立方阵三线性分解算法及其在高效液相色谱—二极管阵列检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文概述了化学计量学多元分辩与校正这一分支的发展情况以及研究现状,重点描述了采用交替最小二乘原理的三维数据即立方阵数据三线性分解算法近年来的发展和应用,在此基础上,将立方阵三线性分解算法与高效液相色谱-二极管阵列检测(HPLC-DAD)相结合,应用于多样品复杂多组份体系的二阶校正研究,以解决环境污染物、药物及药物代谢物等样品分析中由于混合物色谱、光谱严重重叠所引起的组份分离和分析极为困难的问题,实现了化学计量学以“数学分离”代替或增强“化学分离”的设想,展示了二阶校正问题中,立方阵三线性分解方法所具有的“二阶优势”的迷人魅力,此外,还提出了一个采用交替最小二乘原理的新的立方阵数据三线性分解算法,也用以解决传统平行因子分析方法(PARAFAC)的收敛缓慢和对组份数的估计敏感等问题。
     第一章,绪论,概述了化学计量学多元分辨与校正这一分支的发展情况以及研究现状,重点描述了采用交替最小二乘原理的三维数据即立方阵数据交替三线性分解算法近年来的发展和应用,以及本论文研究工作开展的意义。
     第二章,酚类化合物是重要的化工原料,同时也是一类广泛存在的环境污染物,因此对酚类物质进行定量分析具有较为重要而现实的意义。邻、间及对苯二酚的化学和物理性质十分相似,难以用常规的化学或物理方法分离及同时定量测定,本文利用交替三线性分解算法与反相高效液相色谱-二极管阵列检测相结合,对苯二酚位置异构体的重叠色谱及光谱体系进行了分辨研究,同时测定了水溶液中共存的邻苯二酚、间苯二酚和对苯二酚的含量,其回收率分别为(101.3±2.0)%,(98.3±1.3)%,(100.6±1.4)%,研究结果表明:该方法定量快速准确,实验操作步骤简单,解决了背景干扰存在条件下三者同时分辨难的问题,同时也说明了化学计量学在分析科学中具有广泛的应用前景。
     第三章,水杨酸类化合物的研究一直是一个比较活跃的领域。阿司匹林能够止痛,同时也是一种抗菌消炎试剂并具有退烧作用。水杨酸和龙胆酸是阿司匹林的主要代谢产物,而2,3-二羟基苯甲酸作为另一种活性医药成份有可能与水杨酸和龙胆酸在人体内共存。本文利用交替三线性分解算法结合高效液相色谱-二极管阵列检测在与待测物性质相似的未知干扰物2,3-二羟基苯甲酸共存条件下同时测定了水溶液中的水杨酸和龙胆酸,其回收率分别为(102.2±6.7)%和(102.1±4.1)%,分辨结果和实际结果相一致。实验结果表明,本实验操作简单,定量
    
    快速准确,实现了未知干扰物存在条件下,色普及光谱严重重叠的复杂分沂体系
     中感兴趣组份的直接同时测定,实验也表明交替三线性分解、ATLD)算法是有
     效解决高效液相色谱一二极管阵列检测中二阶校正问题的途径之一。
     第四章,对食用动物过量使用磺胺类药物会导致其在动物产品中的残留,
    这些残留物最终会对人体造成不良影响,因此,对磺胺类药物的医药剂量进行质
    量控制,对其在体内的变化进行监测便成了一项非常重要的分析任务。本文利用
    交替三线性分解算法与高效液相色谱一二极管阵列检测相结合,在与待测物性质
    相似的未知干扰物磺胺共存条件下同时测定了人工合成样及增效联磺片实际样中
    的磺胺嗜咤及磺胺甲嘻哇,并同时给出了分析物的光谱及色谱分辨轮廓,实验表
    明,本实验在不增加经济和时间耗费的前提下,可以“数学分离”增强传统的
     “化学分离”,在未知干扰物共存条件下,对感兴趣的多组份进行了直接的同时
    定量测定。表明了交替三线性分解(ATLD)算法具有收敛速度快、对体系因子
    数估计不敏感的特点,能有效解决高效液相色谱一二级管阵列检测中的二阶校正
    问题
     第五章,原先的R气RAFAC算法收敛速度较慢且对因子数的选择十分敏感,
    本文通过交替优化三个具有很强内在联系的目标函数,新提出了用于立方阵数据
    分析的交替同时最小化对角矩阵误差及协变矩阵误差(A SMDCME)算法,并通过
    解析模拟的HPLC一DAD数据及真实的HPLC一D人D数据验证了ASMDCME算法
    的特点。结果表明ASMDCME算法与传统的RA凡廿AC算法相比具有收敛速度
    快,_且对体系过高因子数估计不敏感的特性,为二阶校正及研究立方阵数据表征
    的化学体系或过程提供了有价值的工具。
In this thesis, the developments of muitivariate resolution and calibration in chemometrics. especially the iterative trilinear decomposition algorithms for the three-way data analysis based on alternating least squares principles and their applications have been reviewed. The methods for three-way (cubic) trilinear decomposition have been applied to the second-calibration using high performance liquid chromatography-diode array detection (HPLC-DAD). The problems arising from the serious overlapping of spectra and chromatograms are successfully resolved during the analysis of environment contamination, remedies and their metabolites, and so on. The assume replacing or improving the "chemical separation" with ''mathematical separation" and the charming of three-way data analysis from "second-order advantage" is exhibited in second-order calibration. In addition, an improved iterative trilinear decomposition making use of the alternating least squares principles has been proposed to overcome the problems of sl
