型钢混凝土L形柱空间角节点抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢混凝土异形柱结合了钢与混凝土的优点,同时将型钢混凝土矩形柱与钢筋混凝土异形柱的优点发挥到极致,已得到越来越广泛的应用。在结构体系中,节点不仅是传力的枢纽,还是受力的重要部位,对框架结构的重要性不言而喻。实际的地震作用方向是与建筑轴线呈任意角度,而L形柱因其不对称的截面特性使得型钢混凝土L形柱空间角节点的受力更加复杂,因此研究空间角节点更加合理的加载方式、抗震性能、破坏机理和剪扭承载力很有必要。在课题组已有研究的基础上,本文对型钢混凝土L形柱空间角节点进行了较为系统的研究。
     本文采用课题组设计的空间加载装置对12个型钢混凝土L形柱空间角节点进行低周反复加载试验,考虑了柱截面配钢形式、加载角度、轴压比和梁的形式4个变化参数。获取其破坏机理、荷载-位移滞回曲线及骨架曲线、荷载-应变滞回曲线、节点核心区剪切变形、梁截面平均曲率和特征点参数,并分析了不同变化参数对其峰值荷载、位移延性、极限侧移角、强度退化、刚度退化、耗能能力和累积损伤等抗震性能的影响。试验研究结果揭示了型钢混凝土L形柱空间角节点的破坏机理,即弱核心试件破坏形态是以节点核心区剪切斜压破坏为主,弯曲扭转伴随粘结破坏为辅,强柱弱梁试件发生的是梁端弯曲破坏。滞回曲线饱满,位移延性、耗能能力和抗倒塌能力较好,强度、刚度衰减缓慢,具有较好的抗震能力。实腹配钢试件的峰值荷载最高,配T型钢桁架的试件的延性、抗倒塌能力、耗能能力最好,配槽钢桁架试件各级位移下的的累积损伤程度最大。随着加载角度的降低试件的峰值荷载逐渐降低,延性略有增加,00加载试件较45°加载试件峰值荷载降低了约25%,并且各级位移下累积损伤程度最高增加30%,刚度退化速度0°加载试件最快,30°加载试件最缓慢。在一定范围内随着轴压比的增加,耗能能力更好,试件延性和抗倒塌能力变差,试件的刚度退化更加明显。梁形式为型钢混凝土梁的试件较梁形式为钢梁的试件峰值荷载提高38%,并且累积损伤有较大程度的缓解,延性、抗倒塌能力均较好,梁形式为钢筋混凝土梁的试件的刚度退化较带钢梁更加明显。
     采用有限元软件Abaqus对既有试验试件LJ-1-LJ-9进行有限元分析,破坏形态与试验相似,计算的滞回曲线较试验的更加饱满、对称,初始刚度和峰值荷载较试验值偏大,峰值荷载计算值与试验值的误差基本在10%以内,满足一般的精度。在此基础上设计各种工况下的足尺试件74个,并对其进行滞回特性有限元分析,考虑了柱截面配钢形式、轴压比、加载角度、混凝土强度等级、肢高厚比、配钢率、不等肢、梁线刚度、柱剪跨比9个变化参数,分析了各变化参数对型钢混凝土空间角节点峰值荷载、耗能和延性影响,与试验结果大致相符。综合试验与有限元结果得出主要结论并给出建议:
     1)工程设计中建议优先选用实腹配钢形式,因其较空腹配钢的峰值荷载提高10%以上,综合抗震性能最好;
     2)三种配钢形式的试件的位移延性随轴压比增加而下降,特别是配T型钢桁架试件下降最快,建议轴压比限值设计值为0.5;
     3)加载角度与峰值荷载的关系反映在极坐标轴内关于45°角和135°角对称,加载角在45°以内,随着加载角度的增加峰值荷载增加,加载角度为45°的试件的极限承载力较平面节点提高了约30%。0°是结构的最不利加载方向。试件的耗能和延性随着加载角度的增加逐渐降低,与平面节点相比,加载角度为45°的试件延性系数降低约10%,双向加载对结构的延性有一定的不利影响;
     4)混凝土强度等级的提高会降低试件延性,建议最优混凝土强度等级为C40;
     5)提高肢高厚比和柱截面配钢率均可提高试件峰值荷载和耗能能力,但延性变差。建议最优肢高厚比为3.0,最优柱截面配钢率为4%~6%;
     6)两肢高度比的增加会提高试件的峰值荷载和耗能能力,最大幅度高达16.2%,即使试件延性变差但仍大于3,若工程实际需要,长肢的高度最大可取960mm;
     7)梁线刚度的增加可以有效提高试件的峰值荷载和延性,与梁柱线刚度比为0.1的试件相比,梁柱线刚度比为0.45的试件峰值荷载增幅可达2倍以上,延性系数增加68%,建议梁柱线刚度比为0.4~0.5;
     8)柱剪跨比的增加会大幅降低试件的峰值荷载,也会降低试件耗能,剪跨比介于2.0~3.5,延性较好,建议剪跨比为2.0~3.5,对应的建筑层高可取2.80m~5.00m。
     在分析试验研究结果及对有限元数据的拟合和回归的基础上,提出了型钢混凝土L形柱空间角节点的极限抗剪承载力计算公式,该公式在已有的研究成果基础上引入了加载角度、抗扭降低系数、轴压比和梁高与柱高之比,其计算结果较符合试验结果,该公式具有一定的参考价值。
SRC special-shaped column is combining with the advantages of steel and concrete, which reaches maximum advantage on SRC rectangular column and RC special-shaped columns, and it has been widely used. Joint is a hub to transfer force and an important forced location in the structure system, and it is very important to frame structure. The direction of the actual earthquake is arbitrary, and has a certain angle with the building axes. Force condition of SRC L-shaped column space corner joint is much more complicated because of asymmetry of L-shaped column. Therefore, it is necessary to research reasonable loading way, seismic performance, failure mechanism and the shear bearing capacity of space corner joint. On the basis of existing research, SRC L-shaped column space corner joint is systematically studied in this paper.
