomers differed significantly. Loach metabolized DC enantiomers quickly, with half-lives of about0.3d and R-DC faster than S-DC; In the second group, a small quantity of DM could be detected in the initial stage, and loaches up-took the DM enantiomers with no stereoselectivity. DC enantiomers had relatively long half-lives of1.2-1.5days with R-diclofop degraded more slowly than S-diclofop.
     An efficient and stable method for the simultaneous chiral analysis of DM and DC enantiomers on Chiralpak IC column was developed. The degradation of racemic DM and single enantiomer as well as diclofop in loach liver microsomes in vitro was conducted. The results suggested that the biotransformation process was dominated by microsomal esterases. The rac-DM degradation in loach liver microsomes was enantioselective with the conversion rate of (S)-DM markedly greater than that of the R-enantiomer. No enantiomerization was observed, suggesting the biotransformation was configurationally stable. In contrast, DC was not metabolized in liver microsomes even with NADPH present. Further research on the mechanism of DC metabolism and enzyme involved was needed.
     The impacts of β-cyclodextrin on interaction between DM and Scendesmus quadricauda were investigated through toxicity, enzymatic activity and degradation process. The results showed there were obvious differences in toxicity between DC enantiomers to S. quadricauda. The acute toxicity of S-DM was much higher than that of the R-DM. Compared to the control EC50values, the EC50values corresponding to every stage increased in the presence of cyclodextrin. DM exerted enantioselective induction effects on the activity of SOD and CAT of s. quadricauda. The degradation of DC by S. quadricauda was enantioselective but a bit slow. In single enantiomer cultivation, it was found that only S-DC could transform into R-DC. Cyclodextrin could accelerate the R-DC degradation and promote the R-DC conversion.
     The enantioselective bioaccumulation and degradation behavior of a-HCH in pseudorasbora parva was studied. A valid chiral residue analysis method for the a-HCH enantiomers in the water and fish samples was established using capillary column BGB-172combined with GC-ECD. The bioaccumulation of a-HCH in loach was quickly and the highest concentration point was reached within2days, with a maximum BCF1d of830. After that the body burden began to decrease and a companying re-uptake process was observed. The degradation kinetics of a-HCH fitted typical first order kinetic, and the half-life was about1.2days. Both the bioaccumulation and degradation processes showed obviously enantioselectivity.(+)-a-HCH was preferential accumulated and degraded than (-)-a-HCH with the EFs in fish head higher than0.5during bioaccumulation and lower than0.5during elimination.
     Crucian carp, a kind of edible freshwater fish was chosen to study the a-HCH bioaccumulation and metabolism behavior in various tissues through a single dose exposure. The fish were exposed to racemic a-HCH orally and the concentrations of its two enantiomers were measured in the liver, kidney, brain, muscle, skin and ovary at different time intervals. The absorption and elimination of a-HCH in liver were fast which can be characterized by a two-compartmental kinetic model. The accumulation rates were different among tissues depending on blood flow rate and fat content. Liver, kidney and brain tissue had the highest enrichment ability. The enantiomers distribution in most tissues suggested an apparent enantioenrichment of (+)-a-HCH. On the contrary, a-HCH in brain showed a significant enantioselectivity. The EFs for brain decreased dramatically after the exposure and reached to0.45, suggesting a preferential clearance of (+)-a-HCH.
引文
[1]唐除痴.农药化学.南开大学出版社,1998.
    [2]http://baike.baidu. com/view/61312.htm#refindex_2_61312.
    [3]林实.农药的分类.新农业,1985,(13):27-29.
    [4]蕾切尔,卡逊,吴国盛.寂静的春天.科学出版社,2007.
    [5]谢武明.持久性有机污染物(POPs)的环境问题与研究进展.中国环境监测,2004,20(2):58
    [6]尤启冬,林国强.手性药物-研究与应用.化学工业出版社,2004,50
    [7]Waldeck, B. Biological significance of the enantiomeric purity of drugs. Chirality,1993.5(5): 350-355
    [8]尹国,刘振华,曾姗姗,等.手性异构体拆分方法的研究进展.中国药物化学杂志,2001(01):58-63
    [9]徐逸楣.光学活性农药开发的现状与展望(上).农药译丛,1998(01):6-16
    [10]Williams A. Opportunities for chiral agrichemicals. Pestic. Sci.1996,46,3-9.
    [11]蒋木庚,杨红等.21世纪手性农药发展展望.世界农药.2001,23,14-41
    [12]冯坚.具有光学活性的拟除虫菊酯杀虫剂开发概况.农药,2000(02):1-6
    [13]Kurihara, N., J. Miyamoto, G.D. Paulson, et al. Chirality in synthetic agrochemicals:bioactivity and safety considerations. Pesticide science,1999.55(2):219-219
    [14]Ye, J., J. Wu, W. Liu. Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. TrAC Trends in Analytical Chemistry,2009.28:1148-1163
    [15].徐鹏.手性农药在土壤动物蚯蚓体内的选择性富集代谢及毒性差异研究.中国农业大学博士学位论文,2012.
    [16]周高信.两种手性农药在蚯蚓体内的对映体选择性代谢和毒理差异研究.中国农业大学硕士学位论文,2012
    [17]Kallenborn R., Oehme M., Vetter W., et al. Enantiomer selective separation of toxaphene congeners isolated from seal blubber and obtained by synthesis. Chemosphere.1994.28(1):89-98
    [18]Bicchi C., DOAmato A., Manzin V., et al. Cyclodextrin derivatives in the gas-chromatographic separation of racemic mixtures of volatile compounds.7. the use of 2 6-di-o-methyl-3-o-pentyl-beta-cyclodextrin diluted in phases with different polarity in the separation of racemates in complex-mixtures. J. Chromatogr. A.1994.666.137-146.
    [19]Muller M.D., Buser H. R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo-and enantioselective degradation in sewage sludge and soil. Environ. Sci. Technol.1995,29: 2031-2037
    [20]Harner T., K. Wiberg, et al. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environmental Science and Technology,2000.34(1): 218-220.
    [21]牟树森,青长乐.环境土壤学:农业环境保护专业用.北京:农业出版社,1993,1-208
    [22]Aigner EJ, Leone AD, Falconer RL. Concentrations and enantiomeric ratios of organochlorine pesticides in soils from the U.S. Corn Belt. Environmental Science & Technology,1998,32 (9): 1162-1168
    [23]Kurt-Karakus, P.B., T.F. Bidleman, K.C. Jones. Chiral organochlorine pesticide signatures in global background soils. Environmental Science and Technology,2005.39(22):8671-7
    [24]Wiberg, K., T. Harner, J.L. Wideman, et al. Chiral analysis of organochlorine pesticides in Alabama soils. Chemosphere,2001.45(6-7):843-848
    [25]Qin S, Budd R, Bondarenko S, et al. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment[J]. Journal of agricultural and food chemistry,2006,54(14): 5040-5045.