    ow convergence and being sensitive to die estimation of factor number of the traditional PARAFAC algorithm.
    In Chapter 1, die developments of muitivariate resolution and calibration in chemometrics, especially the trilinear decomposition algorithms for the three-way data analysis and their applications have been reviewed.
    It is realistic and important to determinate quantitatively phenols due to their pollution widely existing in nature. Dihydroxybenzenes are hard to be determined simultaneously by routine chemical or physical methods because of their similarities of physical and chemical properties. In Chapter 2, the overlapping chromatograms and spectra of dihydroxybenzenes were resolved by alternating trilinear decomposition (ATLD) algorithm combined with HPLC-DAD, determining catechol, resorcinol and hydroquinone in aqueous solution simultaneously with their corresponding recoveries being (100.6±1.4)%, (98.3±1.3)% and (101.3±2.0)%, respectively. The results showed the experiment could be easily performed without resorting to time-consuming and complicated procedures and quantified accurately, resolving the problem arising from the overlapping chromatograms and spectra of analytes of interest. It also showed the promising application of chemometrics in analytical sciences.
    
    
    Salicylic and gentisic acids are major metabolites of aspinn. which may coexist with pyrocatechuic acid in biological fluids that serves as another active pharmaceutical ingredient. In chapter 3, ATLD method combined with HPLC-DAD is used to simultaneously determinate salicylic and gentisic acids in the presence of unknown and uncalibrated pyrocatechuic with their chromatograms and spectra seriously overlapping. A satisfying result has been obtained. The method successfully accomplished the direct simultaneous determination of analytes of interest in the presence of interfering components without expensive or time-consuming procedures with their recoveries being (102.2 ± 6.7)% and (102.1 ± 4.1)%, respectively. It is indicated ATLD can be efficiently applied to the second-order calibration in HPLC-DAD.
    Sulfonamides exceedingly used in the treatment of edible animals will lead to their residue in products, which will do harm to human ultimately. Quality control of sulfonamide formulations and their monitoring in body fluids are important analytical tasks. In chapter 4, sulfadiazine and sulfamethoxazole in synthetic samples and pharmaceutical tablets were simultaneously determined in the presence of unknown sulfanilamide by HPLC-DAD with easy and fast performance and accurate quantity. The study showed the fast convergence and insensitive to the estimation of component number of the ATLD algorithm and "second-order advantage" of the second-order calibration in HPLC-DAD.