     12SRC L-shaped column space corner joint specimens are designed to carrying out the low cyclic loading test by self-designed loading device, and four vary parameters are considered, which are column section steel form, load angle, axial compression ratio and beam form. Failure patterns, load-displacement hysteretic curves and skeleton curves, load-strain hysteretic curve, the shear deformation at joint core area, mean curvature of beam cross-section and feature point parameters are obtained. The influences of vary parameters to seismic performance indicators are analyzed, which are peak load, displacement ductility, ultimate lateral angle, strength and stiffness degradation, energy dissipation capacity and accumulated damage. Test results indicate failure mechanism of SRC L-shaped column space corner joint presents shear-diagonal compression mainly, and bend torsion with bonding secondarily at joint core area for weak core specimen, and bending failure of beam end for strong column weak beam specimens. Hysteretic curve is full, displacement ductility, energy dissipation and the ability to resist collapse are better, strength and stiffness attenuation are slower, and comprehensive seismic performance is better. The peak load of solid web steel specimen is the highest, the ductility, collapse resistance and energy dissipation capacity of the specimens with T-shaped steel truss is the best, with the load angle decreases, peak load of the specimens reduces gradually, ductility increases slightly. Compared with45°load angle specimen, the peak load of0°load angle specimen is reduced by25%, and cumulative damage of0°load angle specimen at all levels displacement increases extremely30%. Stiffness degradation of0°load angle specimen is the fastest, that of30°load angle specimen is most slowly. Increasing axial compression ratio can improve energy dissipation capacity of specimens within a certain range, but its ductility and collapse resistance capacity becomes worse, and stifness degradation of the specimens more clearly. Compared with specimen with RC beam, the peak load of specimen with SRC beam increases38%, and cumulative damage has a larger degree of ease. Ductility and collapse resistance are all better. Stiffness degradation of specimens with RC beam are more obvious than that of specimens with steel beam.
     Specimens LJ-1~LJ-9are analyzed by finite element software Abaqus. Failure patterns are similar to the test, and the calculated hysteretic curves are more full and symmetrical than measured curves. The initial stiffness and the peak load is larger than test value, and the errors are within10%, which basically meets the general accuracy.74full scale specimens are designed, and the hysteretic characteristics is analyzed. Column section steel form, axial compression ratio, loading angle, concrete strength grade, limb high thickness ratio, steel ratio, ranging from limb, beam line stiffness and shear span ratio are considered as variable parameters, and the influence of variable parameters on the peak load of SRC space corner joint, energy dissipation and ductility are analyzed, which have good agreement with the test results. Base on the experimental results and finite element results, the main conclusions and recommendations from this paper are shown below:
     1) Compared with open spandrel steel specimens, the peak load of solid web steel specimens can increase by more than10%, comprehensive seismic performance is the best, so the solid web steel form should be the first choice in engineering practical design.
     2) The increase of the axial compression ratio decreases the displacement ductility of three kinds of steel forms specimens, especially the T-shape steel truss joint specimens with high axial compression ratio finds the most rapid. So for SRC L-shaped column space corner joint, the limit value of axial compression ratio is suggested to be0.5.
     3) The relationship of load angle and the peak load is reflected in axis symmetry of polar coordinate about45°. Within45°load angle, the peak load increases with the increase of load angle, the peak load of specimens under45°load angle is higher about30%than that of plane joint, and0°load angle is the most unfavorable loading direction. As the load angle increase, the energy dissipation and ductility of specimens reduce gradually. Compared with the plane node, the ductility of specimens under loading angle of45°reduces about10%, and bi-directional loading is likely caused a certain adverse effect on the ductility of the structure.
     4) The increase of concrete strength grade can reduce its ductility, so the optimal concrete strength grade is suggested to be C40.
     5) The increase of the limb high thickness ratio and column section steel ratio can increase the peak load and energy dissipation capacity of specimens, but leads to poor ductility, so the optimal limb thickness ratio is suggested to be3.0, and the optimal column section steel ratio is suggested to be4%~6%.