    [26]Lewis, D.L., A.W. Garrison, K.E. Wommack, et al. Influence of environmental changes on degradation of chiral pollutants in soils. Nature,1999.401(6756):898-901
    [27]Harrison, I., G.M. Williams, C.A. Carlick. Enantioselective biodegradation of mecoprop in aerobic and anaerobic microcosms. Chemosphere,2003.53(5):539-549
    [28]Williams, G.M., I. Harrison, C.A. Carlick, et al. Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer. Journal of Contaminant Hydrology,2003. 64(3-4):253-267
    [29]Wink, O.U. Luley. Enantioselective transformation of the herbicides diclofop-methyl and fenoxaprop-ethyl in soil. Pesticide Science,1988.22(1):31-40
    [30]Jarman, J.L., W.J. Jones, L.A. Howell, et al. Application of capillary electrophoresis to study the enantioselective transformation of five chiral pesticides in aerobic soil slurries. Journal of Agricultural and Food Chemistry,2005.53(16):6175-6182
    [31]Buser, H.R., MD. Muller. Environmental behavior of acetamide pesticide stereoisomers.1. Stereo-and enantioselective determination using chiral high-resolution gas chromatography and chiral high-performance liquid chromatography. Environmental Science and Technology,1995.29(8): 2023-2030
    [32]Muller, M.D., H.R. Buser. Environmental behavior of acetamide pesticide stereoisomers.2. stereoselective and enantioselective degradation in sewage-sludge and soil. Environmental Science & Technology,1995.29(8):2031-2037
    [33]Marucchini, C., C. Zadra. Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants. Chirality,2002.14(1):32-8
    [34]Monkiedje, A., M. Spiteller, K. Bester. Degradation of racemic and enantiopure metalaxyl in tropical and temperate soils. Environmental Science & Technology,2003.37(4):707-12
    [35]Buerge, I.J., T. Poiger, M.D. Muller, et al. Enantioselective degradation of metalaxyl in soils: Chiral preference changes with soil pH. Environmental Science & Technology,2003.37(12): 2668-2674
    [36]MaY.,LiuW.P.,WenY.Z. Enantioselective Degradation of Rac-Metolachlor and S-Metolacblor in soil.[J].PedosPhere,2006,16(4):489-494.
    [37]Li Z, Zhang Z, Zhang L, et al. Isomer-and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils[J]. Chemosphere,2009,76(4):509-516.
    [38]Xu Y, Zhang H, Zhuang S, et al. Different enantioselective degradation of pyraclofos in soils [J]. Journal of Agricultural and Food Chemistry,2012,60(17):4173-4178.
    [39]Buerge I J, Muller M D, Poiger T. The chiral herbicide beflubutamid (II):enantioselective degradation and enantiomerization in soil, and formation/degradation of chiral metabolites[J]. Environmental science & technology,2012,47(13):6812-6818.
    [40]Faller J, Huehnerfuss H., Koenig W A, et al. Do marine bacteria degrade.alpha.-hexachlorocyclohexane stereoselectively? [J]. Environmental science & technology, 1991,25(4):676-678.
    [41]Jantunen L. M., Bidleman T. F. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in arctic regions.J Geophys Res.,1996,101 (28):837-846
    [42]Ludwig P., Gunkel W. Chromatographic separation of the enantiomers of marine pollutants. Part5: Enantioselective degradation of phenoxycarboxylic acid herbicides by marine microorganisms. Chemosphere.1992,24(10):1423-1429.
    [43]Liu W, Gan J J. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction-enantioselective gas chromatography[J]. Journal of agricultural and food chemistry, 2004,52(4):736-741.
    [43]Zipper C, Suter M JF, Haderlein S B, et al. Changes in the enantiomeric ratio of (R)-to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer[J]. Environmental science & technology,1998,32(14):2070-2076.
    [44]Kurt-Karakus P B, Bidleman T F, Muir D C G, et al. Chiral current-use herbicides in Ontario streams[J]. Environmental science & technology,2008,42(22):8452-8458.
    [45]曹巧,董丰收,刘新刚,郑永权.手性农药三唑醇不同对映体在水体中的光解行为研究.农业环境科学学报2008,27(6):2475-2477.
    [46]Li Z. Y, Zhang Z. C., Zhang L., Leng L. Enantioselective Degradation and Chiral Stability of Phenthoate in Soil. Bull Environ Contam Toxicol,2007,79:153-157.
    [47]Kato M. J., Chu A., et al. Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry.1998,47:4,583-591
    [48]Beuerle T., Schwab W. Metabolic profile of linoleic acid in stored apples:formation of 13(R)-hydroxy-9(Z),11)-octadecadienoic acid. Lipids.1999,34:375-380
    [49]Mesnard F., Girard S., et al. Chiral specificity of the degradation of nicotine by Nicotiana plumbaginifolia cell suspension cultures. Plant Sci.2001,161:1011-1018
    [50]Mattina MI, White J, Eitzer B, er al. Cycling of weathered chlordane residues in the environment: Compositional and chiral profiles in contiguous soil, vegetation, and air compartments. Environment Toxicology and Chemistry,2002,21(2):281-288
    [51]Camilleri P, Gray A, Weaver K, et al. Herbicidal diphenyl ethers:Stereochemical studies using enantiomers of a novel diphenyl ether phthalide. Journal of Agriculture and Food Chemistry,1989, 37(22):519-523
    [52]Omokawa H, Ryoo JH. Enantioselective response of rice and barnyard millet on root growth inhibition by optically active a-methylbenzyl phenylureas. Pesticide Biochemistry and Physiology,2001, 70(5):1-6
    [53]Muller B P, Zumdick A, Schuphan I, et al. Metabolism of the herbicide glufosinate-ammonium in plant cell cultures of transgenic (rhizomania-resistant) and non-transgenic sugarbeet (Beta vulgaris), carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium)[J]. Pest management science,2001,57(1):46-56.
    [54]Ruhland M, Engelhardt G, Pawlizki K. A comparative investigation of the metabolism of the herbicide glufosinate in cell cultures of transgenic glufosinate-resistant and non-transgenic oilseed rape (Brassica napus) and corn (Zea mays). Environmental Biosafety Research,2002, 1(1);29-37
    [55]Schneiderheinze JM, Armstrong DW, Berthod A. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides. Chirality,1999,11(44):330-337
    [56]Marucchini C, Zadra C. Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants[J]. Chirality,2002,14(1):32-38.
    [57]Zhang H, Wang X, Qian M, et al. Residue analysis and degradation studies of fenbuconazole and myclobutanil in strawberry by chiral high-performance liquid chromatography-tandem mass spectrometry [J]. Journal of Agricultural and Food Chemistry,2011,59(22):12012-12017.
    [58]Sun D, Qiu J, Wu Y, et al. Enantioselective degradation of indoxacarb in cabbage and soil under field conditions [J]. Chirality,2012,24(8):628.
    [59]Zhou Q, Xu C, Zhang Y, et al. Enantioselectivity in the phytotoxicity of herbicide imazethapyr [J]. Journal of Agricultural and Food Chemistry,2009a,57(4):1624-1631.
    [60]Ye J, Zhang Q, Zhang A, et al. Enantioselective effects of chiral herbicide diclofop acid on rice Xiushui 63 seedlings[J]. Bulletin of environmental contamination and toxicology,2009,83(1):85-91.
    [61]Liu H J, Cai W D, Huang R N, et al. Enantioselective toxicity of metolachlor to scenedesmus obliquus in the presence of cyclodextrins[J]. Chirality,2012,24(2):181.
    [62]Hegeman W. J. M., Laane R. W. P. M. Enantiomeric enrichment of chiral pesticides in the environment. Rev. Environ. Contam. Toxicol.2002,173:85-116.
    [63]Chu S. G., Adrian C., Paul S. Levels and chiral signatures of persistent organochlorine pollutants in human tissues from Belgium. Environmental Research.2003,93:167-176.
