CD34~+人造血干细胞(hHSC)HIV-1辅受体的表型剔除对病毒感染的阻断作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病(AIDS)从发现至今已有25年,但它在全球所引起的广泛流行,已使4000多万人受到感染,2200多万人失去了生命。目前全球人类免疫缺陷病毒(HIV)感染者总数达到4200万人,如果不扩大采取有效预防措施,在2010年前,世界126个中、低收入国家还将有4500万人感染HIV,其中40%在亚洲和太平洋地区。中国和印度这两个人口最多的国家HIV/AIDS也在蔓延:中国HIV感染者总数已近100万人,如果不能有效控制,今后10年这一数字可能会成倍增加;印度HIV感染者更是达到了397万,而且今后仍有可能大幅增长。目前应用联合高效的抗逆转录病毒疗法(HAART),已在很大程度上降低了HIV-1感染的发病率和死亡率。三类主要的药物——核苷类逆转录酶抑制剂(NRTI)、非核苷类逆转录酶抑制剂(NNRTI)和蛋白酶抑制剂(PI),它们定向作用于逆转录酶和蛋白酶。尽管这些药物可以有效地抑制病毒感染,但由于抗药性HIV-1的出现,以及抗逆转录病毒治疗中出现的许多不良反应,目前仍迫切需要研发新的治疗药物和方法。
     在各种新的正在研发的抗HIV药物中,趋化因子受体拮抗剂最令人注目,这不仅因为它能够有效地对抗逆转录病毒活性,还能靶向性阻断HIV-1入侵细胞的关键蛋白——CD4+T细胞和巨噬细胞表面的微孔蛋白(即HIV-1辅受体),可以阻断其与病毒包膜糖蛋白(gp120)间的相互作用,从而发挥抗HIV-1感染的治疗作用。因此,关于HIV-1辅受体及其配体——趋化因子RANTES、MIP-1和SDF-1的研究,成为抗HIV-1感染基因治疗基础研究的热点内容。
     美国Chen SY领导的科研小组研究表明:α类趋化因子SDF-1的细胞内表达可以从表型上剔除CXCR4,从而阻断T嗜性HIV-1的感染;而β类趋化因子RANTES和MIP-1的细胞内表达可以从表型上剔除CCR5,从而阻断M嗜性HIV-1的感染。我科白雪帆教授、张颖博士等在单一配基表达阻断HIV-1研究的基础上,采用细胞内趋化因子(intrakine)技术构建含有HIV-1两类辅受体的配体——趋化因子RANTES和SDF-1的双表达真核载体和逆转录病毒载体;将表达载体转染各类细胞,观察目的基因的表达及表达产物在细胞内与辅受体的结合;病毒感染实验检测辅受体表型剔除对HIV-1膜蛋白诱导合胞体形成、假病毒HIV-CAT的表达及病毒p24抗原活性,观察了淋巴细胞辅受体的表型剔除对HIV-1病毒感染的阻断作用。
     在基础和应用研究中,作为基因转移的一种新的有效和多用途的工具,慢病毒载体在基因治疗领域展示出可喜的前景。慢病毒载体能转导非分裂细胞,并能维持转基因持久和长期表达。许多细胞类型,如脑、肝、肌肉和造血干细胞,已经成功地转导了携带多种基因的慢病毒载体。同样,慢病毒载体能设计成可表达治疗性抗HIV-1的基因,特异性地靶向于病毒复制的不同阶段。为此,我们应用分子生物学技术构建了含CC-细胞内趋化因子(CC-intrakine,RANTES-K)和CXC-细胞内趋化因子(CXC-intrakine,SDF-K)的慢病毒表达质粒pLenti6/V5-R-K和pLenti6/V5-S-K,并在293FT细胞中建立了慢病毒株,转导CD34+人造血干细胞(hHSC)后,观测了细胞中RANTES和SDF-1蛋白的表达情况及感染HIV-1病毒液后p24抗原分泌水平,以观察CD34+hHSC辅受体的表型剔除对HIV-1病毒感染的阻断作用。实验结果如下:
     1、酶切和测序表明HIV-1辅受体CCR5、CXCR4的配体RANTES和SDF-1的慢病毒表达质粒pLenti6/V5-R-K和pLenti6/V5-S-K符合其物理图谱,构建是成功的。
     2、在293FT细胞中分别制备了包含慢病毒表达质粒pLenti6/V5-R-K和pLenti6/V5-S-K的慢病毒株,滴度分别为8.67×105转导单位(TU)/ml和8.56×105转导单位(TU)/ml,此慢病毒株可用于后续研究。
     3、将慢病毒株分别转染HeLa细胞和免疫磁珠法分离人脐带血得到的CD34+hHSC(流式细胞仪分析纯度为96.8%),间接免疫荧光证实RANTES和SDF-1蛋白可以表达于人宫颈癌HeLa细胞系和CD34+hHSC内。
     4、慢病毒株转染的CD34+hHSC在感染HIV-1 DP1/27病毒液后第4、7和10d皆可发现显著的p24抗原表达下降(P<0.05),分别减少了51%、58%、60%(包含慢病毒表达质粒pLenti6/V5-R-K的慢病毒株)和50%、57%、58%(包含慢病毒表达质粒pLenti6/V5-S-K的慢病毒株),表明慢病毒表达质粒pLenti6/V5-R-K和pLenti6/V5-S-K转染具有阻断HIV-1病毒复制的作用。
     综上所述,本文采用细胞内趋化因子技术进行HIV-1两类主要辅受体CCR5和CXCR4的配体——RANTES和SDF-1的慢病毒质粒表达,使两类HIV-1辅受体被阻断,并转染到CD34+人造血干细胞(hHSC)中,试图为将来回输基因修饰的hHSC进而永久抑制HIV-1复制的抗HIV-1基因治疗寻求一个新的突破点。
Acquired immunodeficiency syndrome (AIDS) and human immunodeficiency virus (HIV) infection continue to be major global health concerns, with 1,000,000 Chinese citizens infected by the end of 2002. Although highly active antiretroviral therapy (HAART) has led to profound and prolonged reductions in circulating virus levels in many individuals, high cost, side effects and increasingly the emergence of multidrug-resistant virus strains limit the use of HAART. Gene therapy for HIV infection has got rapid progress in recent years. Several strategies have been approved and are being conducted in clinical trial.