     6) The increase of two limb height ratio would increase the peak load and energy dissipation capacity of the specimen, the biggest up to16.2%. Even if ductility of specimens decrease, it is still more than3. For the actual needs of project, the commendable maximum height of the long limbs is960mm.
     7) The increase of beam linear stiffness can effectively increase the the peak load and ductility of the specimens. Compared with specimens which the beam column line stiffness ratio is0.10, the growth of the peak load of specimens which the beam column line stiffness ratio is0.45can reach more than2times and ductility increases68%, and the suggested linear stiffness is0.4-0.5.
     8) The increase of the column shear span ratio will greatly reduce the peak load of specimens; it also decreases the energy dissipation. When shear span ratio is between2.0-3.5, the ductility of the specimens is better, and the suggested shear span ratio is2.0~3.5, and the corresponding storey height is preferable2.80m-5.00m.
     Based on experimental research and finite element data fitting and regression. The shear capacity calculation formula of SRC L-shaped column space corner joint is proposed, and load angle, tensional reduce coefficient, axial compression ratio and the height ratio of beam to column are introduced in this formula. Verified by experimental result, the calculated results are proper.
引文
[1]Joaquin Marin. Design aids for L-shaped reinforced concrete columns [J].ACI Journal, 1979,76(11):1197-1216.
    [2]Ramamurthy L. N., Hafeez Khan T.A. L-shaped column design for biaxial eccentricity [J]. Journal of Structure Engineering.1983,109(8):1903-1917.
    [3]Cheng-Tzu, Thomas Hsu. Biaxially loaded L-shaped reinforced concrete columns [J]. Journal of Structure Engineering.1985,111(12):2576-2595.
    [4]Cheng-Tzu, Thomas Hsu. T-shaped reinforced concrete members under biaxial bending and axial compression [J]. ACI Structure Journal,1989,86(4):460-468.
    [5]Mallikarjural, Mahadevappa P. Computer aided analysis of reinforced concrete columns subjected to axial compression and bending-I L-shaped sections [J]. Computers and Structures,1992,44(5):1121-1132.
    [6]Sinha S. N. Design of cross (+) section of column [J]. The India Concrete Journal, 1996,70(3):153-158.
    [7]Oya T, Furuta T, and Kiyota, S. Study on cross-shaped columns of new type steel-framed reinforced concrete construction. Proceedings of the 3rd pacific structural steel conference, Tokyo,1992.
    [8]Yan C. Y., Chan S. L., Wso A. K. Biaxial bending design of arbitrarily shaped reinforced concrete columns [J]. ACI Structure Journal.1993,90(3):269-278.
    [9]Kawakami M, Tokuda H, Kagaya M, et al. Limit state of cracking and ultimate strength of arbitrary concrete sections under biaxial loading [J]. ACI Journal,1985, 82(2):203-212.
    [10]Davister M. D. Analysis of reinforced concrete columns of arbitrary geometry subjected to axial load and biaxial bending.Concrete Internation:Design and Construction 1986,8(7):42-46.
    [11]Mallikarjunal. Computer aided analysis reinforced concrete columns subjected to axial compression and bending-I L-shaped sections [J]. Computer and Structures,1992,44 (5):1121-1138.
    [12]Mallikarjunal. Computer aided analysis reinforced concrete columns subjected to axial compression and bending-Part Ⅱ:T-shaped sections [J]. Computer and Structures, 1994,53(6)4:1317-1356.
    [13]陈云霞,刘超,赵艳静,等.T形、L形截面钢筋砼双向压弯构件正截面承载力的研究[J].建筑结构,1999,29(1):11-15,26.
    [14]何培玲,赵艳静,王振武.十字形截面钢筋砼双向压弯柱延性的试验及理论研究[J].建筑结构,1999,29(1):38-41.
    [15]康谷贻,巩长江.单调及低周反复荷载作用下异形截面框架柱的受剪性能[J].建筑结构学报,1997,18(5):22-31.
    [16]徐向东,康谷贻,姚石良.单调及低周反复荷载作用下T形截面框架柱受剪性能的试验研究[J].建筑结构,1999,29(1):27-30.
    [17]冯建平,陈谦,卫园,等.L形和T形截面柱正截面承载力的研究[J].华南理工大学学报,自然科学版,1995,23(1):54-61.
    [18]陈谦,冯建平.双向偏心L形截面柱的计算[J].华南理工大学学报,自然科学版,1995,23(1):62-67.
    [19]卫园,冯建平.周期反复荷载下L形截面柱的试验研究[J].华南理工大学学报,自然科学版,1995,23(1):44-51.
    [20]冯建平,陈谦,李志忠.混凝土L形截面柱抗剪承载力的试验研究[J].华南理工大学学报,自然科学版,1995,23(1):68-75.
    [21]吴波,徐玉野.高温下钢筋混凝土异形柱的试验研究[J].建筑结构学报,2007,28(5):23-31.
    [22]王丹,黄承逵,刘明,等.异形柱双偏压构件正截面承载力试验及设计方法研究[J].建筑结构学报,2001,22(5):37-42.