    [64]Kallenborn R., Huhnerfuss H., Konig W. A. Enantioselective metabolism of (+/-)α-1,2,3,4,5,6-hexachlorocyclohexane in organs of the Eider duck. Angew Chem Int Ed Engl,1991, 30:320-321.
    [65]Maruya K, Smalling K, Vetter W. Temperature and Congener Structure Affect the Enantioselectivity of Toxaphene Elimination by Fish. Environmental Science & Technology,2005,39: 3999-4004
    [66]Pfaffenberger B, Huhnerfuss H, Kallenborn R, et al. Chromatographic separation of the enantiomers of marine pollutants. Part 6:Comparison of the enantioselective degradation of a-hexachlorocyclohexane in marine biota and water[J]. Chemosphere,1992,25(5):719-725.
    [67]B, Hardt I, Huhnerfuss H, et al. Enantioselective degradation of a-hexachlorocyclohexane and cyclodiene insecticides in roe-deer liver samples from different regions of Germany[J]. Chemosphere, 1994,29(7):1543-1554.
    [68]Kenneke J F, Ekman D R, Mazur C S, et al. Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout[J]. Chirality, 2010,22(2):183-192.
    [69]Konwick B J, Garrison A W, Avants J K, et al. Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (< i> Oncorhynchus mykiss)[J]. Aquatic toxicology,2006,80(4): 372-381.
    [70]Ueji M., Omizawa C. Metabolism of chiral isomers of isofenphos in the rat liver micriosomeal system. J. Pestic. Sci.1987,12:269-271
    [71]Lee P. W., Allahyari R., et al. Studies on the chiral isomers of fonofos and fonofosd oxon [in the house fly, Musca domestica, and white mouse. Ⅲ. In vivo metabolism. Pestic. Biochem. Physiol.1978, 9:23-32
    [72]Takamatsu Y., Kaneko H., et al. In vivo and in vitro stereoselective hydrolysis of four chiral isomers of fenvalerate. J. Pestic. Sci.1987,12:397-404
    [73]Peng Xu, Jinling Diao, Donghui Liu, Zhiqiang Zhou. Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 2011, (83):1074-107
    [74]Qu H, Wang P, Ma R, et al. Enantioselective Toxicity,Bioaccumulation and Degradation of the Chiral Insecticide Fipronil in Earthworms (Eisenia feotida).[J] Science of the Total Environment (DOI: 10.1016/j.scitotenv.2014.03.054)
    [75]Ray D E, Fry J R. A reassessment of the neurotoxicity of pyrethroid insecticides[J]. Pharmacology & therapeutics,2006,111(1):174-193.
    [76]黄海风,周炳,赵美蓉,等.拟除虫菊酯类农药对哺乳动物神经毒理的研究进展[J].农药学学报,2007,9(3):209-214.
    [77]Wang L., Liu W., Yang C., et al. Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environmental Science and Technology,2007,41:6124-6128.
    [78]. Liu Weiping, GAN J J. Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography [J]. Journal of Agricultural and Food Chemistry,2004,52: 775-761.
    [79]Liu Weiping, GAN J J, LEE S J, et al. Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin[J]. Journal of Agricultural and Food Chemistry,2004,52:6233-6238.
    [80]Sakata S, Mikami N, Yamada H. Degradation of pyrethroid optical isomers by soil microorganisms[J]. Journal of Pesticide Science,1992,17:181-189
    [81]ITOH K. Stereoselective degradation of organophosphorus insecticide salithion in upland soils[J]. Journal of Pesticide Science,1991,16:35-40.
    [82]ITOH K. Stereoselective metabolism of insecticide salithion by Agrobacterium sp. and Acinetobacter sp. isolated from soil [J]. Journal of Pesticide Science,1991,16:85-91.
    [83]Zipper C., Bunk M., Zehnder A. J. B., et al. Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy) propanoic acid by Sphingomonas herbicidovorans MH. Journal of Bacteriology,1998,180:3368-3374.
    [84]Zipper C., Suter M. J., Haderlein S. B., et al. Changes in the enantiomeric ratio of (R)-to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer. Environmental Science and Technology,1998,32(14):2070-2076.
    [85]Tett V. A., Willetts A. J., et al. Enantioselective degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] by mixed and pure bacterial cultures. FEMS Micro biology Ecology,1994,14:191-200.
    [86]Lewis D. L., Garrison A. W., et al. Influence of environmental changes on degradation of chiral pollutants in soils. Nature,1999,401(28):898-901.
    [87]Suar M, Hausr A, Poiger T, et al. Enantioselective transformation of α-hexachlorocyclohexane by the dehydrochlorinases LinAl and LinA2 from the soil bacterium Sphingomonas paucimobilis B90A. Applied and Environmental Microbiology,2005,71:8514-8518.
    [88]Bidleman T.F.,Jantunen L.M.,Harner T.,et al.Chiral pesticides as tracers of air-surfaceexchange.Environmental Pollution,1998,102:43-49.
    [89]Wiberg K.,Letcher R.,Sandau C.,et al.Enantioselective analysis of organochlorines in Arctic marine food chain:chiral biomagnification factors and relationships of enantiomeric ratios,chemical residues and biological data.Organohalogen Compd.,1998,35:371-374.
    [90]Leone A.D.,Ulrich E.M.,Bodnar C.E., et al.Organochlorine pesticide concentrations and enantiomer fractions for chlordane in indoor air from the US cornbelt.Atmos.Environ.,2000,34 (24):4131-4138.
    [91]Bidleman T.F.,Wong F,Backe C,et al.Chiral signatures of chlordanes indicate changing sources to the atmosphere over the past 30 years.Atmospheric Environment,2004,38:5963-5970.
    [92]Buser H.R.,Muller M.D.Enantioselective determination of chlordane components metabolites, and photoconversion products in environmental-samples using chiral high-resolution gas-chromatography and mass-spectrometry.Environ.Sci.Technol.,1993,27(6):1211-1220.
    [93]刘国卿,张干,李军.利用SPMD技术监测珠江三角洲大气有机氯农药.环境科学研究,2004,17:1-5.
    [94]Kurt-Karakus P. B., Stroud J., Bibleman T., et al. Enantioselective degradation of organochlorine pesticides in background soils:Variability in field and laboratory studies. Environmental Science and Technology,2007,41:4965-4971.
    [95]Bidleman T.F.Jantunen L.M.,Harner T.,et al.Chiral pesticides as tracers of air-surface exchange.Environmental Pollution,1998,102:43-49.
    [96]刘国卿,张干,李军.利用SPMD技术监测珠江三角洲大气有机氯农药.环境科学研究,2004,17:1-5.
    [97]Ridal J J, Bidleman T F, Kerman B R, et al. Enantiomers of a-hexachlorocyclohexane as tracers of air-water gas exchange in Lake Ontario[J]. Environmental science & technology,1997,31(7): 1940-1945.
    [98]Jantunen L. M., Bidleman T. F. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of a-HCH in arctic regions. J. Geophys Res.,1996,101(28):837-846.
    [99]张雪,章桂明,周德群,等.水生生物在水资源监测中的应用[C]//Proceedings of Conference on Environmental Pollution and Public Health (CEPPH 2012).2012.
    [100]吴邦灿,费龙.现代环境监测技术[M).北京:中国环境科学出版社,1999:239-240.