     Human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multi-step process involving the interaction of viral envelope proteins with cell surface receptors, such as the CCR5 and CXCR4 chemokine receptors. CCR5 and CXCR4 are G protein-coupled receptors for CC- and CXC-chemokines, such as MIP-1α, RANTES and SDF-1, and are also the coreceptors of human immunodeficiency virus (HIV). In concert with CD4, CCR5 and CXCR4 mediate the binding of the viral envelope protein gp120 to the cell surface and allow HIV subsequent entry into target cells.
     The study by Chen SY et al mimicked the natural resistance of the individuals with the genetic CCR5 defect by inactivating CCR5 using a novel intracellular chemokine (intrakine) strategy. The CC-chemokine,RANTES,a ligand for CCR-5, has been targeted to the lumen of endocytoplasmic reticulum (ER) using a KDEL fusion termed RANTES-KDEL and this construct was found to effectively prevent the transport of newly synthesized CCR-5 to the cell surface. The lymphocytes expressing the CC-intrakine (RANTES-K) were resistant to M-tropic HIV-1 infection, while retaining normal cell functions. In an accompanied study, SDF-1a, a ligand for CXCR4, was also targeted to the ER to inactivate CXCR4, and the viable lymphocytes expressing CXC-intrakine (SDF-K) were found to resist T-tropic HIV-1 infection. These results indicate the therapeutic application of this genetic intrakine strategy to control HIV-1 infection.
     In the previous study by Bai XF and Zhang Y, a novel“intrakine”strategy was utilized to co-inactivate genetically both CCR5 and CXCR4 in HIV-1 target cells. The principle of co-inactivation of CCR5 and CXCR4 was illustrated by targeting the CC-intrakine and CXC-intrakine to the lumen of the endoplasmic reticulum for intracellular blockade of the transport of newly synthesized chemokine coreceptors to the cell surface. They constructed bicistronic eukaryotic vector and retroviral vector, which harbor the genes of HIV-1 coreceptors ligands RANTES and SDF-1. In order to examine co-expression of RANTES and SDF-1 by the bicistronic vector, several cell strains were transfected with various expression vector DNA. Finally, Env-mediated syncytium formation, envelope complementation assay and p24 detection were carried out to detect anti-HIV-1 activity of the co-inactivation of CCR5 and CXCR4. In summary, they utilized an intrakine strategy to co-inactivate both the principal M-tropic and T-tropic HIV-1 coreceptors in target cells. The lymphocytes with the phenotypic knockout of CCR5 and CXCR4 broadly resisted the infection of various HIV-1 viruses. Thus, intrakine provides a promising therapeutic strategy toward the goal of long-term control of HIV-1 infection.
     Recent years, some new vectors arosed with the prominent merits and of them, lentiviral vectors have emerged as potent and versatile tools of gene transfer for basic and applied research and are able to transduce nondividing cells and maintain sustained long-term expression of transgenes. For this reason, we constructed the HIV-based lentiviral vector expressing RANTES-KDEL and SDF-KDEL, pLenti6/V5-R-K and pLenti6/V5-S-K, and cotransfected them with the ViraPowerTM Packaging Mix (pLP1, pLP2, and pLP/VSVG) into 293FT cells to produce the replication-incompetent lentivirus stocks. Furthermore, we titrated the lentiviral stocks using HeLa cells, and detected the expression of the gene of interest, RANTES and SDF-1, by indirect immumofluorescence. The results are as following:
     1、The construction of lentiviral expression vectors, pLenti6/V5-R-K and
     pLenti6/V5-S-K, was confirmed by enzymatic digestion and sequencing. 2、We constructed lentivirus stocks expressing pLenti6/V5-R-K and pLenti6/V5-S-K with the ViraPower? Packaging Mix in a 293 FT cell line and titrated them in HeLa cell line. We measured the titre of the lentivirus stocks, which was 8.67×105 transduced units (TU)/ml and 8.56×105 transduced units (TU)/ml.
     3、We detected the RANTES and SDF-1 protein in HeLa cells and CD34+hHSC respectively by a Midi-MACS CD34 Isolation Kit(the purity was 96.8% as evaluated by flow cytometry) transfected with pLenti6/V5-R-K- and pLenti6/V5-S-K-expressing lentivirus using goat-anti-human RANTES and SDF-1 antibody with rabbit-anti-goat IgG-FITC secondary antibody. The majority of RANTES and SDF-1 were expressed in the cytoplasm, especially in the perinuclear region.