    [23]黄承逵,曲福来,徐士弢.钢筋混凝土不等肢异形柱抗剪承载力研究[J],工程力学,2009,26(5):197-201.
    [24]黄承逵,曲福来,赵顺波.钢筋混凝土不等肢异形柱抗剪性能试验研究[J].西南交通大学学报,2008,43(3):325-329.
    [25]王丹,黄承逵,刘明.异形柱斜向受剪承载力的试验研究[J].工程建设与设计,2006,(8):57-60.
    [26]曹万林,王光远,魏文湘,等.不同方向周期反复荷载作用下T形柱的性能[J].地震工程与工程振动,1995,15(4):76-84.
    [27]曹万林,王光远,吴建有,等.不同方向周期反复荷载作用下L形柱的性能[J].地震工程与工程振动,1995,15(1):67-72.
    [28]曹万林,王光远,欧进萍,等.周期反复荷载作用下钢筋混凝土十字形柱的性能[J].地震工程与工程振动,1994,14(3):60-67.
    [29]曹万林,庞国新,吴二军,等.钢筋混凝土带暗柱T形柱抗震性能试验研究[J].世界地震工程,1999,15(3):47-51,62.
    [30]曹万林,胡国振,周明杰,等.钢筋混凝土带暗柱十字形柱抗震性能试验研究[J].世界地震工程,1999,15(2):28-33.
    [31]胡国振,曹万林,周明杰,等.钢筋混凝土带暗柱L形柱抗震性能试验研究[J].世界地震工程,1999,15(4):32-37.
    [32]曹万林,胡国振,崔立长,等.钢筋混凝土带暗柱异形柱抗震性能试验及分析[J].建筑结构学报,2002,23(1):16-20,26.
    [33]曹万林,黄选明,宋文勇,等.带交叉钢筋异形截面短柱抗震性能试验研究及非线性分析[J].建筑结构学报,2005,26(3):30-37.
    [34]曹万林,黄选明,王普山,等.带交叉筋十字形短柱抗震性能试验研究[J].地震工程与工程振动,2002,22(5):41-45.
    [35]曹万林,黄选明,田宝发,等.带暗柱Z形短柱抗震性能试验研究[J].世界地震工程,2003,19(2):45-50.
    [36]黄选明,曹万林,崔建升,等.带交叉钢筋T形截面短柱抗震性能试验研究[J].地震工程与工程振动,2003,23(1):90-94.
    [37]郭棣.宽肢异形柱的试验研究[D].西安建筑科技大学,2001.
    [38]李杰,吴建营,周德源,等.L形和Z形宽肢异形柱低周反复荷载试验研究[J].建筑结构学报,2002,23(1):9-15.
    [39]苏小卒,张荣,王磊,等.钢筋混凝土异形柱抗震性能的试验研究[J].结构工程师,2007,23(3):58-64.
    [40]周建中.钢筋混凝土不等肢L形截面异形柱正截面承载力的试验及理论研究[D].广西大学,2000.
    [41]陶洪辉.高强混凝土不对称T形截面双向偏心受压柱正截面强度及变形研究[D].广西大学,2000.
    [42]周成.钢筋混凝土Z形截面双向偏心受压试件正截面承载力的试验研究[D].东南大学,2001.
    [43]王军.异形柱框架结构抗震性能试验研究[D].后勤工程学院,1990.
    [44]冯建平,吴修文.T形截面柱框架边节点的抗震性能[J].华南理工大学学报,自然科学版,1995,23(3):123-130.
    [45]大连理工大学.钢筋混凝土异形柱框架节点抗震性能试验研究[R].异形柱框架结构研究鉴定材料之五,1993.
    [46]曹祖同,陈云霞,吴戈,等.钢筋混凝土异形柱框架节点强度的研究[J].建筑结构,1999,29(1):42-46.
    [47]王丹.钢筋混凝土T形柱框架节点的试验研究[D].沈阳:沈阳建筑工程学院,2000.
    [48]桂国庆,熊黎黎,熊进刚.异形柱框架结构顶层边节点受剪承载力分析[J].南昌大学学报,工学版,2002,24(4):12-18.
    [49]薛敬.钢筋混凝土异形柱框架顶层节点强度研究[D].天津:天津大学,2003.
    [50]赵艳静.钢筋混凝土异形柱结构体系理论与试验研究[D].天津:天津大学,2004.
    [51]傅剑平,张迪川,韦峰,等.异形柱框架中间层端节点抗震性能试验研究[J],建筑结构,2005,35(9):66-72.
    [52]马乐为,陈昌宏,李晓莉.异形柱框架节点抗震性能试验研究[J].世界地震工程,2006,22(4):70-73.
    [53]李淑春,刁波,苏幼坡.分散式配筋梁异形柱框架节点抗震性能试验[J].哈尔滨工业大学学报,2008,40(6):965-969.
    [54]陈宗平.桁架式钢骨的混凝土异形柱—不对称T形截面正截面承载力研究[D].广西大学,2004.
    [55]宋怀金.桁架式钢骨混凝土异形柱—不等肢L形截面正截面承载力研究[D].广西大学,2005.