    In chapter 5, a novel algorithm, alternating simultaneously minimized diagonal and covariant matrices' errors (ASMDCME) algorithm has been proposed for three-way data analysis. Simulated and real HPLC-DAD data have been carried to investigate the performance o
引文
[1] 俞汝勤.现代分析化学的信息理论基础.长沙:湖南大学出版社,1991
    [2] 俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991
    [3] 高鸿.分析化学前沿.北京:科学出版社,1991
    [4] 许禄.化学计量学方法.北京:科学出版社,1994
    [5] 汪尔康.21世纪的分析化学.北京:科学出版社,1999
    [6] 粱逸曾.白灰黑复杂多组份分析体系及其化学计量学算法.长沙:湖南科学技术出版社,1996
    [7] Lavine B K. Chemometrics. Anal Chem, 2000, 72: 91R-97R
    [8] Hoskuldsson A. PLS regression methods. J Chemom, 1988, 2: 211-228
    [9] Manne R. Analysis of two partial least squares algorithms for multivariate calbration. Chemom Intell Lab Sys, 1987, 1: 187-197
    [10] Kisner H J, Brown C W, Kavarnos G J. Mutltiple analytical frequencies and standards for the least-squares spectrometric analysis of serum-lipids. Anal Chem. 1983, 55(11): 1703-1707
    [11] Dief A S. Advanced Matrix Theory for Scientists and Engineers. Abacus Press. Tunbridge Wells & London, 1982
    [12] Liang Y Z, Kvaleiam O M, Manne R. White, grey and black multicomponent systems-A classification of mixture problems and methods for their quantitative analysis. Chemom Intell Lab Syst, 1993, 18: 235-250
    [13] Thijssen P C, Kateman G. Optimal designs with information theory in leastsuqares problems. Anal Chim Acta, 1984, 157: 99-115
    [14] Gemperline P J. A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical information and Computer Science, 1984, 24: 206-212
    [15] Vandeginste B, Esser R, Bosman T, et al. Three-component curve resolution in liquid chromatography with multiwavelength diode array detection. Anal Chem, 1985, 57: 971-985
    [16] Rutan S C, Brown S D. Model error compensation in multi-component analysis using adaptive kalman filtering. Anal Chim Acta, 1984, 160: 99-119
    
    
    [17] Rutan S C. Brown S D. Estimation of first-order kinetic parameters using the extended kalman filter. Anal Chim Acta. 1985. 167: 23-37
    [18] Ho C -N. C, Christian G D. Davidson E R. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer. Anal Chem. 1978. 50: 1108-1113
    [19] hman J, Geladi P, Wold S. Residual bilinearization. Part 1: Theory and algorithms. J Chemom, 1990, 4: 79-90
    [20] hman J, Geladi P, Wold S. Residual Bilinearization. Part 2: Application to HPLC-diode array data and comparison with rank annihilation factor analysis. J Chemom, 1990, 4: 135-146
    [21] Liang Y Z, Manne R, Kvalheim O M. Constrained background bilinearization. Chemom Intell Lab Syst, 1992, 14: 175-184
    [22] Lawton W H, Sylvestre E A. Self-modeling curve resolution. Techonometrics, 1971, 13: 617-633
    [23] Gampp H, Maeder M, Meyer C J, et al. Calculation of equilibrium constants from multiwavelength spectroscopic data. Ⅲ: model-free analysis of spectrophotometric and ESR titrations. Talanta, 1985, 32: 1133-1139
    [24] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal Chem, 1987, 59: 527-530
    [25] Keller H R, Massart D L. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal Chim Acta, 1991, 246(2): 379-390
    [26] Malinowski E R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. J Chemom, 1992, 6: 29-40
    [27] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections: resolving twoway multicomponent data. 1. Selectivity, latent-projective graph, datascopy, local rank, and unique resolution. Anal Chem, 1992, 64: 936-945
    [28] Liang Y Z, Kvalheim O M, Keller H R, et al. Heuristic evolving latent projections: 1. Reolving two-way multicomponet data. 2. Detection and resolution of minor constituents. Anal Chem, 1992, 64: 946-953
    [29] Wang J H, Liang Y Z, Jiang J H, Yu R Q. Local chemical rank estimaiton of twoway data in the presence of heteroscedasticity noise: a morphological approach.