     4、The HIV-1 DP1 / 27 strain was amplified in MT4 cells and the virus titer was 10-4.2/ ml (TCID50)/ 10-4.1/ ml (TCID50). After 6d infection, syncytia were observed in the untransfected cells and in the CD34+hHSC transduced with empty plasmid. In contrast, CD34+hHSC transfected with lentivirus expressing pLenti6/V5-R-K and pLenti6/V5-S-K had no syncytia. We also detected p24 antigen levels of cell culture supernatants on the 4th, 7th, and 10th day, with 103 TCID50 HIV-1 DP-infected CD34+hHSC. The cells transfected with pLenti6/V5-R-K and pLenti6/V5-S-K had a significant reduction of HIV-1 DP transmission with a decrease of 51%、50% on the 4th day, 58%、57% on the 7th day and 60%、58% on the 10th day (P<0.05) compared to the untransfected control cells. The cells transfected with empty plasmid had no discernable decrease of p24 antigen (P>0.05) compared to the untransfected control cells.
     In summary, we utilized an intrakine strategy to inactivate the principal M-tropic and T-tropic HIV-1 coreceptors in target cells. The CD34+hHSC with the phenotypic knockout of CCR5 and CXCR4 broadly resisted the infection of various HIV-1 viruses. Thus, intrakine provides a promising therapeutic strategy toward the goal of long-term control of HIV-1 infection. These findings demonstrated the ability of lentiviral vectors to transduce multiple genes into human hematopoietic progenitor cells, and the potential therapeutic strategies for the treatment of human diseases.
引文
1 Eyster ME. Coping with the HIV epidemic 1982-2007: 25-year outcomes of the Hershey Haemophilia Cohort. Haemophilia. 2008 Mar 25. [ Epub ahead of print]
    2 Li L, Lin C, Wu Z, Lord L, Wu S. To tell or not to tell: HIV disclosure to family members in China. Dev World Bioeth. 2007 Oct 23. [ Epub ahead of print]
    3 Ntemgwa M, Toni TD, Brenner BG, Routy JP, Moisi D, Oliveira M, Wainberg MA. Near Full-Length Genomic Analysis of a Novel Subtype A1/C Recombinant HIV Type
    1 Isolate from Canada.AIDS Res Hum Retroviruses. 2008 Mar 26.
    4 Locateli D, Stoco PH, Zanetti CR, Pinto AR, Grisard EC. An optimized nested polymerase chain reaction (PCR) approach allows detection and characterization of human immunodeficiency virus type 1 (HIV-1) env and gag genes from clinical samples. J Clin Lab Anal. 2008; 22(2): 106-113.
    5 Kwon EJ, Bergen JM, Pun SH. Application of an HIV gp41-Derived Peptide for Enhanced Intracellular Trafficking of Synthetic Gene and siRNA Delivery Vehicles.Bioconjug Chem. 2008 Apr 1. [Epub ahead of print]
    6 Shen C, Gupta P, Wu H, Chen X, Huang X, Zhou Y, Chen Y. Molecular Characterization of the HIV Type 1 vpr Gene in Infected Chinese Former Blood/Plasma Donors at Different Stages of Diseases. AIDS Res Hum Retroviruses. 2008 Mar 26. [Epub ahead of print]
    7 Sieg SF, Bazdar DA, Lederman MM. S-phase entry leads to cell death in circulating T cells from HIV-infected persons. J Leukoc Biol. 2008 Mar 27. [Epub ahead of print]
    8 Sun J, Zheng JH, Zhao M, Lee S, Goldstein H. Increased In Vivo Activation of Microglia and Astrocytes in the Brains of Mice Transgenic for an Infectious R5 HIV-1 Provirus and for CD4-specific Expression of Human Cyclin T1 In Response To LPS Stimulation.J Virol. 2008 Mar 19. [Epub ahead of print]
    9 Shalekoff S, Meddows-Taylor S, Schramm DB, Donninger SL, Gray GE, Sherman GG, Coovadia AH, Kuhn L, Tiemessen CT. Host CCL3L1 Gene Copy Number in Relation to HIV-1-Specific CD4+and CD8+T-Cell Responses and Viral Load in South African Women.J Acquir Immune Defic Syndr. 2008 Mar 20. [Epub ahead of print]
    10 Sa?di H, Magri G, Carbonneil C, Nasreddine N, Réquena M, Bélec L. IFN- -activated monocytes weakly produce HIV-1 but induce the recruitment of HIV-sensitive T cells and enhance the viral production by these recruited T cells. Journal of Leukocyte Biology.2007 Mar; 81(3):642-653.
    11 Rafailidis PI, Mourtzoukou EG, Varbobitis IC, Falagas ME. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J. 2008 Mar 27; 5(1):47.
    12 Viani RM, Lopez G, Chacon-Cruz E, Hubbard P, Spector SA. Poor outcome isassociated with delayed tuberculosis diagnosis in HIV-infected children in Baja California, Mexico. Int J Tuberc Lung Dis. 2008 Apr; 12(4): 411-416.
    13 Chakaya JM, Mansoer JR, Scano F, Wambua N, L'herminez R, Odhiambo J, Mohamed I, Kangangi J, Ombeka V, Akeche G, Adala S, Gitau S, Maina J, Kibias S, Langat B, Abdille N, Wako I, Kimuu P, Sitienei J. National scale-up of HIV testing and provision of HIV care to tuberculosis patients in Kenya. Int J Tuberc Lung Dis. 2008 Apr;12(4):424-429.
    14 Shah NS, Anh MH, Thuy TT, Duong Thom BS, Linh T, Nghia DT, Sy DN, Duong BD, Chau LT, Wells C, Laserson K, Varma JK. Population-based chest X-ray screening for pulmonary tuberculosis in people living with HIV/AIDS, An Giang, Vietnam. Int J Tuberc Lung Dis. 2008 Apr;12(4):404-410.