    [56]李哲.钢骨混凝土异形短柱承载力和延性的研究[D].西安:西安理工大学,2007.
    [57]徐亚丰,王建,丁或,等.偏心受压下L型截面钢骨混凝土异型柱试验[J].沈阳建筑大学学报,2008,24(5):774-777.
    [58]徐亚丰,刁晓征,郭建,等.十字形钢骨混凝土异形柱双向偏心受压试验[J].沈阳建筑大学,自然科学版,2009,25(1):100-105.
    [59]徐亚丰,王颖,丁或,等.钢骨高强混凝土T形短柱偏心受压的试验[J].沈阳建筑大学学报,自然科学版,2008,24(1):35-38.
    [60]陈宗平,赵鸿铁,薛建阳,等.型钢混凝土异形柱截面配钢分析[J].哈尔滨工业大学学报(增刊),2005,37:128~131.
    [61]陈宗平,赵鸿铁,薛建阳,等.型钢混凝土异形柱的混凝土保护层厚度[J].哈尔滨工业大学学报(增刊),2005,37:181~184.
    [62]刘义,赵鸿铁,薛建阳,等.型钢混凝土异形柱非线性分析[J].西安建筑科技大学学报,自然科学版,2008,40(3):312-316,340.
    [63]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [64]刘义,赵鸿铁,薛建阳,等.型钢混凝土异形柱恢复力特性的试验研究[J].地震工程与工程振动,2009,29(2):86-91.
    [65]郑廷银,林沂祥,毛志伟.蜂窝状钢骨混凝土不对称十字形截面柱正截面承载力试验[J].南京工业大学学报,2008,30(6):101-105.
    [66]林震宇,沈祖炎,罗金辉.反复荷载作用下L形钢管混凝土柱滞回性能研究[J].建筑钢结构进展,2009,11(2):12-17.
    [67]王丹.T形、L形钢管混凝土柱抗震性能研究[D].博士后研究工作报告.同济大学,2005.
    [68]向平.钢骨混凝土异形柱钢筋混凝土梁节点低周反复荷载试验研究[D].南宁:广西大学,2006.
    [69]万云芳.低周反复荷载作用下钢骨混凝土T形柱节点抗震性能研究[D].南宁:广西大学,2006.
    [70]耿永红.混凝土异形柱节点抗剪承载力的研究[D].昆明理工大学,2007.
    [71]刘义.型钢混凝土异形柱框架节点抗震性能及设计方法研究[D].西安:西安建筑科技大学,2009.
    [72]Parra-Montesinos. Seismic Behavior, Strength and Retrofit of Exterior RC Column-to-Steel Beam Connections [D]. The University of Michigan,2000.
    [73]Cheng C-T, Chen C-C. Seismic Behavior of Steel Beam and Reinforced Concrete Column Connections[J]. Journal of Constructional Steel Research;61(2005) 587-606.
    [74]Chin-Tung Cheng, Chen-Fu Chan, Lap-Loi Chung. Seismic Behavior of Steel Beams and CFT Column Moment Resisting Connections with Floor Slabs[J]. Journal of Constructional Steel Research; 63(2007) 1479-1493.
    [75]Jianguo Nie, Kai Qin, C.S.Cai. Seismic Behabior Of Connections Composed of CFSSSTCs and Steel-Concrete Composite Beams-Experimental Study[J], Journal of Constructional Steel Research; 64(2008) 1178-1191.
    [76]Jianguo Nie, Kai Qin, C.S.Cai. Seismic Behabior Of Connections Composed of CFSSSTCs and Steel-Concrete Composite Beams-Finite Element Analysis[J], Journal of Constructional Steel Research; 64(2008) 680-688.
    [77]Constantin E. Chalioris, Maria J. Favvata, Chris G. Karayannis. Reinforced concrete beam-column joints with crossed inclined bars under cyclic deformations [J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, 2008,37:881-897.
    [78]Wen-Dan Wang, Lin-Hai Han, Brian Uy. Experimental Behavior of Steel Reduced Beam Section to Concrete-Filled Circular Hollow Section Column Connections[J], Journal of Constructional Steel Research; 64(2008) 493-504.
    [79]Cheng-Cheng Chen, Yu-Jen Lin. Behavior and strength of steel reinforced concrete beam-column joints with two-side force inputs. Journal of Constructional Steel Research 65 (2009) 641-649.
    [80]Cheng-Cheng Chen, Budi Suswanto,Yu-Jen Lin. Behavior and strength of steel reinforced concrete beam-column joints withsingle-side force inputs. Journal of Constructional Steel Research 65 (2009) 1569-1581.
    [81]Kien Le-Trung, Kihak Lee, Jaehong Lee. Experimental study of RC beam-column joints strengthened using CFRP composites[J]. Composites:Part B,2010,41:76-85.
    [82]M. Kazem Sharbatdar, A. Kheyroddin, E. Emami. Cyclic performance of retrofitted reinforced concrete beam-column joints using steel prop[J]. Construction and Building Materials,2012,36:287-294.