    
    Chemom Intetl Lab Syst, 1996, 32: 265-272
    [30] Juan A D. Heyden Y V, Tauter R, et al. Assessment of new constraints applied to the alternating least squares(ALS) method. Anal Chim Acta. 1997, 346(3): 307-318
    [31] Juan A D, Bogaert B V D, Sanchez F C, et al. Application of the needle algorithm for exploratory, analysis and resolution of HPLC-DAD data. Chemom Intetl Lab. Syst, 1996, 33(2): 133-145
    [32] Malinowski E R. Automatic window factor analysis - A more efficient method for determining concentration profiles from evolutionary spectra. J Chemom, 1996, 10(4): 273-279
    [33] Gargallo R, Tauler R, Sanchez F C, et al. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trends Anal Chem, 1996, 15(7): 279-286
    [34] Elbergali A K, Breteton R G, Rahmani A. Influence of the method of calculation noise thresholds on wavelength selection in window factor analysis of diode array high-performance liquid chromatography. Analyst, 1996. 121(5): 585-590
    [35] Sanchez F C, Rutan S C, Garcia M D G, et al. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemom Intetl Lab Syst. 1997, 36(2): 153-164
    [36] Ritter C, Gilliard J A, Cumps J. et al. Corrections for heteroscedasticity in window evolving factor analysis. Anal Chim Acta. 1996, 318(2): 125-136
    [37] Elbergali A, Nygren J, Kubista M. An automated procedure to predict the number of components in spectroscopic data. Anal Chim Acta, 1999, 379(1-2): 143-158
    [38] Xie Y L, Hopke P K, Paatero P J. Positive matrix factorization applied to a curve resolution problem. J Chemom, 1998, 12(6): 357-364
    [39] Shao X G, Cai W S. Resoltuion of multicomponent chromatograms by window factor analysis with wavelength transform preprocessing. J Chemom, 1998, 12(2): 85-93
    [40] Shen H L, Manne R, Xu Q S, et al. Local resolution of hyphenated chromatographic data. Chemom Intell Lab Syst, 1999, 45(1-2): 323-328
    [41] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: Theory and application to the chromatographic analysis of complex mixtures with
    
    multiwavelength fluorescence detection. Anal Chim Acta. 1999, 389(1-3): 95-113
    [42] Liang Y Z, Leung A K M, Chau F T. A roughness penalty, approach and its application to noisy hyphenated chromatographic two-way data. J Chemom. 1999, 13(5): 511-524
    [43] Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemom Intell Lab Syst, 1999, 45(1-2): 335-338
    [44] Sanchez E, Kowalski B R. Tensorial carlibration: Ⅱ. Second-order carlibration. J Chemom, 1988, 2(4): 265-280
    [45] Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Anal Chem, 1986, 5(2): 496-499
    [46] Sanchez E, Kowalski B R. Tensorial resolution: A direct trilinear decomposition. J Chemom, 1990, 4: 29-45
    [47] Wilson B E, Lindberg W, Kowalski B R. Multicomponent quantitative analysis using second-order nonbilinear data: theory and simulations. J Am Chem Soc, 1989, 111: 3797-3804
    [48] Harshman R A. Foundations of the PARZAFAC procedure: Models and conditions for an explanatory' multi-models factor analysis. UCLA Working Papers in Phonetics, 1970, 16: 1-84
    [49] Bro R. PARAFAC: Tutorial and applications. Chemom Intell Lab Syst, 1997, 38: 149-171
    [50] Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. J Chemom, 1998, 12(1): 1-26
    [51] Chen Z P, Wu H L, Jiang J H et al. A novel trilinear decomposition algorithm for Second-Order linear carlibration. Chemom Intell Lab Syst, 2000, 52: 75-86