    15 Lloyd-Smith JO, Poss M, Grenfell BT. HIV-1/parasite co-infection and the emergence of new parasite strains. Parasitology. 2008 Mar 27:1-12
    16 Iannello A, Debbeche O, Samarani S, Ahmad A. Antiviral NK cell responses in HIV infection: II. viral strategies for evasion and lessons for immunotherapy and vaccination. J Leukoc Biol. 2008 Apr 3. [Epub ahead of print]
    17 Jamieson T, Cook D N, Nibbs R J, Rot A, Nixon C, McLean P, Alcami A, Lira S A, Wiekowski M, Graham GJ. The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol. 2005; 6: 403–411.
    18 Locati M, Torre Y M, Galliera E, Bonecchi R, Bodduluri H, Vago G, Vecchi A, Mantovani A. Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev. 2005; 16: 679–686.
    19 Shih-Chieh Hung, Radhika R. Pochampally, Shu-Ching Hsu, Cecelia Sanchez, Sy-Chi Chen, Jeffrey Spees, Darwin J. Prockop. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. 2007; PLoS ONE 2(5): e416.
    20 Fukuda S, Bian H, King AG, Pelus LM. The Chemokine GROβ Mobilizes Early Hematopoietic Stem Cells Characterized by Enhanced Homing and Engraftment. Blood.2007;110(3):860-869.
    21 Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005;105:2449–2457.
    22 Wei Zhu, Oheneba Boachie-Adjei, Bernard A. Rawlins, Baruch Frenkel, Adele L. Boskey, Lionel B. Ivashkiv, Carl P. Blobel. A novel regulatory role for SDF-1 signaling in BMP2-osteogenic differentiation of mesenchymal C2C12 cells. The Journal of Biological Chemistry. 2007; 282(26):18676-18685.
    23 James Pritchett, Clare Wright, Leo Zeef, Bagirathy Nadarajah. Stromal derived factor-1 exerts differential regulation on distinct cortical cell populations in vitro. BMC Developmental Biology. 2007; 7:31.
    24 Walker JK, Ahumada A, Frank B, Rubio R, Berman K, Quackenbush J, et al. Multi-strain genetic comparisons reveal CCR5 as a receptor involved in airway hyperresponsiveness. Am J Respir Cell Mol Bio.2006; 34(6):711-718.
    25 Zhang J, Rao E, Dioszegi M, Kondru R, DeRosier A, Chan E, Schwoerer S, Cammack N, Brandt M, Sankuratri S, Ji C. The second extracellular loop of CCR5 contains the dominant epitopes for highly potent anti-human immunodeficiency virus monoclonal antibodies. Antimicrob Agents Chemother. 2007 Apr;51(4):1386-1397.
    26 Ahuja SK, Kulkarni H, Catano G, Agan BK, Camargo JF, He W, O'Connell RJ, Marconi VC, Delmar J, Eron J, Clark RA, Frost S, Martin J, Ahuja SS, Deeks SG, Little S, Richman D, Hecht FM, Dolan MJ. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals.Nat Med. 2008 Mar 30. [Epub ahead of print]
    27 Sabeti PC, Walsh E, Schaffner SF, Varilly P, Fry B, Hutcheson HB, Cullen M, Mikkelsen TS, Roy J, Patterson N, Cooper R, Reich D, Altshuler D, O'Brien S, Lander ES. The case for selection at CCR5-Delta32. PLoS Biol. 2005 Nov;3(11):e378.
    28 Prahalad S. Negative association between the chemokine receptor CCR5-Delta32 polymorphism and rheumatoid arthritis: a meta-analysis. Genes Immun. 2006;7:264–268.
    29 Hummel S, Schmidt D, Kremeyer B, Herrmann B, Oppermann M. Detection of the CCR5-△32 HIV resistance gene in Bronze Age skeletons. Genes Immun. 2005; 6:371–374.
    30 Koizumi Y, Kageyama S, Fujiyama Y, Miyashita M, Lwembe R, Ogino K, Shioda T, Ichimura H. RANTES -28G Delays and DC-SIGN - 139C Enhances AIDS Progression in HIV Type 1-Infected Japanese Hemophiliacs. AIDS Res Hum Retroviruses. 2007 May;23(5):713-719.
    31 Jean K. Lim, Wuyuan Lu, Oliver Hartley, Anthony L. DeVico. N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. Journal of Leukocyte Biology. 2006;80:1-10.
    32 Gaertner H, Lebeau O, Borlat I, Cerini F, Dufour B, Kuenzi G, Melotti A, Fish RJ, Offord R, Springael JY, Parmentier M, Hartley O. Highly potent HIV inhibition: engineering a key anti-HIV structure from PSC-RANTES into MIP-1 /CCL4. Protein Eng Des Sel. 2008;21(2):65-72.
    33 Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature. 2005 Feb 24;433(7028):834-841.
    34 Manish Sagar, Xueling Wu, Sandra Lee, Julie Overbaugh. Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. Journal of Virology. 2006; 80(19): 9586-9598.
    35 Van Lunzen J. How will CCR5 antagonists influence the recommendations for the antiretroviral treatment of HIV-1 infection. Eur J Med Res. 2007; 12(9):435-440.
    36 Ling Yi, Jun Fang, Nilgun Isik, Jimmy Chim, Tian Jin. HIV gp120-induced interaction between CD4 and CCR5 requires cholesterol-rich microenvironments revealed by live cell FRET imaging. J Biol Chem. 2006; 281(46):35446-35453.
    37 Brumme ZL, Goodrich J, Mayer HB, Brumme CJ, Henrick BM, Wynhoven B, Asselin JJ, Cheung PK, Hogg RS, Montaner JS, Harrigan PR. Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis. 2005 Aug 1;192(3):466-474.