    [83]Hong-Gun Park, Hyeon-Jong Hwang, Cheol-Ho Lee a, etal. Cyclic loading test for concrete-filledU-shaped steel beam-RC column connections[J]. Engineering Structures, 2012,36:325-336.
    [84]Saptarshi Sasmal, K. Ramanjaneyulu, Balthasar Novak, etal. Analytical and experimental investigations on seismic performance of exterior beam-column subassemblages of existing RC-framed building[J]. EARTHQUAKE ENGINEERING ANDSTRUCTURAL DYNAMICS,2013,42:1785-1805.
    [85]Mu-Xuan Tao, Jian-Sheng Fan, Jian-Guo Nie.Seismic behavior of steel reinforced concrete column-steel truss beam hybrid joints[J]. Engineering Structures,2013,56:1557-1569.
    [86]Fei-Yu Liao, Lin-Hai Han, Zhong Tao.Behaviour of composite joints with concrete encased CFST columns under cyclic loading[J]. Engineering Structures, 2014,59:745-764.
    [87]Ali A. Abbas, Sharifah M. Syed Mohsin, Demetrios M. Cotsovos. Seismic response of steel fibre reinforced concrete beam-column joints[J]. Engineering Structures, 2014,59:261-283.
    [88]Fujii S, Morita S. Behavior of exterior reinforced concrete beam-column-slab sub assemblages under bidirectional loading[C]. Pacific Conference on Earthquake Engineering. New Zealand, Wairakei:New Zealand National Society for Earthquake Engineering,1987,339-350.
    [89]张连德.钢筋混凝土空间框架节点抗震性能的研究[J].建筑结构学报,1987,8(1):23-27.
    [90]朱伯龙,陈裕周.双向低周反复荷载作用下钢筋混凝土框架边节点抗震性能研究[J].同济大学学报,1991,19(增刊):23-33.
    [91]陈永春,高红旗,马颖军,等.双向反复荷载下钢筋混凝土空间框架梁柱节点受剪承载力及梁筋粘结锚固性能的试验研究[J].建筑科学,1995,119(2):13-20,32.
    [92]Park S, Mosalam K M, Shear strength models of exterior beam-column joints without transverse reinforcement. Berkeley:University of California,2009.
    [93]刘春阳,李振宝,马华,等.钢筋混凝土框架空间节点抗震性能试验研究[J].工业建筑,2011,41(6):67-70.
    [94]Kawaguchi J, Morino S, etal. Elasto-plastic behavior of concrete-filled steel tubular three-dimensional subassemlages[J]. Proceedings of an Engineering Foundation Conference,1992:726-741.
    [95]Morino S. Recent developments in hybrid structures in Japan-research, design and construction. Engineering Structures[J],1998,20(4):336-346.
    [96]Morino S, Kawaguchi J. Research on construction of the concretefilled steel tube column system in Japan. Steel Strcutures[J],2005,5:277-298.
    [97]Bugeja M N,Bracci J M, Moore W P. Seismic behavior of composite moment resisting frame systems[R]. Texas A & M University. Department of Civil Engineering,1999.
    [98]Green T P, Leon R T, Rassati G A..Bidirectional tests on partially restrained, composite beam-to-column connections[J]. Journal of Structural Engineering, ASCE.2004.130(2):320-327.
    [99]薛伟辰,姜东升,陈以一,等.预应力混凝土空间节点抗震性能试验研究[J].建筑结构学报,2007,28(1):43-51.
    [100]李旭红,房贞政.预应力混凝土空间框架角节点二维抗震性能试验研究[J].福州大学学报(自然科学版),2010,38(2):252-258.
    [101]赵宪忠,徐祥斌,闫伸.空间复杂钢管节点试验研究[J].工程力学,2010,27(增刊):207-211.
    [102]周慧.空间组合节点抗震性能试验研究于理论分析[D].北京:清华大学,2011.
    [103]张福.双向荷载作用下钢管混凝土节点性能研究[J].低温建筑技术,2013,2:54-56.
    [104]李中立.反复荷载作用下钢筋混凝土异形柱框架节点抗剪强度研究[D].天津大学,1994.
    [105]王文进.钢筋混凝土异形柱框架顶层角节点抗震性能研究及有限元分析[D].天津大学,2004.
    [106]崔建宇,孙建刚,宋玉普.钢筋混凝土框架角节点抗剪强度试验研究[J].地震工程与工程震动,2008,28(5):115-121.
    [107]申红侠,燕练武,顾强.钢梁-钢筋混凝土梁柱边节点抗剪性能分析[J].建筑钢结构进展,2009,11(1):54-62.
    [108]朱宏平,代筠杰,高飞.钢筋混凝土梁柱节点抗剪强度分析[J].华中科技大学学报(自然科学版),2013,41(7):1-4.
    [109]刘玉擎.劲性钢筋混凝土框架节点抗震性能的研究[D].西安建筑科技大学,1998.
    [110]赵鸿铁,姜维山,周小真,等.劲性钢筋混凝土梁柱节点[J].西安冶金建筑学院学报,1988,20(2):31-39.