    [101]姜建国,沈韫芳.用于评价水污染的生物指数[J).云南环境科学,2000,19(增刊):251-253.
    [102]姚野梅,金有坤.长江口水质污染及生物残毒状况调查[J].水产学报,1995,19(3):280-287.
    [103]阎启仑,马德毅.王树芬.贻贝监测的作用及其监测技术和方法.海洋通报.1996,15(4):86--92
    [104]宗志伦,贾晓平.广东沿海环境中汞的变化趋势——南海“贻贝观察体系”的研究之一.中国水产科学,2003,3(2):84.93
    [105]朱琳,史淑洁,佟玉洁.应用斑马鱼胚胎的致畸性检测环境污染物毒性[J).环境与健康杂志,2003,20(2):122-124.
    [106]方展强,张凤君,郑文彪,等.多氯联苯对剑尾鱼Na+/K+-ATPase活性的影响[J].水产学报,2004,28(1):89-92.
    [107]张景飞,王晓蓉.2,4二氯苯酚低浓度长期暴露对鲫鱼肝脏抗氧化系统的影响[J].环境科学,2003,24(5):136-140.
    [108]胡晓磐,周建华,时夕金.利用单细胞凝胶电泳技术检测镉胁迫导致鲫鱼淋巴细胞DNA的损伤[J].农业环境科学学报,2005,24(1):43-45.
    [109]Kaladharan P, Keller AE. Inhibition of primary production as induced by heavy metal ions on phytoplankton population of cochin [J]. Indian J. Fish,1990,37:51-54.
    [110]Wen Y, Zhou S, Fang Z, et al. Effects of β-cyclodextrins on the enzymatical hydrolysis of chiral dichlorprop methyl ester[J]. Journal of Environmental Sciences,2005,17(2):237-240.
    [111]吴霖,俞英.环糊精超分子包结物的制备与应用前景[J].江苏化工,2003,31(2):32-35.
    [112]Szejtli J. Introduction and general overview of cyclodextrin chemistry[J]. Chemical reviews,1998, 98(5):1743-1754.
    [113]Zhang A, Liu W, Wang L, et al. Characterization of inclusion complexation between fenoxaprop-p-ethyl and cyclodextrin[J]. Journal of agricultural and food chemistry,2005,53(18): 7193-7197.
    [114]Yamamoto K, Nakao T, Yonemochi E, et al. Time resolved fluorescent analysis for sealed heating of dimethyl-β-cyclodextrin and naphthalene system[J]. Journal of inclusion phenomena and molecular recognition in chemistry,1996,25(1-3):121-124.
    [115]Jullian C, Moyano L, Yanez C, et al. Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007, 67(1):230-234.
    [116]Y. L.Wang, X. N. Qiao, W. C. Li,Y. H, Zhou, Y. Jiao, C. Yang,C. Dong,Y. Inoue, S Shuang, Anal Chim. Acta 650 (2009) 124.
    [117]Connors K.A. The stability of cyclodextrin complexes in solution [J]. Chemical Reviews,1997, 97(5):1325-1358.
    [118]Tsai Y, Tsai H H, Wu C P, et al. Preparation, characterisation and activity of the inclusion complex of paeonol with β-cyclodextrin[J]. Food chemistry,2010,120(3):837-841.
    [119]Ficarra R, Tommasini S, Raneri D, et al. Study of flavonoids/p-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation[J]. Journal of pharmaceutical and biomediical analysis,2002, 29(6):1005-1014.
    [120]Dias K, Nikolaou S, De Giovani W F. Synthesis and spectral investigation of Al (Ⅲ) catechin/β-cyclodextrin and Al (Ⅲ) quercetin/β-cyclodextrin inclusion compounds[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,70(1):154-161.
    [121]H. M Jiang, S. B.Zhang, H, J. Sun, H. Y. Chen, R. J. Wang, J. Guo, S. B. Jin, R. X. Bai, J. Inclusion Phenom. MoL Recognit. Chem.58 (2007) 133.
    [122]T. Stalin, N. Rajendiran. Spectrochim. Acta A 61 (2005) 3087.
    [123]C. W. Lee, S. J. Kim, Y. S. Youn, E. Widjojokusumo. Y. H. Lee, J. Kim. Y. W. Lee,Tjandrawinata, J. SupercriL Fluids 55 (2010) 348.
    [124]Breslow R, Dong S D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives [J]. Chemical reviews,1998,98(5):1997-2012.
    [125]Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems[J]. Chemical reviews,1998, 98(5):2045-2076.
    [126]A.R. Hedges, C. McBride Utilization of β-cyclodextrin in food Cereal Foods World,44 (10) (1999), pp.700-704
    [127]Reineccius T A, Reineccius G A, Peppard T L. Utilization of β-Cyclodextrin for Improved Flavor Retention in Thermally Processed Foods[J]. Journal of food science,2004,69(1): FCT58-FCT62.
    [128]Yang T, Qin W, Liu W. Study on the new fluorescence enhancement system of Zn-bis-(trimethylolaminomethane)-4-< i> tert-butyl-disalicylicimine in the presence of β-cyclodextrin and its analytical application[J]. Talanta,2004,62(3):451-456.
    [129]He J L, Yang Y, Yang X, et al. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin[J]. Sensors and Actuators B:Chemical,2006,114(1):94-100.
    [130]Wang X, Zeng H, Zhao L, et al. Selective determination of bisphenol A (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl P-cyclodextrin complex[J]. Analytica chimica acta, 2006,556(2):313-318.
    [131]Yang Y, Yang X, Liu Y L, et al. Optical sensor for lithocholic acid based on multilayered assemblies from polyelectrolyte and cyclodextrin[J]. Journal of Photochemistry and Photobiology A: Chemistry,2005,171(2):137-144.
    [132]Lungu N C, Depret A, Delattre F, et al. Synthesis of a new fluorinated fluorescent β-cyclodextrin sensor[J]. Journal of fluorine chemistry,2005,126(3):385-388.
    [133]Hayashita T, Yamauchi A, Tong A J, et al. Design of supramolecular cyclodextrin complex sensors for ion and molecule recognition in water[J]. Journal of inclusion phenomena and macrocyclic chemistry,2004,50(1-2):87-94.
    [134]Levkin P A, Ruderisch A, Schurig V. Combining the enantioselectivity of a cyclodextrin and a diamide selector in a mixed binary gas-chromatographic chiral stationary phase[J]. Chirality,2006, 18(1):49-63.
    [135]Poon Y F, Muderawan I W, Ng S C. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin as chiral stationary phases for high-performance liquid chromatography[J]. Journal of chromatography. A,2006,1101(1-2):185-197.
    [136]Si-Ahmed K, Tazerouti F, Badjah-Hadj-Ahmed A Y, et al. Synthesis and application of native and hydroxypropyl-substituted β-cyclodextrin bonded silica gel as stationary phases for high performance liquid chromatography[J]. Chromatographia,2005,62:571-579.
    [137]Shi X, Guo H, Wang M. Enantioseparation of chiral epoxides using four new cyclodextrin derivatives as chiral stationary phases of capillary gas chromatography[J]. Analytica chimica acta,2005, 553(1):43-49.
    [138]刘新会,侯娟,骆文茹.环糊精对苯砜基乙酸酯的增溶作用及QSPR研究[J].中国环境科学,2005,25(4):499-503.