    38 Melby T, Despirito M, Demasi R, Heilek-Snyder G, Greenberg ML, Graham N. HIV-1 coreceptor use in triple-class treatment-experienced patients: baseline prevalence, correlates, and relationship to enfuvirtide response. J Infect Dis. 2006 Jul 15;194(2):238-246.
    39 Moyle GJ, Wildfire A, Mandalia S, Mayer H, Goodrich J, Whitcomb J, Gazzard BG. Epidemiology and predictive factors for chemokine receptor use in HIV-1 infection. J Infect Dis. 2005 Mar 15;191(6):866-872.
    40 Sa?di H, Magri G, Carbonneil C, Nasreddine N, Réquena M, Bélec L. IFN-gamma-activated monocytes weakly produce HIV-1 but induce the recruitment of HIV-sensitive T cells and enhance the viral production by these recruited T cells. J Leukoc Biol. 2007 Mar;81(3):642-653.
    41 Sierra S, Kaiser R, Thielen A, Lengauer T. Genotypic coreceptor analysis. Eur J Med Res. 2007; 12(9):453-462.
    42 Borggren M, Repits J, Kuylenstierna C, Sterjovski J, Churchill MJ, Purcell DF, Karlsson A, Albert J, Gorry PR, Jansson M. Evolution of DC-SIGN use revealed by fitness studies of R5 HIV-1 variants emerging during AIDS progression. Retrovirology. 2008 Mar 27; 5(1):28.
    43 Gulick RM, Su Z, Flexner C, Hughes MD, Skolnik PR, Wilkin TJ, Gross R, Krambrink A, Coakley E, Greaves WL, Zolopa A, Reichman R, Godfrey C, Hirsch M, Kuritzkes DR; AIDS Clinical Trials Group 5211 Team. Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1-Infected, treatment-experienced patients: AIDS clinical trials group 5211. J Infect Dis. 2007 Jul 15;196(2):178-180.
    44 Giacaman RA, Asrani AC, Gebhard KH, Dietrich EA, Vacharaksa A, Ross KF, Herzberg MC. Porphyromonas gingivalis induces CCR5-dependent transfer of infectious HIV-1 from oral keratinocytes to permissive cells. Retrovirology. 2008 Mar 27; 5(1):29.
    45 Ferrandi C, Ardissone V, Ferro P, Ruckle T, Zaratin P, Ammannati E, Hauben E, Rommel C, Cirillo R. PI3K{gamma} inhibition plays a crucial role in early steps of inflammation by blocking neutrophil recruitment. J Pharmacol Exp Ther. 2007;322(3):923-930.
    46 Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grisé H, Ofek GA, Taylor KA, Roux KH. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature. 2006 Jun 15;441(7095):847-852.
    47 Osnat Rosen, Michal Sharon, Sabine R, Quadt-Akabayov, Jacob Anglister. Molecular switch for alternative conformations of the HIV-1 V3 region: Implications for phenotype conversion. PNAS. 2006; 103:13950-13955.
    48 Nabatov AA, Pollakis G, Linnemann T, Paxton WA, de Baar MP. Statins Disrupt CCR5 and RANTES Expression Levels in CD4 T Lymphocytes In Vitro and Preferentially Decrease Infection of R5 Versus X4 HIV-1. PLoS ONE. 2007 May 23;2:e470.
    49 Borggren M, Repits J, Kuylenstierna C, Sterjovski J, Churchill MJ, Purcell DF, Karlsson A, Albert J, Gorry PR, Jansson M. Evolution of DC-SIGN use revealed by fitness studies of R5 HIV-1 variants emerging during AIDS progression. Retrovirology. 2008 Mar 27;5(1):28
    50 Ho SH, Shek L, Gettie A, Blanchard J, Cheng-Mayer C. V3 loop-determined coreceptor preference dictates the dynamics of CD4+-T-cell loss in simian-human immunodeficiency virus-infected macaques. J Virol. 2005 Oct;79(19):12296-12303.
    51 Margolis L, Shattock R. Selective transmission of CCR5-utilizing HIV-1: the ’gatekeeper’ problem resolved? Nat Rev Microbiol. 2006;4: 312–317.
    52 Ralf Stumm, Volker Hollt. CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. Journal of Molecular Endocrinology. 2007; 38: 377–382.
    53 Jessy Deshane, Sifeng Chen, Sergio Caballero, Anna Grochot-Przeczek, Halina Was, Sergio Li Calzi, Radoslaw Lach, Thomas D. Hock, Bo Chen, Nathalie Hill-Kapturczak, Gene P. Siegal, Jozef Dulak, Alicja Jozkowicz, Maria B. Grant, Anupam Agarwal. Stromal cell–derived factor 1 promotes angiogenesis via a heme oxygenase 1–dependent mechanism. J Exp Med. 2007 March 19; 204(3): 605–618.
    54 Alice Guyon, Jean-Louis Nahon. Multiple actions of the chemokine stromal cell-derived factor-1α on neuronal activity. Journal of Molecular Endocrinology. 2007; 38, 365–376.
    55 Sluis-Cremer N,Tachedjian G. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res. 2008 Mar 25. [Epub ahead of print]
    56 Athe M.N, Tsibris, Daniel R. Kuritzkes. Chemokine antagonists as therapeutics: focus on HIV-1. Annu. Rev. Med. 2007; 58:445-459.