    [111]唐九如,陈雪红.劲性砼梁柱节点受力性能与抗剪强度[J].建筑结构学报,1990,11(4):28-36.
    [112]陈家,张轶群,赵世春.劲性钢筋混凝土框架顶层边节点静力及抗震性能试验研究[J].西南交通大学学报,1993,(1):13-19.
    [114]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安建筑科技大学,2008
    [115]缪俊华,耿永红.L形型钢混凝土异形柱节点受力性能分析[J].福建建设科技,2008,(4):15-17.
    [116]百中山.型钢混凝土异形柱框架节点抗剪受力性能理论研究[D].西安:西安建筑科技大学,2008.
    [117]薛建阳,刘义,赵鸿铁,等.型钢混凝土异形柱框架节点承载力试验研究[J].土木工程学报,2011,44(5):41-48.
    [118]中华人民共和国国家标准《混凝土结构设计规范》(GB50010-2010)[S],2002.
    [119]中华人民共和国行业标准《混凝土异形柱结构技术规范》(JGJ149-2006)[S],2006.
    [120]中华人民共和国行业标准《型钢混凝土组合结构技术规程》(JGJ138-2001)[S],2001.
    [121]张士前.型钢混凝土十形异形柱-钢梁框架空间节点抗震性能研究[D].广西大学,2012.
    [122]Hsu H L, Wang C L. Flexural-torsional behavior of steel reinforced concrete members subjected to repeated loading [J]. Earthquake Engineering and Structural Dynamics, 2000,29(5):667-682.
    [123]雷强.型钢混凝土受扭构件的非线性有限元分析[D].西安建筑科技大学,2007.
    [124]李红波.型钢混凝土构件受扭试验研究[D].重庆大学,2008.
    [125]邵永健,郁文,陈宗平,等.实腹式型钢混凝土梁受扭性能试验研究[J].2013,43(8): 58-62.
    [126]邵永健,王妮,陈宗平,等.配角钢骨架型钢混凝土梁纯扭性能及强度计算方法研究[J].工程力学,2013,30(9):103-110.
    [127]刁波,王茜,孙洋,等.L形柱结构附加扭转试验及剪扭承载力分析[J].建筑科学工程学报,2007,24(4):21-28.
    [128]武启明.型钢混凝土异形柱框架角节点承载力有限元分析[J].四川建筑科学研究,2013,39(3):19-22.
    [129]严士超,康谷贻,王依群等.混凝土异形柱结构技术规程理解与应用[M].北京:建筑工业出版社,2007.
    [130]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1998.
    [131]冯国祥.型钢混凝土异形柱框架十字形节点抗剪承载力试验研究[D].西安建筑科技大学,2009.
    [132]胡秀杰.型钢混凝土异形柱框架角节点抗震性能试验研究[D].西安建筑科技大学,2009.
    [133]中国建筑科学研究院.GB 50152—-92混凝土结构试验方法标准[S].北京:建筑工业出版社,1992.
    [134]中国建筑科学研究院.GB/T 50081—-2002普通混凝土力学性能试验方法标准[s].北京:建筑工业出版社,2002.
    [135]Li L M, Mander J B, Dhakal R P. Bidirectional cyclic loading experiment on a 3D beam-column joint designed for damage avoidance [J]. Journal of Structural Engineering,2008,134(11):1733-1742.
    [136]樊健生,周慧,聂建国,等.双向荷载作用下方钢管混凝土柱-组合梁空间节点抗震性能试验研究[J].建筑结构学报,2012,33(6):50-58.
    [137]沈聚敏,周锡元.抗震工程学[M].北京:建筑工业出版社,2000.
    [138]朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [139]中国建筑科学研究院.JGJ101—96建筑抗震试验方法规程[M].北京:建筑工业出版社,1996.
    [140]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [141]中国建筑科学研究院.GB 50010—2001建筑抗震设计规范[s].北京:北京建筑工业出版社,2001.
    [142]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [143]薛建阳,刘义,赵鸿铁,等.型钢混凝土异形柱框架节点抗震性能试验研究[J].建筑结构学报,2009,30(4):69-77.
    [144]邓志恒,唐光暹,宁应金,等.桁架式钢骨混凝土梁-钢筋混凝土柱节点抗震性能试验研究[J].建筑结构学报,2012,33(8):75-83.
    [145]Banon H, Biggs J M, Irvine H M. Seismic damage in reinforced concrete frames [J]. Journal of Structural Engineering, ASCE,1981,107 (9):1713-1729.
    [146]Stephal J E, Yao J T P. Damage assessment using response measurement [J]. Journal of Structural Engineering, ASCE,1987,113 (4):787-801.
    [147]Wang M L, Shan S P. Reinforced concrete hysteretic model based on the damage concept[J]. Earthquake Engineering and Structural Dynamics,1987,15 (8) 993-1003.
    [148]Gosain N K, Brown R H, Jirsa J O, Shear requirements for load reversals on RC members [J]. Journal of Structure Engineering, ASCE,1977,113 (7):1461-1476.
    [149]Park Y J, Ang AH-S. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structure Engineering, ASCE,1985,111 (ST4):722-739.