    [139]高士祥,王边生.环糊精对多环芳烃的增溶作用[J].环境化学,1998,17(4):365-369.
    [140]LI Ning, ZHANG Yun-hui, WU Ya-nan, et al. Inclusion Complex of Trimethoprim with P-Cyclodextrin[J]. Journal of Pharmaceutical and Biomedical Analysis,2005,39:824-829.
    [141]LEZCANO M, NOVO M, AL-SOUFI W, et al. Complexation of Several Fungicides with β-Cyclodextrin:Determination of the Association Constants and Isolation of the Solid Complexes[J].Agric Food Chem,2003,51(17):5036-5040.
    [142]LEZCANO M, AL-SOUFI W, NOVO M, et al. Complexation of Several Benzimidazole-type Fungicides with a- and b-Cyclodextrins[J]. Agric Food Chem,2002,50:108-112.
    [143]周细红,曾清如,郭正元.β-环糊精对4种有机农药溶解度的影响[J].云南环境科学,2003,22(4):11-12.
    [144]曾清如,罗跃初,刘嫦娥,等.两种高水溶性β-环糊精衍生物对甲基对硫磷的增溶和光催 化降解作用[J].农药学学报,2003,5(3):59-64.
    [145]高士祥,王连生.环糊精在环境科学中的应用,环境科学进展,1998,(4):80-86
    [146]孔德洋,高士祥.标志芬,王连生.羧甲基—p.环糊精对土壤中萘的洗脱去除作用.环境化学2001,20(5):483--489.
    [147]Morillo E, Perez-Martinez J I, Gines J M. Leaching of 2,4-D from a soil in the presence of β-cyclodextrin:laboratory columns experiments[J]. Chemosphere,2001,44(5):1065-1069.
    [148]Villaverde J, Morillo E, Perez-Martinez J I, et al. Preparation and characterization of inclusion complex of norflurazon and 0-cyclodextrin to improve herbicide formulations[J]. Journal of agricultural and food chemistry,2004,52(4):864-869.
    [149]Villaverde J, Maqueda C, Morillo E. Improvement of the desorption of the herbicide norflurazon from soils via complexation with β-cyclodextrin[J]. Journal of agricultural and food chemistry,2005, 53(13):5366-5372.
    [150]Villaverde J, Perez-Martinez J I, Maqueda C, et al. Inclusion complexes of a-and y-cyclodextrins and the herbicide norflurazon:I. Preparation and characterisation. II. Enhanced solubilisation and removal from soils[J]. Chemosphere,2005,60(5):656-664.
    [151]Brusseau M L, Wang X, Hu Q. Enhanced transport of low-polarity organic compounds through soil by cyclodextrin[J]. Environmental science & technology,1994,28(5):952-956.
    [152]Sawicki R, Mercier L. Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media[J]. Environmental science & technology,2006,40(6): 1978-1983.
    [153]Murai S, Imajo S, Takasu Y, et al. Removal of phthalic acid esters from aquecous solution by inclusion and adsorption on β-cyclodextrin[J]. Environmental science & technology,1998,32(6): 782-787.
    [154]Wen-Lu S, Qing-Guo H, Lian-Sheng W.β-cyclodextrin (β-CD) influence on the biotoxicities of substituted benzene compounds and pesticide intermediates[J]. Chemosphere,1999,38(4):693-698.
    [155]刘嫦娥,曾清如.甲基化—β—环糊精(MCD)对甲基对硫磷的增溶作用和生物毒性研究[J].农业环境科学学报,2003,22(1):109-112.
    [156]曾清如,罗跃初.羟乙基—β—环糊精对农药的增溶与毒性影响[J].环境化学,2002,21(5):471-475.
    [157]孔德洋,蒋新.环糊精及其衍生物对硝基化合物毒性的影响[J].中国环境科学,2002,22(5):387-391.
    [158]刘新会,侯娟,骆文茹.环糊精对苯砜基乙酸酯发光菌急性毒性的效应[J].毒理学杂志,2005,19(A03):187-188.
    [159]Lin Z, Kong D, Zhong P, et al. Influence of hydroxypropylcyclodextrins on the toxicity of mixtures[J]. Chemosphere,2005,58(9):1301-1306.
    [160]Cao J, Huang L, Zhao C, et al. Carboxymethyl-β-cyclodextrin influence on the solubility and toxicity of substituted indole compounds[J]. Toxicological & Environmental Chemistry,2000,76(1-2): 73-81.
    [161]Szejtli J. P-cyclodextrin enhanced biological detoxification of industrial wastewaters[J]. Water research,1988,22(11):1345-1351.
    [162]王灿,高士祥,杨光俊,等.环糊精对硝基化合物混合体系微生物降解影响[J].中国环境科学,2004,24(4):429-432.
    [163]孔德洋,高士祥,林志芬,等.环糊精对硝基苯微生物降解的影响[J].中国环境科学,2004,24(5):576-578.
    [164]Garon D, Sage L, Wouessidjewe D, et al. Enhanced degradation of fluorene in soil slurry by< i> Absidia cylindrospora and maltosyl-cyclodextrin[J]. Chemosphere,2004,56(2):159-166.
    [165]Garon D, Sage L. Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry[J]. Biodegradation,2004,15(1):1-8.
    [166]Kamiya M, Nakamura K, Sasaki C. Inclusion effects of P-cyclodextrins on the hydrolysis of organophosphorus pesticides[J]. Chemosphere,1995,30(4):653-660.
    [167]Kamiya M, Nakamura K. Cyclodextrin inclusion effects on photodegradation rates of organophosphorus pesticides[J]. Environment international,1995,21(3):299-304.
    [168]Ishiwata S, Kamiya M. Effects of humic acids on the inclusion complexation of cyclodextrins with organophosphorus pesticides[J]. Chemosphere,1999,38(10):2219-2226.
    [169]Kamiya M, Kameyama K, Ishiwata S. Effects of cyclodextrins on photodegradation of organophosphorus pesticides in humic water[J]. Chemosphere,2001,42(3):251-255.
    [170]Beyrich T, Kottke K. Cyclodextrin catalyzed hydrolysis of guajacol-and vanillylesters of phenylalcanoic acids[J]. Pharmazie,1996,51(1):36-38.
    [171]Wang J M, Marlowe E M, Miller-Maier R M, et al. Cyclodextrin-enhanced biodegradation of phenanthrene[J]. Environmental science & technology,1998,32(13):1907-1912.
    [172]Huang X, Arai H, Matsuhasi S, et al. Cyclodextrin Addition Effect on Radiation-induced Decomposition of Chlorophenols in Deoxygenated Water[J]. Chemistry Letters,1996 (2):159-160.
    [173]Huang X, Arai H, MATSUHASHI S, et al. Enhanced Phenol Yield from Radiation-Induced Decomposition of Chlorophenols in Deaerated Water by Addition of Cyclodextrin and Glucose[J]. Chemistry letters,1996,1996(4):273-274.
    [174]Galiulin, R. V; Bashkin, V N.; Galiulina, R. A. Review:Behavior of persistent organic pollutants in the air-plant-soil system[J]. Water Air Soil Pollution.2002,137,179-191.