    57 Wilkin TJ, Su Z, Kuritzkes DR, Hughes M, Flexner C, Gross R, Coakley E, Greaves W, Godfrey C, Skolnik PR, Timpone J, Rodriguez B, Gulick RM. HIV type 1 chemokine coreceptor use among antiretroviral-experienced patients screened for a clinical trial of a CCR5 inhibitor: AIDS Clinical Trial Group A5211. Clin Infect Dis. 2007 Feb 15;44(4):591-595.
    58 Fang-Yu Wang, Tian-Yuan Zhang, Jin-Xian Luo, Guo-An He, Qu-Liang Gu, Fan Xiao. Selection of CC Chemokine receptor 5-binding peptide from a phage display peptide library. Biosci Biotechnol Biochem. 2006; 70(9):2035-2041.
    59 Baba M, Takashima K, Miyake H, et al. TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother. 2005; 49(11):4584-4591.
    60 Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C, Webster R, Armour D, Price D, Stammen B, Wood A, Perros M. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005 Nov;49(11):4721-4732.
    61 Watson C, Jenkinson S, Kazmierski W, Kenakin T. The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol. 2005 Apr; 67(4): 1268-1282.
    62 Lalezari J, Thompson M, Kumar P, Piliero P, Davey R, Patterson K, Shachoy-Clark A, Adkison K, Demarest J, Lou Y, Berrey M, Piscitelli S. Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. AIDS. 2005 Sep 23;19(14):1443-1448.
    63 Adkison KK, Shachoy-Clark A, Fang L, Lou Y, Otto VR, Berrey MM, Piscitelli SC. The effects of ritonavir and lopinavir/ritonavir on the pharmacokinetics of a novel CCR5 antagonist, aplaviroc, in healthy subjects. Br J Clin Pharmacol. 2006 Sep;62(3):336-344.
    64 Nichols WG, Steel HM, Bonny T, Adkison K, Curtis L, Millard J, Kabeya K, Clumeck N. Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Chemother. 2008 Mar;52(3):858-865.
    65 Bredeek UF, Harbour MJ. CCR5 antagonists in the treatment of treatment-naive patients infected with CCR5 tropic HIV-1. Eur J Med Res. 2007; 12(9):427-434.
    66 F?tkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med. 2005 Nov;11(11):1170-1172.
    67 Fadel H, Temesgen Z. Maraviroc. Drugs Today (Barc). 2007; 43(11): 749-758.
    68 Ghosal A, Ramanathan R, Yuan Y, Hapangama N, Chowdhury SK, Kishnani NS, Alton KB. Identification of human liver cytochrome P450 enzymes involved in biotransformation of vicriviroc, a CCR5 receptor antagonist. Drug Metab Dispos. 2007 Dec;35(12):2186-2195.
    69 Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, Hipkin RW, BaroudyBM. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2005 Dec;49(12):4911-4919.
    70 Emmelkamp JM, Rockstroh JK. CCR5 antagonists: comparison of efficacy, side effects, pharmacokinetics and interactions—review of the literature. Eur J Med Res. 2007; 12(9):409-417.
    71 Gulick RM, Su Z, Flexner C, Hughes MD, Skolnik PR, Wilkin TJ, Gross R, Krambrink A, Coakley E, Greaves WL, Zolopa A, Reichman R, Godfrey C, Hirsch M, Kuritzkes DR; AIDS Clinical Trials Group 5211 Team. Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1-Infected, treatment-experienced patients: AIDS clinical trials group 5211. J Infect Dis. 2007 Jul 15;196(2):304-312.
    72 Westby M, Lewis M, Whitcomb J, Youle M, Pozniak AL, James IT, Jenkins TM, Perros M, van der Ryst E. Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with theCCR5antagonist maraviroc is from a pretreatment CXCR4- using virus reservoir. J. Virol. 2006; 80:4909–4920.
    73 Mosley M, Mori J, Smith-Burchnell C, et al. Resistance to the CCR5 antagonist maraviroc is associated with V3 loop-specific mutations and dose response curves characterized by a reduction in maximal inhibition (plateau). 2005. Presented at Int.Workshop on Targeting HIV Entry, 1st, Bethesda, MD
    74 Westby M, Smith-Burchnell C, Mori J, Lewis M, Mosley M, Stockdale M, Dorr P, Ciaramella G, Perros M. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007; 81(5):2359-2371.
    75 Landovitz R, Fatkenheuer G, Hoffmann C, et al. Characterization of susceptibility profiles for the CCR5 antagonist vicriviroc in treatment-naive HIV-infected subjects. 2006. Presented at Int. HIV Drug ResistanceWorkshop, XV, Sitges, Spain
    76 Ho SH, Shek L, Gettie A, Blanchard J, Cheng-Mayer C. V3 loop-determined coreceptor preference dictates the dynamics of CD4+-T-cell loss in simian-human immunodeficiency virus-infected macaques. J. Virol. 2005;79: 12296–12303.
    77 Lalezari J, Thompson M, Kumar P, Piliero P, Davey R, Patterson K, Shachoy-Clark A, Adkison K, Demarest J, Lou Y, Berrey M, Piscitelli S. Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. AIDS. 2005; 19:1443–1448.
    78 Gulick R. FDA/Forum for Collaborative HIV Research Collaborative Meeting on Long-Term Safety Concerns Associated with CCR5 Antagonist Development. 2006.http://www.hivforum.org/CCR5/webcast.html
    79 Carr DJ, Ash J, Lane TE, Kuziel WA. Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1. J. Gen. Virol. 2006;87:489–499.
    80 Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 2006; 203:35–40.
    81 Moreno C, Gustot T, Nicaise C, Quertinmont E, Nagy N, Parmentier M, Le Moine O, Devière J, Louis H. CCR5 deficiency exacerbates T-cell-mediated hepatitis in mice. Hepatology. 2005; 42:854–862.