    [52] Chen Z P, Wu H L, Li Y et al. On self-weighted alternating trilinear decomposition algorithm—the property of being insensitive to the excess factors used in calculation. J Chemom, 2001, 15: 427-438
    [53] Chen Z P, Li Y, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. J Chemom, 2001, 15: 149-167
    [54] Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise
    
    diagonalization(ASD) method. J Chemom. 2000. 14: 15-36
    [55] Jiang J H. Wu H L, Chen Z P. et al. Coupled vectors resolution method for chemometric calibration with three-way data. Anal Chem. 1999. 71: 4254-4262
    [56] Jiang J H. Wu H L, Li Y, et al.. Alternating coupled vectors resolution(ACOVER) method for trilinear analysis of three-way data. J Chemom, 1999. 13: 557-578
    [57] Li Y, Jiang J H, Wu H L, et al. Alternating coupled matrices resolution method for three-way arrays analysis. Chemom Intell Lab Syst, 2000, 52: 33-43
    [58] Cao Y Zh, Chen Z P, Mo C Y, et al. A PARAFAC algorithm using penalty diagonalization error for three-way data array resolution. Analyst, 2000, 125: 2303-2310
    [59] Booksh K, Henshaw J M, Burgess L W, et al. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene. J Chemom, 1995, 9: 263-282
    [60] Wu H L, Yu R Q, Shimukawa M, et al. Second-order standard addition method based on alternating trilinear decomposition. Anal Sci, 2000, 16: 217-220
    [61] Tucker L R. Relations between multidimensional scaling and three-mode factor analysis, Psychometrika. 1972, 37: 3-27
    [62] Bro R. Multiway calibration, Multi-linear PLS. J Chemom, 1996, 10: 47-61
    [63] Bro R, Smilde A K, Jong S D. On the difference between low-rank and subspace approximation: improved model for multi-linear PLS regression. Chemom Intell Lab Syst, 2001, 58: 3-13
    [64] Kiers H A L, Tenberge J M F, Bro R. PARAFAC2—Part Ⅰ. A direct fitting algorithm for the PARAFAC2 model. J Chemom, 1999, 13: 275-294
    [65] Bro R, Anderson C A, Kiers H A L. PARAFAC2—Part Ⅱ. Modeling chromatographic data with retention time shifts. 1999, 13: 295-310
    [66] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young"decomposition. Psychometrika, 1970, 35: 283-319
    [67] Appellof C J, Davision E R. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents'. Anal Chem, 1981, 53: 2053-2056
    [68] Mitchell B C, Burdick D S. Slowly converging PARAFAC sequences: Swamps
    
    and two-factor degeneracies. J Chemom, 1994. 8(2): 155-168
    [69] Rayens W S. Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemom. Intell. Lab Syst. 1997, 38: 173-181
    [70] Anderson G G, Dable B K, Booksh K S. Weighted parallel factor analysis for calibration of HPLC-Uv/Vis spectrometers in the presence of Beer's law deviations. Chemom. Intell Lab Syst. 1999, 49: 195-213
    [71] Booksh K S, Muroski A R, Myrick M L. 1. Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. Carlibration of Naphthalene and Styrene'. Anal Chem, 1996, 68: 3534-3544
    [72] JiJi R D, Cooper G A, Booksh K S. Excitation-emission matrix fluorescence based determination of carbamate pesticides and ploycyclic aromatic hydrocarbons. Anal Chim Acta, 1999, 397(1-3): 61-72
    [73] JiJi R D, Booksh K S. Mitigation of rayleigh and raman spectral interferences in multiway calibration of excitation-emission matrix fluorescence spectra. Anal Chem, 2000, 72(4): 718-725
    [74] JiJi R D, Andersson G G, Booksh K S. Application of PARAFAC for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. J Chemom, 2000, 14(3): 171-185