    175] Breivik, K., J.M. Pacyna, J. Munch. Use of α-, β-and γ-hexachlorocyclohexane in Europe, 1970-1996. Science of The Total Environment,1999.239(1-3):151-163
    [176]Li, Y.F. Global technical hexachlorocyclohexane usage and its contamination consequences in the environment:from 1948 to 1997. The Science of the Total Environment,1999.232(3):121-158
    [177]Li, Y.F., R.W. Macdonald. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota:a review. Science of The Total Environment,2005.342(1-3):87-106
    [178]Wennrich, L.; Popp, P.; Breuste, J. Determination of organochlorine pesticides and chlorobenzenes in fruit and vegetables using subcritical water extraction combined with sorptive enrichment and CGC-MS[J]. Chromatographia Suppl.2001,53, Suppl.,380-386
    [179]Babu, GS.; Farooq, M.; Ray,R. S.; Joshi, P. C.; Viswanathan, EN.; Hans, R. K. DDT and HCH residues in Basmati rice(Oryza sativa)cultivated in Dehradun(India)[J]. Water Air Soil Pollution.2003,144,149-157
    [180]Ricking, M.; Schwarzbauer, J. HCH residues in point-source contaminated samples of the Teltow Canal in Berlin, Germany[J]. Environ. Chem. Lett.2008,6,83-89
    [181]Willett, K.; Ulrich, E. M.; Hites, R. A. Differential toxicity and environmental fates of hexachlorocyclohexaneisomers[J]. Environ. Sci. Techn011998,15,2197-2207
    [182]Wang Tai, Zhang Zu-lin, Huang Jun, et al., Occurrence of dissolved polychlorinated biphenyls and organic chlorinated pesticides in the surface water of Haihe River and Bohai Bay, China[J]. Huan jing Ke xue,2007,28(4):730-735.
    [183]Gan Z, Li J,Cheng H, et al., Distribution of Organochlorine Pesticides in the Northern South China Sea:Implications for Land Outflow and Air-Sea Exchange[J]. Environ. Sci. Technol.2007,41: 3884-3890.
    [184]余鹏,周珊珊,杨华云.椒江口沉积物中有机氯农药的含量及对映体特征[J].环境科学与技术,2011,34(11):1-5.
    [185]Yang hua-yun, Xue Bin, Yu Peng, et al. Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea[J]. Chemosphere,2010,80: 652-659.
    [186]Wang Z Y, Yan W, Chi J S. Spatial and vertical distribution of organochlorine pesticides in sediments from Daya Bay, South China [J]. Marine Pollution Bulletin,2008,56(9):1578-1585.
    [187]袁和金,2009博士论文
    [188]Chen SB, Shi LL, Shan ZJ, Hu QH. Determination of organochlorine pesticide residues in rice and human and fish fat by simplified two-dimensional gas chromatography. Food Chemistry,2007, 104(3):1315-1319
    [189]刘守亮,秦启发,李启泉.孝感地区人体有机氯农药蓄积水平.环境与健康杂志,2004,21(4):238-240
    [190]张大第,张晓红.农药污染与防治.北京:化学工业出版社,2001
    [191]李振伟,陈华文,郭营,车效进.莱芜市部分粮食中HCH、DDT残留量调查分析.中国食品卫生杂志,2001,13(3):33-34
    [192]许越先.发展优质农产品的问题与对策.北京:中国农业科技出版社,1999
    [193]王茂起,王竹天,包大跃,冉陆.中国2000年食品污染状况监测与分析.中国食品卫生杂志,2002,14(2):3-8
    [194]魏峰,董元华,安琼,等.油料作物和粮食作物种子中有机氯农药残留分析[J].土壤,2008,40(4):647-652.
    [195]Sagelsdorff, P., W.K. Lutz, C. Schlatter. The relevance of covalent binding to mouse liver DNA to the carcinogenic action of hexachlorocyclohexane isomers. Carcinogenesis,1983.4(10):1267-1273
    [196]Willett, K.L., E.M. Ulrich, R.A. Hites. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environmental Science & Technology,1998.32(15):2197-2207
    [197]Srivastavaa, A.; Shivanandappa, T. Stereospecificity in the cytotoxic action of hexachlorocyclohexane isomers[J]. Chemico-Biological Interactions.2010.183.34.39.
    [198]Willett, K.; Ulrich, E. M.; Hites, R.A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers[J]. Environ. Sci. Technol.1998,15,2197-2207
    [199]Pereira, R. C.; Calvelo, R.; Macias, C. M. Phytotoxicity of hexachlorocyclohexane:Effect on germination and early growth of different plant species[J]. Chemosphere.2010,79,326-333
    [200]Jantunen LM, Bidleman T. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in Arctic regions. Journal of Geophysical Research,1996, 101/D22,28837-28846
    [201]Jantunen LMM, Bidleman TF. Organochlorine pesticides and enantiomers of chiral pesticides in Arctic Ocean water. Archives of Environmental Contamination and Toxicology,1998,35 (2): 218-228
    [202]张智超,戴树桂,朱昌寿等.海口河口水和新港港湾水中α-HCH对映体选择性降解及α,β, γ-HCH浓度.中国环境科学,1998,18:197-201
    [203]Falconer RL, Bidleman TF, Szeto SY. Chiral pesticides in soils of the Fraser Valley, British Columbia. Journal of Agricultural and Food Chemistry,1997,45 (5):1946-1951
    [204]Falconer RL, Bidleman TF, Gregor DJ, et al. Enantioselective breakdown of a-hexachlorocyclohexane in a small Arctic lake and its watershed. Environmental Science & Technology,1995,29:1297-1302
    [205]Harner T., Kylin H., Bidleman T. F., et al. Removal of α-and γ-hexachlorocyclohexane in the Eastern Arctic ocean. Environ Sci Technol,1999,33:1157-1164
    [206]Wiberg K, Letcher RJ, Sandau CD, et al. The enantioselective bioaccumulation of chiral chlordane and a-HCH contaminants in the polar bear food chain. [J]. Environmental Science &Technology,2000,34:2668-2674.
    [207]Willett KL, Ulrich EM, Hites RA. Differential Toxicity and Environmental Fates of Hexachlorocyclohexane Isomers. Environmental Science & Technology,1998,32(15):2197-2207
    [208]Kallenbore R, Huhnerfuss H, Konig WA. Enantioselective metabolism of α-HCH in organs of the eider duck. Angewandte Chemie-international Edition,1991,30:320-321
    [209]Covacia A, Gheorghe A. Schepens P. Distribution of organochlorine pesticides, polychlorinated biphenyls and a-HCH enantiomers in pork tissues. Chemosphere,2004,56:757-766
    [210]Mossner S., Spraker T. R., Becker P.R., et al. Ratios of enantiomers of alpha-HCH and determination of alpha-HCH, beta-HCH, and gramma-HCH isomers in brain and other tissues of neonatal northern fur seals (callorhinus-ursinus).Chemosphere,1992,24,1171-1180
    [211]Wiberg K., Letcher R. J., Sandau C. D., et al. The Enantioselective bioaccumulation of chiral chlordane and α-HCH contaminants in the polar bear food chain. Environ. Sci. Technol., 2000, 34:2668-2674
    [212]Iwata H., Tanabe S., Lida T, et al. Enantioselective accumulation of α-hexachlorocyclohexane in northern fur seals and double-crested cormorants:effects of biological and ecological factors in the higher trophic levels.Environ. Sci. Technol..1998,32 (15):2244-2249
    [213]Hisato I, Shinsuke T, Tetsuji I, Norihsa B, Ryo T. Enantioselective Accumulation of α-Hexachlorocyclohexane in Northern Fur Seals and Double-Crested Cormorants:Factors in the Higher Trophic Levels. Environ. Sic. Technol.1998,32:2244-2249
    [214]Tanabe S, Kumaran P, Iwata H, et al. Enantiomeric ratios of alpha- hexachlorocyclohexane in blubber of small cetaceans. Marine Pollution Bulletin,1996,32 (1):27-31
    [215]Heqing Shen, H. E. Virtanen, Katharina M. Main, etal. Enantiomeric ratios as an indicator of exposure processes for persistent pollutants in human placentas. Chemosphere.2006,62:390-395.
