3,4-二氯硝基苯与3-氯-4-氟硝基苯合成工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氟药物由于生物活性高、效果好、毒性低等受到人们普遍关注,临床应用迅速发展,成为十分抢手的强力广谱抗菌消炎药,总需求量呈较大增长趋势。所以,作为含氟类药物——氟喹诺酮类抗菌素中间体氟氯苯胺的生产中,3-氯-4-氟-硝基苯(也称2-氯-1-氟-4-硝基苯)制备工艺的优化或改进对降低含氟药物整个生产过程成本、提高产品收率和质量起到关键的作用。现有的溶剂法生产3-氯-4-氟-硝基苯工艺虽然具有技术成熟的优点,但存在溶剂用量大、回收不完全从而污染环境、反应温度高且副反应多、收率较低等问题。为消除溶剂对环境的污染,提高产品收率,本文提出一条新的合成3-氯-4-氟-硝基苯工艺路线:采用相转移催化剂(PTC),高活性氟化剂,使3,4-二氯硝基苯(也称1,2-二氯-4-硝基苯)发生氟氯置换合成3-氯-4-氟-硝基苯。
     为此,本文首先在自行设计的塔式氯化器中,以对硝基氯苯为原料,路易氏酸作催化剂,分子氯氯化合成3,4-二氯硝基苯(合成3-氯-4-氟-硝基苯的原料),根据该氯化过程特征,利用正交试验设计方法结合单因素实验考察了有关因素对氯化过程的影响,优化得到了最佳的氯化工艺条件,3,4—二氯硝基苯的收率可达83.26%。比文献报道的最高收率高3.26个百分点。
     其次,在3-氯-4-氟-硝基苯的合成过程中,提出了一种原料价格低廉、操作方便的重结晶过程,获得了高活性的KF,使用该种高活性的氟化剂,可使氟化产物3-氯-4-氟-硝基苯的收率比市售KF提高近25个百分点。
     并在相转移催化剂存在下,通过正交试验优化得到了最佳的相转移催化氟化工艺条件,3-氯-4-氟硝基苯收率可达92.23%,比现行的溶剂法生产工艺提高6个百分点。
     此外,本文还分别探讨了对硝基氯苯氯化反应和3,4-二氯硝基苯相转移催化氟化反应的动力学,得到:
     氯化反应动力学方程:式中,[P]——对硝基氯苯的摩尔浓度,mol.dm~(-3)氯化反应在95℃~105℃范围内的平均表观活化能为69.68kJ.mol~(-1)。相转移催化氟化反应动力学方程:
    
    郑州大学硕士学位论文
    一鲤_2.75、10,陇
     dt
    一8765K
     式中,[D]—3,4一二氛硝基苯的摩尔浓度,moL橱刁。
     该反应在145℃~165℃温度范围的平均表观活化能为72.87kJ.mol一,。
     综上所述,本文通过试验研究优化得到了合成3,4一二氛硝基苯和3一氛一4一氟一硝基
    苯的最佳工艺条件,并分别探讨了其宏观反应动力学,为工程设计和工业化生产提供了
    一定的设计参数和理论依据。
One kind of medicine bearing a fluorinated ring system has drawn wide attention and developed rapidly in clinical application, because of its biologically active, good effect and low toxicity. The total demand is increasing. So, as the former material of 2-chloro-1-fluoro-4-nailine that is intermediate of the medicine bearing a fluorinated ring, the optimization or improvement of technology for preparing 2-chloro-l-fluoro-4-nitrobenzene (FCNB) is the key to improve the yield and quality of product and reduce the cost of production. There are some problems in present industrialized production technology, such as using large amount of solvent, which is not be able to recover it completely and polluting environment, higher reaction temperature and side reactions, and etc. In order to delete the solvent's pollution to surroundings and improve the yield of product, another new synthesis route: l,2-dichloro-4-nitrobenzene (DCNB) reacted with highly active form of KF, in presence of a phase transfer catalyst (PTC), was discussed.
    First, the preparation of l,2-dichloro-4-nitrobenzene, which l-chloro-4-nitrobenzene (PNCB) reacted with chlorine in a self-designed chlorinator, in presence of Lewis acid catalyst, .was investigated. By means of the Orthogonal Experiments design and single factor experiments, the influence of several reaction variables on the yield were examined and the optimum reaction conditions under the intervallic operation were obtained, the yield of l,2-diehloro-4-nitrobenzene was 83.26%. 3.26% higher than that reported by references. Moreover, the kinetics of chlorination under the defined sets of conditions was also studied.
    The average apparent activation energy of this chlorination process in temperature range of 95℃-105℃ was 69.68kJ.mol-1 and the kinetics equation was:
    where [P] is concentration of l-chloro-4-nitrobenzene, mol.dm"3.
    Second, using a simple and inexpensive recrystallizing process, .a highly active form KF was obtained. It was observed to be considerably more efficient in preparing FCNB than the KF form sold in market. The yield of FCNB increased over the latter was about 25%.
    The conversion of DCNB to FCNB, a nucleophilic aromatic substitution type reaction, at 140-160℃, with the recrystallized KF and Cetrimonium bromide(CTMAB) as catalyst was examined. The influence of several reaction variables on the yield was studied through
    