    82 Prahalad S. Negative association between the chemokine receptor CCR5-Delta32 polymorphism and rheumatoid arthritis: a meta-analysis. Genes Immun. 2006;7:264–268.
    83 Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–1767.
    84 Bhawna Poonia, Xiaolei Wang, Ronald S. Veazey. Distribution of simian immunodeficiency virus target cells in vaginal tissues of normal rhesus macaques: Implications for virus transmission. Journal of Reproductive Immunology. 2006;72(1-2):74-84.
    85 Veazey RS, Klasse PJ, Schader SM, Hu Q, Ketas TJ, Lu M, Marx PA, Dufour J, Colonno RJ, Shattock RJ, Springer MS, Moore JP. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature. 2005; 438:99–102.
    86 Iqbal SM, Ball TB, Kimani J, Kiama P, Thottingal P, Embree JE, Fowke KR, Plummer FA. Elevated T cell counts and RANTES expression in the genital mucosa of HIV-1-resistant Kenyan commercial sex workers. J. Infect. Dis. 2005;192: 728–738.
    87 Mueller MC, Boqner JR. Treatment with CCR5 antagonists: which patient may have a benefit? Eur J Med Res. 2007; 12(9):441-452.
    88 Dianzani F, Rozera G, Abbate I, D'Offizi G, Abdeddaim A, Vlassi C, Antonucci G, Narciso P, Martini F, Capobianchi MR. Interferon May Prevent HIV Viral Rebound After HAART Interruption in HIV Patients. J Interferon Cytokine Res. 2008 Jan;28(1):1-3.
    89 Fernando Arenzana-Seisdedos, Marc Parmentier. Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands. Seminars in Immunology. 2006;18(6):387-403.
    90 Kahl CA, Cannon PM, Oldenburg J, Tarantal AF, Kohn DB. Tissue-specific restriction of cyclophilin A-independent HIV-1- and SIV-derived lentiviral vectors.Gene Ther. 2008 Apr 3. [Epub ahead of print]
    91 Chu K, Cornetta KG, Econs MJ. Efficient and Stable Gene Expression into Human Osteoclasts Using an HIV-1-Based Lentiviral Vector.DNA Cell Biol. 2008 Mar 26.[Epub ahead of print]
    92 Swainson L, Mongellaz C, Adjali O, Vicente R, Taylor N. Lentiviral transduction ofimmune cells.Methods Mol Biol. 2008;415:301-320.
    93 Engelman A, Cherepanov P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication.PLoS Pathog. 2008 Mar 28; 4(3): e1000046.
    94 冯继锋,朱梁军,胡洁。血管内皮抑素基因转染人脐带血CD34+ 造血干细胞的实验研究。医学研究生学报,2005,18(2):101-103.
    95 Trobridge GD, Beard BC, Gooch C, Wohlfahrt M, Olsen P, Fletcher J, Malik P, Kiem HP. Efficient transduction of pigtailed macaque hematopoietic repopulating cells with HIV-based lentiviral vectors.Blood. 2008 Apr 3. [Epub ahead of print]
    96 Tesio M, Gammaitoni L, Gunetti M, Leuci V, Pignochino Y, Jordaney N, Capellero S, Cammarata C, Caione L, Migliaretti G, Fagioli F, Tabilio A, Aglietta M, Piacibello W. Sustained Long Term Engraftment and Transgene Expression of Peripheral Blood CD34+ Cells Transduced with Third-Generation Lentiviral Vectors.Stem Cells. 2008 Apr 3. [Epub ahead of print]
    97 Ye Z, Yu X, Cheng L.Lentiviral gene transduction of mouse and human stem cells.Methods Mol Biol. 2008;430:243-253.
    98 Taher TE, Tulone C, Fatah R, D'Acquisto F, Gould DJ, Mageed RA. Repopulation of B-lymphocytes with restricted gene expression using haematopoietic stem cells engineered with lentiviral vectors.Gene Ther. 2008 Mar 20. [Epub ahead of print]
    99 Harper SQ, Gonzalez-Alegre P. Lentivirus-mediated RNA interference in Mammalian neurons.Methods Mol Biol. 2008;442:95-112.
    100 Welm BE, Dijkgraaf GJ, Bledau AS, Welm AL, Werb Z. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer.Cell Stem Cell. 2008 Jan 10;2(1):90-102.
    101 Gudmundsson KO, Thorsteinsson L, Sigurjonsson OE, Keller JR, Olafsson K, Egeland T, Gudmundsson S, Rafnar T. Gene expression analysis of hematopoietic progenitor cells identifies Dlg7 as a potential stem-cell gene. Stem Cells. 2007; 25(6):1498-1506.
    102 Christofori G. New signals from the invasive front. Nature. 2006; 441(7092): 444-450.
    103 Jin H, Aiyer A, Su J, Borgstrom P, Stupack D, Friedlander M, Varner J. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest. 2006; 116(3):652-662.
    104 Bartolovic K, Balabanov S, Berner B, Buhring HJ, Komor M, Becker S, Hoelzer D, Kanz L, Hofmann WK, Brummendorf TH. Clonal heterogeneity in growth kinetics of CD34+CD38- human cord blood cells in vitro is correlated with gene expression pattern and telomere length. Stem Cells. 2005;23(7):946-957.
    105 阴晴,邵启祥,王金湖,王胜军,闻平,潘湘涛,许化溪,张学光。抗CD40 抗体联合诱导人脐血CD34 + 造血干细胞向DC2 分化的作用。免疫学杂志。2006;22(4):444-447.