    [75] Beltran J L, Guiteras J, Ferrer R. Three-way multivariate calibration procedures applied to high-performance liquid chromatography coupled with fast-scanning determination of polycyclic aromatic hydrocarbons in water samples. Anal Chem, 1998, 70: 1949-1955
    [76] Cao Y Z, Mo C Y, Long J G. Speetrofluorimetric resolution of closely overlapping drug mixtures using chemometrics methods. Anal Sci, 2002, 18(3): 333-336
    [77] Tan Y X, Jiang J H, Wu H L, et al. Resolution of kinetic system of simultaneous degradation of chlorophyll a and b by PARAFAC. Anal Chim Acta, 2000, 412: 195-202
    [78] 辛梅华,徐金瑞,陈东.反相高效液相色谱分离-安培法检测酚类化合物.分析化学,1994,22(5):505-508
    [79] 邓国才,徐莉,刘歆颖等.邻苯二酚的高效液相色谱分析,分析化学.1996,
    
    24(11): 1312-1315
    [80] 张书胜,梁丽 袁倬斌.苯二酚异构体的电动毛细管色谱-玻碳电极柱上安培检测分析方法研究.1999,17(1):52-54
    [81] 黄少鹏,徐金瑞,王琼.薄层色谱法同时测定邻苯二酚、间苯二酚和对苯二酚异构体分析化学.1999,27(3):331-333
    [82] 方艳红,王琼,徐金瑞.人工神经网络法同时测定苯二酚异构体.分析试验室.2001,20(6):76-78
    [83] Bekersky I, Boxenbaum, H G, Whitson, M H, et al. Simultaneous determination of salicylic-acid and salicyluric acid in plasma and urine by high-pressure liquidchromatography. Anal Lett, 1977, 10(7-8): 539-550
    [84] Amick E N, Mason W D. Determination of asprin, salicylic-acid, salicyluric acid, and gentisic acid in human-plasma and urine by high-pressure liquidchromatography. Anal Lett, 1979, 12(6): 629-640
    [85] Salinas F, Delapena A M, Duranmeras I, et al. Determination of salicylic-acid and its metabolites in urine by derivative synchronous spectrofluorimetry. Analyst. 1990, 115(7): 1007-1011
    [86] Konstantianos D G, Ioannou P C, Simultaneous determination of acetylsalicylicacid and its major metabolites in human serum by 2nd-derivative synchronous fluorescence spectrometry. Analyst, 1992, 117(5): 877-882
    [87] Pulgarin J A M, Molina A A. Determination of salicylic and gentisic acids in the presence of each other by matrix isopotential synchronous fluorescence spectrometry. Analyst, 1994, 119(8): 1915-1919
    [88] Pulgarin J A M, Molina A A. Derivative linear variable-angle scanning fluorescence spectrometry for the determination of closely overlapping drug mixtures. Anal Chim Acta, 1996, 319(3): 361-368
    [89] Wu H L, Oguma K, Yu R Q. Simple multivariate calibration method with an appropriate number of principal components using singular-value decomposition and cross-validation procedure. Anal Sci, 1994, 10(6): 875-880
    [90] Commission Regulation(EC) NO 508/1999 of 4/3/1999 amending annexes Ⅰ to Ⅳ to Council/Regulation(EEC) NO 2377/90. Laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in food-stuffs of animal. Off J Eur Commun, 1999, 60(2): 16-
    
    17
    [91] Mahedero M C. Galeano D T. Galan P S. Determination of sulphamethoxazole by photochemically induced fluorescence in drugs and milk. Talanta. 2002. 57(1): 1-6
    [92] Sanchez P M, Salinas F, Mahedero M C, et al. Spectrofluorometric determination of sulfonamides in pharmaceutical compounds and foods. J Pharm Biomed Anal, 1992, 10: 805-808
    [93] Roudant B, Ganruier M. Sulphonamide residues in eggs following drug administration via the drinking water. Food Addit Contam, 2002, 19(4): 373-378
    [94] Furusawa N, Kishida K. Transfer and distribution profiles of dietary sulphonamides in the tissues of the laying hen. Food Addit Contam, 2002, 19(4): 368-372
    [95] 王建华,林黎明,陈长法.鸡肉中多种磺胺兽药残留量测定的高效液相色谱电化学检测法.分析测试学报,2002,21(4):79-81