    
    
    Orthogonal Experiments and the optimum reaction conditions of phase transfer catalysis fluorination wetfe obtained .Under these conditions, the yield of FCNB was 92.23%, 6% higher than that acquired by present technology in presence of certain solvent.
    The kinetics of this phase transfer catalyzing fluorination process under a limited number of defined sets of reaction conditions was also studied. The average apparent activation energy of this process in the temperature range of 145℃-165℃ was 72.87kJ.mol-1 and the kinetics equation was:
    where [D] is concentration of 1,2-dichloro-4-nitrobenzene, mol.dm-3. The results were obtained above can provide some design parameters and theoretical background for engineering design and industrialization of products.
引文
[1] 周伟澄,张秀平.氟喹诺酮类药物研究的新进展[J].中国医药工业杂志,1997,28(2):75~78
    [2] 徐国耀,叶志翔.对我国含氟芳香化合物应用领域及潜在市场的分析[J].精细与专用化学品,1999,7(20):7~9
    [3] 刘长春.3-氯-4-氟苯氧乙酸的合成研究[J].山东化工,2000,29(6):1~2,12
    [4] 谭美军,刘小平.氟氯苯胺的合成与开发[J].广西化工,1996,25(4):26~30
    [5] 顾家山,褚道葆,周幸福等.间接电还原法合成氟哌酸中间体氟氯苯胺的研究[J].精细化工,1999,16(4):31-34
    [6] 南京药学院.2,4—二氯氟苯制备新工艺.CN 1,075,949,1993,1~6
    [7] 陈恒昌,郭彦春,路德让.自对硝基氯苯制备氟哌酸的工艺研究[J].中国医药工业杂志,1990,21(5).193~194
    [8] 李光熙,朱文平译.含氟新农药的展望[J].农药译丛,1985,7(4):2~12
    [9] Manfred T.R., Chdstoph E Chemosclective Reduction of Halo-nitro Aromatic Compounds by β-Cyclodextrin-modified Transition Metal Catalysts in the Biphasic System. Synthesis, 1999, 9. 1555~1557
    [10] 卢焕章等.石油化工基础数据手册[M].北京:化学工业出版社,1982.
    [11] 章思规.精细有机化学品技术手册[M].北京:科学出版社,1991,472~476
    [12] 姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985.
    [13] 梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1996.147-193
    [14] 程能林.溶剂手册(第二版)[M].北京:化学工业出版社,1995,197~201,780~782
    [15] 蒋登高,章亚东,周彩荣.精细有机合成反应及工艺[M].北京:化学工业出版社,2001,55
    [16] 惠新平,张林海,张自义.相转移催化剂在杂环化学中的应用[J].有机化学,1999,19(5):458~467
    [17] Damon Jean-Pierre Le Buissonnay, Cordier G., Fouillorux P, Marion P. Hydrogenation of nitro groups of halonitroarenes with Raney-type catalyst. French, EP 647,472, 1995, 1~10
    