    [150]白建方,白国良,杨晓红.低周反复荷载下钢筋混凝土异型节点的损伤分析[J].西安建筑科技大学学报(自然科学版),2004,36(1):35-39.
    [151]曾磊,许成祥,郑山锁.型钢高强高性能混凝土框架节点地震损伤模型[J].工程抗震与加固改造,2013,35(2):56-61.
    [152]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [153]李杰,李奎明.钢筋混凝土短肢剪力墙结构非线性分析研究[J].建筑结构学报,2009,30(1):23-30.
    [154]王萌,石永久,王元清.高强度螺栓连接抗剪性能研究[J].建筑结构学报,2011,32(3):27-34.
    [155]李林.基于ABAQUS的钢筋混凝土板柱边节点有限元分析[J].四川建筑科学研究院,2013,39(6):32-56.
    [156]李正,李忠献.基于修正弹塑性损伤模型的钢筋混凝土高墩地震损伤分析[J].土木工程学报,2011,44(7):71-76.
    [157]郑永乾,韩林海,经建生.火灾下型钢混凝土梁力学性能的研究[J].工程力学,2008,25(9):118-125.
    [158]李正,朱炳寅,李宁.基于ABAQUS的钢筋混凝土框架结构地震损伤分析[J].建筑结构,2011,41(增刊):249-252.
    [159]许治斌.双偏压下型钢混凝土异形柱正截面承载力试验研究与理论分析[D].西安建筑科技大学,2010.
    [160]刘祖强.型钢混凝土异形柱框架抗震性能及设计方法研究[D].西安建筑科技大学,2012.
    [161]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [162]ABAQUS.Abaqus Analysis User's Manual-Version 6.8[M].北京:科学出版社,2005.
    [163]王玉镯,傅传国.ABAQUS结构工程分析及实例详解[M].北京:中国建筑工业出版社,2010.
    [164]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [165]苏益声,黄义波,唐伟平,等.两种不同配钢形式钢骨混凝土L形柱受力性能对比分析[J].广西大学学报(自然科学版),2007,32(4):353-357.
    [166]陈宗平,薛建阳,赵鸿铁,等.型钢混凝土异形柱抗震性能试验研究[J].建筑结构学报,2007,28(3):53-61.
    [167]袁新胜,袁晓文,张崇华,等.两种不同配钢形式的钢骨混凝土异形柱试验研究[J].广西大学学报(自然科学版),2007,32(sup):83-86.
    [168]百中山,刘义.不等肢T形截面异形柱的配钢形式对曲率延性的影响[J].建筑与结构设计,2007,82-45.
    [169]傅剑平,张川,陈滔,等.钢筋混凝土抗震框架节点受力机理及轴压比影响的试验研究[J].建筑结构学报,2006,27(3):67-77.
    [170]曹云中,干钢,唐锦春,等.轴压比对空间异形柱框架抗震性能的影响[J].建筑结构,2008,38(11):17-19.
    [171]王素裹,韩小雷,季静,等.轴压比对RC框架实现“强柱弱梁”的影响研究[J].世界地震工程,2010,26(3):96-101.
    [172]李俊华.低周反复荷载下型钢高强混凝土柱受力性能研究[D].西安建筑科技大学,2005.
    [173]贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究[J],土木工程学报,2006,39(8)
    [175]宋怀金,苏益声,罗永峰.SRC不等肢异形柱正截面承载力研究[D].同济大学学报(自然科学版),2007,35(12):1597~1601,1621.
    [176]曲福来,黄承逵,张晶涛.不等肢异形柱框架边节点抗裂承载力研究[J].建筑结构学报(增刊),2007:208-212.
    [177]应义淼,陈瑞生,杨俊杰,等.不同加载角度下Z形截面钢筋混凝土柱抗震性能研究[J].建筑结构,2010,40(7):60-62,77.
    [178]薛建阳,马辉.不同剪跨比下型钢再生混凝土柱抗震性能试验研究[J].地震工程与工程震动,2013,33(4):228-234.
    [179]李兵,李宏男.不同剪跨比钢筋混凝土剪力墙拟静力试验研究[J].工业建筑,2010,40(9):32-36.
    [180]白国良,秦福华.型钢钢筋混凝土原理与设计[M].上海:上海科学技术出版社,2001.
    [181]赵彤,周芝兰,谢剑.高强混凝土L形截面柱抗剪承载力的试验研究[J],工业建筑,2002,32(4):29-32.
    [182]陈宗平.薛建阳.赵鸿铁等.低周反复荷载作用下型钢混凝土异形柱的抗剪承载力分析[J].土木工程学报,2007,40(7):30-36
    [183]殷芝霖,张誉,王振东.抗扭[M].北京:中国铁道出版社,1990.
    [184]梁兴文,王社良,李晓文.混凝土结构设计原理[M].北京:科学出版社,2003.
    [185]徐亚丰,王连广,曹阅,等.钢骨高强混凝土框架节点抗剪承载力的理论分析[M].东北大学学报(自然科学版),2003,23(4):386-388.