    [96] Furusawa N, Kishida K. High-performance liquid chromatographic procedure for routine residue monitoring of seven sulfonamides in milk. Fresenius' J Anal Chem, 2001, 371(7): 1031-1033
    [97] Berzas N J J, Castaneda P G, Guzman B F J. Determination of sulfamethoxazole, sulfadiazine and associated compounds in pharmaceutical preparations by capillary zone electrophoresis. J Chromatogra A, 2001, 918(1): 205-210
    [98] Pasekova H, Polasek M, Cigarro J F, et al. Determination of some sulfonamides by sequential injection analysis with chemiluminescence detection. J Anal Chim Acta, 2001, 438(1-2): 165-173
    [99] Ruiz M A, Cano G M C, Molina D A. A flow analysis system for the rapid determination of sulfonamides using a solid-phase photometric sensing zone. Anal Lett, 2002, 35(2): 269-282
    [100] Mahedero M C, Aaron J J. Flow-Injection determination of sulphonamides with fluorimetric or photochemical-fluorimetric detection. Anal Chim Acta, 1992, 269, 193-198
    [101] 中华人民共和国卫生部药典委员会.中华人民共和国药典(二部).北京:化学工业出版社.1995,843-844
    [102] 吴海龙,梁逸曾,余汝勤.分析化学计量学.分析试验室,1999,18(6):
    
    94-102
    [103] Wilson B, Sanchez E, Kowalski B R. An improved algorithm for generalized rank annihilation method. J Chemom 1989. 3: 493-498
    [104] Faber K. Lorber A. Kowaiski B R. Analytical figures of merit for tensorial calibration. J Chemom, 1997, 11(5): 419-461
    [105] Booksh K B, Lin Z, Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Anal Chem. 1994, 66(15): 2561-2569
    [106] Gui M, Rutan S C, Agbodjan A. kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Anal Chem, 1995, 67, 3293-3299
    [107] Smilde A K, Doornbos D A. Three-way methods for the calibration of chromatographic systems: comparing PARAFAC and three-way PLS. J Chemom. 1991, 5(1): 345-360
    [108] Geladi P. berg P. Three-way modeling of a batch organic synthesis process monitored by near infrared spectroscopy. J NIR Spectrosc, 2001. 9: 1-9
    [109] Geladi P. Forsstrm J. Monitoring of a batch organic synthesis by nearinfrared spectroscopy: momodelingm(2 and interpretation of three-way data. J Chemom. 2002, 16: 329-338
    [110] Woodruff H B, Tway P C, Love J C. Factor analysis of mass spectra from partially resolved chromatographic peaks using simulated data. Anal Chem. 1981, 53(1): 81-84
    [111] Herman D P, Gonnord M F, Gaiochon G. Statistical approach for estimating the total number of compomnets in complex mixtures from nontotally resolved chromatograms. Anal Chem, 1984, 56(6): 995-1003
    [112] Alsberg B K, Kvalheim O M. Speed improvement of multivariate algorithms by the method of postponed basis matrix multiplication, Part Ⅱ: Three-mode principal component analysis. Chemom Intell Lab Syst, 1994, 24: 43-45
    [113] Bro R, Sijmen D J. A fast non-negativity-constrained least squares algorithm. J Chemom, 1997, 11(5): 393-401
    [114] Kiers H A L, Harshman R A. Relating two proposed methods for speed up of algorithms for fitting two-and three-way principal component and related
    
    multilinear models. Chemom Intell Lab Syst. 1997. 36: 31-40
    [115] Bro R. Andersson C A. Improving the speed of multiway algorthms Part Ⅱ: compression. Chemom Intetl Lab Syst, 1998. 42: 105-113
    [116] Andersson C A, Bro R. Improving the speed of multi-way algorithms: Part Ⅰ. Tucker3. Chemom Intell Lab Syst, 1998, 42(1-2): 93-103
    [117] Kiers H A L. A three-step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity. J Chemom, 1998, 12(3): 155-171