    
    [18] Anmelder, Erfinder, Gemeinsamer V., Bestimmungsstaaten. Process for Producing Chlorofluoronitro Benzenes and Difluoronitro Benzenes. German, WO 9200, 270, 1992, 1~13
    [19] Timothy P. Smyth; Aedin Carey and B. K. Hodnett. Inexpensive, Active KF for Nucleophilic Aromatic Displacement Reactions[J]. Tetrahedron, 1995,51(22): 6363~6376
    [20] 山田 隆一,梅本光政,中尾训.3,4-精制法.Japan,JP 03,190,847,1991.341~344
    [21] 姚蒙正,程侣柏,王家儒.精细化工产品合成原理[M].北京:中国石化出版社,2000,300-309
    [22] 贺英,殷雁鸣.用相转移催化法合成氟氯硝基苯[J].西安化工,1988,(2):18~21
    [23] 罗军,蔡春,吕春绪.微波促进卤素交换氟化反应合成硝基氟苯类化合物:溶剂的选择及其在微波场中的性质[J].精细化工,2003,20(1):53~55
    [24] 陈东初,王良芥,罗和安.卤代芳香族化合物氟化反应中的相转移催化[J].精细化工中间体,2002,32(3):4~6
    [25] 王尔华.氟氯硝基苯合成工艺改进研究[J].中国药科大学学报,1989,20:130
    [26] Berris et al. Catalysis in halogen exchange reaction[P]. US5 965 781,1999,10,12.
    [27] Bildinov, et al。Halogen exchange reactions[P]. US 5 824 827, 1998,10,20
    [28] 张水泉.3-氯-4-氟苯胺的生产与研究概况[J].中国医药工业杂志,1991,22(7):327~330
    [29] Pews, et al. Preparation of halo. of fluorobenzenes [P]. US 4 937 397, 1990,6, 26.
    [30] Kysela, et al. Process for introducing fluorine atoms into aromatic rings by nucleophilic exchange[P].US4 978 769,1990,12,18
    [31] 吕宏初.氟哌酸中间体氟氯苯胺的开发[J].辽宁化工,1992,2:32~34
    [32] Frosig L., Nielsen O.J., Bilde M., Wallington T. J., Orlando J. J. Tyndall G. S. Kinetics and Mechanism of the Reaction of Cl Atoms with Nitrobenzene. J. Phys. Chem. A 2000,104:11328~11331
    [33] 张铸勇,祁国珍,庄莆.精细有机合成单元反应[M].上海:华东化工学院出版
    
    社,1995,160~184
    [34] 程秀莲,刘维昕.3,4-二氯硝基苯氟化工艺的研究[J].辽宁化工,1997,26(5):280-281
    [35] 天津化工研究院.无机盐工业手册[M].北京:化学工业出版社,1996
    [36] 孙培勤,刘大壮.实验设计数据处理与计算机模拟[M].河南:河南科学技术出版社,2001,80~91
    [37] 吴宇宏,刘霄.Mathcad 2001数学运算完整解决方案[M].北京:人民邮电出版社,2001.185~209
    [38] 许关煜,李敏华,刘玲玲.医药中间体手册[M].北京:化学工业出版社,1999,73~74
    [39] Ishikawa N.; Ktazume T.; Yamazaki T. et al. Modifying the Physical form of Solid KF: Spray Dried KF. Chem. Letters., 1981,761
    [40] Kimura Y., Suzuki H. Active form KF: Freezed Dried KF. Tetrahedron Letters, 1989, 1271
    [41] 冯国桢,戴江,楼良弟.2,4-二氯氟苯合成的工艺改进[J].化工生产与技术,1999,2:52~55
    [42] 程秀莲,侯海波,尚险峰.3,4-二氯硝基苯精制方法的研究[J].沈阳化工,1997,26(4):25~26
    [43] 许文松,王庆智.邻二氯苯硝化合成3,4-二氯硝基苯影响因素的考察[J].化学反应工程与工艺,1995,11(3):279~281
    [44] 陈念贻,钦佩,陈瑞亮等.模式识别方法在化学化工中的应用[M].北京:科学出版社,2000.71~101
    [45] 张玲,张拨.模式识别与人工智能[M].北京:电子工业出版社,1994.
    [46] 天津大学物理化学教研室.物理化学(下)第四版[M].北京:高等教育出版社,2001,184~191,209~231