    [216]Ulrich EM, Willett KL, Caperell GA, et al. Understanding enantioselective processes:a laboratory rat model for alpha-hexachlorocyclohexane accumulation.Environmental Science & Technology,2001, 35 (8):1604-1609
    [217]Daibin Yang, Xiqing Li, Shu Tao, Yaqin Wang, Yong Cheng, Diyu Zhang and Longchuan Yu, Enantioselective Behavior of α-HCH in Mouse and Quail Tissues, Environ. Sci. Technol.,2010,44 (5), p.1854-1859
    [218]Worthing, C. R,Hance, RJ., The Pesticide Manual-a World Compendium,9th ed. The British Crop Council:Famham,1991.
    [219]Rendina A. R., Felts J. M., et al. Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxyprop ionic acid grass herbicides. Arch. Biochem. Biophys.1988,265 (1):219-225
    [220]Ditomaso J. M., Brown P. H., et al. Effects of diclofop and diclofop-methyl on membrane potentia Is in roots of intact oat, maize, and pea seedlings. Plant. Physiol.1991,95 (4):1063-1069
    [221]高博,李宗宝,植物乙酰辅酶A羧化酶性质和抑制剂研究.医学售忠2008,21,1215-1217.
    [222]黄世霞;王庆亚;董立尧;娄远来,乙酰辅酶A羧化酶抑制剂类除草剂与杂草的抗药性.杂草科学2003,2,1--5.
    [223]Wright,J. P.; Shimabukaa'o, tL H., Effects of diclofop and diclofop-methyl on the membrane Potentials of wheat and oat coleoptiles. PlantPhysiol.1987,85,188-193.
    [224]Wright J. P., Use of membrane potential measurements to study mode ofaction of diclofop-methyl. Weed Sci.1994,42,285-292
    [225]刘维屏,农药环境化学,化学工业出版社,2006
    [226]蔡喜运,环糊精和腐殖酸对手性除草剂禾草灵的水生毒理和生物有效性影响研究.浙江大学博士学位论文2005.
    [227]叶璟.除草剂禾草灵对水稻与蓝藻的对映选择性毒理研究;浙江大学,2010.
    [228]Cai, X. Y.; Wen,. Y Z. Zhong,. T. X. Effects of methyl-CD and humic acid on hydrolytic degradation ofthe herbicide diclofop-methyl. [J]Environ. Sci 2005,17,67.71.
    [229]Smith, A. E.; GroveL R.; Cessna, A. J.; Shewchuk, S. R.; Hunter,J. H. Fate of diclofop-methyl after application to a wheat field[J]. Environ. Qual.1986,15,234.238.
    [230]刘维屏,金美青,蔡喜运,叶璟.禾草灵的作用机制及环境生态效应研究进展[J].农药学学报,2008.10..383.391.
    [231]Smith A. E. Esterification of the hydrolysis product of the herbicide diclofop-methyl in methanol. J. Agric. Food Chem 1976,24 (5):1077-1078
    [232]Smith A. E. Extraction of free and bound carboxylic acid residues from field soils treated with the herbicides benzoylprop-ethyl, diclofop-methyl, and flamprop -methyl. J. Agric. Food Chem.1979,27 (2):428-432
    [233]Gu X., Lu Y. L., et al. Enantioselective Degradation of Diclofop-methyl in Cole(Brassica chinensis L). Food Chemistry.2010,121:264-267
    [234]Gu X., Wang P., et al. Stereoselective degradation of benalaxyl in tomato, tobacco, sugar beet, capsicum and soil, Chirality,2008,20(2):125-129
    [235]DIAO J, XU P, WANG P, et al. Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop:enantiomerization and enantioselective degradation in soil.Environmental science & technology,2010,44(6):2042-2047.
    [236]Lu Y, Diao J, Gu X, et al. Stereoselective degradation of diclofop-methyl during alcohol fermentation process[J]. Chirality,2011,23(5):424-428.
    [237]Lu Y, He Z, Diao J, et al. Stereoselective behaviour of diclofop-methyl and diclofop during cabbage pickling[J]. Food Chemistry,2011,129(4):1690-1694.
    [238]Petit,F.; Le Goff,P.; Cravedi,J. P.; Valotaire, Y.; Pakdel, F., Two complementary bioassays for screening the eslrogenic potency of xenobiotics:recombinant yeast for trout estrogen receptor and trout hepatocytc cultures. Journal ofMolecular Endocrinology 1997,19(3),321·335·
    [239]United Stated Environmental Protection Agency. EPA-738-F-00-009, Prevention, Pesticides and Toxic Substance (7508C)[S].2000.
    [240]周永欣,章宗涉.水生生物毒性试验方法[M].北京:农业出版社.1989
    [241]Higuchi T, Connors K.A. Phase-solubility techniques [J]. Adv. Anal. Chem. Instrum,1965,4(2): 117-212.
    [242]EFED. Red Chapter for diclofop-methyl 2000.3.22.
    [243]韩熹莱编,农药概论,北京农业大学出版社,1994
    [244]Maria H., Aranka K. D., Vikt6ria K., Janos M. Detection of toxic effects of Cd2+ on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy. Anal. Bioanal. Chem.2006,385,652-659.
    [245]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.1976,72:248-54.
    [246]蔡喜运.环糊精和腐殖酸对手性除草剂禾草灵的水生毒理和生物有效性影响研究.浙江大学博士学位论文.2006
    [247]X. Gu, Y. Lu, P. Wang, Z. Dang, Z. Zhou, Food Chem.121 (2010) 264-267.
    [248]傅华龙等编著。藻类学教程,成都:四川大学出版社,1993
    [249]Becker E W. Microalgae:biotechnology and microbiology[M]. Cambridge University Press,1994.
    [250]Klekner V, Kosaric N. Degradation of phenols by algae[J]. Environmental technology,1992,13(5): 493-501.
    [251]Semple K T, Cain R B. Biodegradation of phenols by the alga Ochromonas danica[J]. Applied and environmental microbiology,1996,62(4):1265-1273.
    [252]Jinqi L, Houtian L. Degradation of azo dyes by algae[J]. Environmental pollution,1992,75(3): 273-278.
    [253]Yan H, Ye C, Yin C. Kinetics of phthalate ester biodegradation by Chlorella pyrenoidosa[J]. Environmental toxicology and chemistry,1995,14(6):931-938.
    [254]蒋亚林,陆寿珍,沈大棱.细胞生物实验[J].1996.
    [255]Jeffrey S W and G F Humphrey,1975, New spectrophotometric equations for determining chlorophylls a, b, cl and c2 in higher plants, algae and natural phytoplankton. Biochem. Physi-1. Pflancen,167,191-194.
    [256]Schulz H.1887. Zur Lehre von der Arzneiwirkung. Virchows Arch Pathol Anat Physiol Klein Med,108,423-445.
    [256]Stebbling A.R.D.1982.Homresis-the stimulation of growth by low of inhibitors. Sci.Total Environ.,22,213-234.
    [258]Calabrese E J, Baldwin L A.2000a. Chemical hon nesis:its historical foundations as a biological hypothesis.Human and Experimental Toxicology,19:2-31.
    [259]Calabrese E J, Baidwin L A, Holland C D.1999. Hormesis:a highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Analysis,19(2): 261-281.
    [260]陶功华.2007.低剂量兴奋效应作用机制的研究进展闭.中山大学研究生学刊:自然科学、医学版,28(1):16-21.
    [261]Sakaue M, Ohsako S,Ishimura R, et al.2001.Bisphenol A affects spermatogenesis in the adult rat even at low doses[J]. Journal of Occupational Health,43:185-190.
    [262]Calabrese E J, Blain R.2005. The occurrence of hormetic dose responses in the toxicological literature, the hormetic database:an overview. Toxicology and Applied Pharmacology,202:289-301.
    [263]Cedergreen N, Streibig J C, Kudsk P, et al.2007. The occurrence of hormesis in plants and algae. Dose-Response,5:150-162.
    [264]Calabrese E J, Baldwin L A.2000c. Tales of two similar hypotheses:the rise and fall of chemical and radiation hormesis. Human and Experimental Toxicology,19,85-97.
    [265]Cedergreen N, Ritz C, Streibig J C.2005. Improved empirical models describing hormesis. Environmental Toxicology and Chemistry,24(12):3166-3172.
    [266]Schabenberger O, Kells J J, Penner D.1999. Statistical test for hormesis and effective dosage in herbicide dose-response. Agronomy Journal,91:713-721.
    [267]Nelson K A, Renner K A, Hammerschmidt R. Effects of protoporphyrinogen oxidase Inhibitors on soybean (Glycine max L.) response, Sclerotinia sclerotiorum disease development, and phytoalexin production by soybean.Weed Technology,2002.16(2):353-359.
    [268]Neeely W.B., Branson D.R., Blau GE. Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ. Sci.Technol.1974,8:1113-1115.
    [269]Veith G.D., DeFoe D.L., Bergstedt B.J. Measuring and estimating the bioconcentration factor in fish. J. Fish Res. Board Can.1976,36:1040-1048.
    [270]Chiou C.T., Freed V.H., Schmedding D.W., et al. Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol.1977,11:475-478.
    [271]Brooke D.N.,Dobbs A.J.,Williams N. Octanol:water partition coefficients: Measurement,estimation and interpretation,particularly for chemicals with P> 105.Ecotoxicol. Environ. Saf.1986,11:251-260.
    [272]Huhnersuss,2000; HTMhnerfusss, H.,2000. Chromatographic enantiomer separation of chiral xenobiotics and their metabolites-A versatile tool for process studies in marine and terrestrial ecosystems. Chemosphere.40,913-919.
    [273]Mulle rand Kohler 2004 MTMler, T. A., Kohler, H. P. E.,2004. Chirality of pollutants effects on metabolism and fate. Appl Microbiol. Biotechnol.64,300$316.
    [274]Moller et al,1996 M?ller, K., Hhnerfuss, H., Wolfle, D.,1996. Differential effects of the enantiomers of A-hexachlorocyclohexane (A-HCH) on cytotoxicity and growth stimulation in primary rat hepatocytes. Organohal. Compd.29,357-360.
    [275]郭淼等.2005.天津地区人群对六六六的暴露分析.环境科学,26(1):164-167.
    [276]Hoekstra, P. F., Braune, B.M., Wong, C.S., Williamson, M., Elkin, B., Muir, D.C.G.,2003. Profile of persistent chlorinated contaminants, including selected chiral compounds, in wolverine (Gulo gulo) livers from the Canadian Arctic. Chemosphere.53,551-560.
    [277]Xue et al.,2010 Xue, M., Shen G F., Yu, J. L., Zhang, D. Y, Lu, Z. J., Wang, B., Lu, Y, Cao, Y, Tao, S.,2010. Dynamic changes of A-hexachlorocyclohexane and its enantiomers in various tissues of Japanese Rabbits (Oyctolagus cuniculus) after oral or dermal exposure. Chemosphere.81,1486-1491.
    [278]王广基等,2005.药物代谢动力学.化学工业出版社,北京.
    [279]蒋新国等,2009.生物药剂学与药物动力学.高等教育出版社,北京.
    [280]Sanders, L. M.,1990. Drug delivery system and routes of administration of peptide and protein drugs. Eur. J. Drug Metab. Pharmacokinet.15,95-102.
    [281]Hoekstra, P. F., Hara, T. M.O., Teixeria, C., Backus, S., Fisk,A. T, Muir, D.C.G.,2002. Spatial trends and bioaccumulation of organochlorine pollutants in marine zooplankton from the Alaskan and western Canadian Arctic. Environ Toxicol Chem.21,575-583.
    [282]Hoekstra, P. F., O'Hara, T. M., Backus, S. M., Hanns, C., Muir, D. C. G.,2005. Concentrations of persistent organochlorine contaminants in bowhead whale tissues and other biota from northern Alaska:Implications for human exposure from a subsistence diet. Environ. Res.98,329-340.
    [283]Abbott, N. J., R?nnb?ck, L., Hansson, E.,2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Rev Neuro.7,41-53.
    [284]Portig, J., Stein, K., Vohland, H. W.,1989. Preferential distribution of a-HCH into cerebral white matter. Xenobiotica.19,123-130.
    [285]Hummert, K., Vetter, W., Luckas, B.,1995, Levels of a-HCH, lindane, and enantiomers of a-HCH in marine mammals from the northern hemisphere. Chemosphere.31, 3489-3500
    [286]Pfaffenberger, B., Hardt, I., HTMhnerfuss, H., K?nig, W. A., Rimkus, G, Glausch, A., Schurig, V, Hahn, J.,1994. Enantioselective degradation of A-hexachlorocyclohexane and cyclodiene insecticides in roe-deer liver samples from different regions of Germany. Chemosphere.29,1543-1554.
    [287]Moller, K., HTMhnerfuss, H.,1993. On the diversity of enzymatic degradation pathways of A-hexachlorocyclohexane as determined by chiral gas chromatography. J. High Resolut. Chromatogr. 16,672-673.
    [288]Shen, H. Q., Main, K. M., Virtanen, H. E., Damggard, I. N., Haavisto, A. M., Kaleva, M., Boisen, K. A., Schmidt, I. M., Chellakooty, M., Skakkebaek, N. E., Toppari, J., Schramm, K. W.,2007. From mother to child:investigation of prenatal and postnatal exposure to persistent bioaccumulating toxicants using human milk and placenta biomonitoring.Chemosphere,67, S256-S262.
    [289]Wong, C. S., Lau, E, Clark, M., Mabury, S. A., Muir, D. C. G.,2002 Rainbow trout (Oncorhynchus mykiss) can eliminate chiral organochlorine compounds enantioselectively. Environ Sci Technol.36,1257-1262.
    [290]Luurtsema et al.,2004 Luurtsema, G, Lange, E. C. M., Lammertsma, A. A., Franssen, E. J. F., 2004. Transport across the blood-brain barrier:stereoselectivity and PET-tracers. Mol Imaging Biol.6, 306-318.