    106 金莹,高欣,王颖。L-5诱导CD34+ 造血干细胞嗜酸性粒细胞分化的信号传导机制研究。中国老年学杂志。2006;11(26):1540-1542.
    107 Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno SI, Arinobu Y, Geary K, Zhang P, Dayaram T, Fenyus ML, Elf S, Chan S, Kastner P, Huettner CS, Murray R, Tenen DG, Akashi K. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood. 2005; 106(5):1590-1600.
    108 Mortara L, Ploquin MJ, Faye A, Scott-Algara D, Vaslin B, Butor C, Hosmalin A, Barré-Sinoussi F, Diop OM, Müller-Trutwin MC. Phenotype and function of myeloid dendritic cells derived from AfRican green monkey blood monocytes. J Immunol Methods. 2006; 308 (1-2) :138-155.
    109 Oki M, Ando K. Hematopoietic growth factors, cytokines, and bone-marrow microenvironment. Nippon Rinsho. 2008 Mar; 66(3): 444-452.
    110 Hofer M, Vacek A, Pospí?il M, Holá J, Streitová D, Znojil V. Activation of adenosine A(3) receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells.Physiol Res. 2008 Apr 1. [Epub ahead of print]
    111 叶宝东,周郁鸿,陈眉,张宇,沈一平,俞庆宏,张宾辉,虞荣喜。免疫磁珠法纯化自体外周血CD34 + 造血干细胞移植治疗重症肌无力2 例。浙江实用医学。2007;12(4):307-309.
    112 顾镭, 邢美芬, 季晓辉, 孙志达, 杨晓帆, 王慧娟, 张明顺。脐血CD34+造血干细胞来源的树突状细胞体外培养体系的优化。ACTA Universitatis medicinalis nanjing(Natural Science)。2006;26(10):913-917.
    113 周忠信,吕明德,殷晓煜,向邦德,黄洁夫。C57BL/ 6j 小鼠骨髓CD34+造血干细胞来源的iDC 的体外培养与鉴定。广西医学大学学报。2007;24(3): 341-344.
    114 张辉,张大良,郭成浩。人脐带血CD34+ 细胞体外诱导分化为嗜酸粒细胞的研究。中国病理生理杂志。2006;22 (5) : 878-881.
    115 Fujimi A, Matsunaga T, Kobune M, Kawano Y, Nagaya T, Tanaka I, Iyama S, Sakai H, Tsuchida E, Ikebuchi K, Hamada H, Niitsu Y.Ex vivo large-scale generation of human red blood cells from cord blood CD34(+) cells by co-culturing with macrophages.Int J Hematol. 2008 Mar 29. [Epub ahead of print]
    116 Oostendorp RA, Robin C, Steinhoff C, Marz S, Brauer R, Nuber UA, Dzierzak EA, Peschel C. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells. 2005; 23(6):842-851.
    117 Beier D, Wischhusen J, Dietmaier W, Hau P, Proescholdt M, Brawanski A, Bogdahn U, Beier CP.CD133 Expression and Cancer Stem Cells Predict Prognosis in High-grade Oligodendroglial Tumors.Brain Pathol. 2008 Mar 26. [Epub ahead of print]
    118 Jun Miki, Bungo Furusato, Hongzhen Li, Yongpeng Gu, Hiroyuki Takahashi, Shin Egawa, Isabell A. Sesterhenn, David G. McLeod, Shiv Srivastava, Johng S. Rhim.Identification of putative stem cell markers, CD133 and CXCR4, in hTERT–immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007; 67(7):3153–3161.
    119 Kelly E. Corcoran, Pranela Rameshwar. Nuclear factor-κB accounts for the repressor effects of high stromal cell–derived factor-1α levels on Tac1 expression in nontumorigenic breast cells. Mol Cancer Res. 2007; 5(4):373–381.
    120 Lopez Ponte Adriana, Marais Emeline, Gallay Nathalie, Langonne Alain, Delorme Bruno, Herault Olivier, Charbord Pierre, Domenech Jorge. The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. AlphaMed Press. 2007; 25(7):1737-1745.
    121 孙晋敏,熊汉真,李学农。造血干细胞和祖细胞与肿瘤的发生和转移。国际肿瘤学杂志。2007;34(12):893-895.
    122 Kopp HG, Rafii S. Thrombopoietic Cells and the Bone Marrow Vascular Niche. Ann N Y Acad Sci. 2007 Jun;1106:175-9.
    123 Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438(7069):820-827.
    124 Gille J, Heidenreich R, Pinter A, Schmitz J, Boehme B, Hicklin DJ, Henschler R, Breier G. Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int J Cancer. 2007; 120(9):1899-1908.
    125 Mingfang Ao, Omar E. Franco, Dean Park, Dayanidhi Raman, Karin Williams, Simon W. Hayward. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 2007;67(9):4244–4253.
    126 Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends in Mol Med. 2007; 13(2): 72-81.
    127 Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005 May 6;121(3):335-348.
    128 Coralie Sengenès, Alexandra Miranville, Marie Maumus, Sandra de Barros, Rudi Busse, Anne Bouloumié. Chemotaxis and differentiation of human adipose tissue CD34+/CD31- progenitor cells: role of SDF-1 released by adipose tissue capillary endothelial cells. Stem Cells. 2007; 25(9): 2269-2276.
    129 Ming Zhang, Niladri Mal, Matthew Kiedrowski, Matthews Chacko, Arman T. Askari,Zoran B. Popovic, Omer N. Koc, Marc S. Penn. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. The FASEB Journal. 2007; 21(12):3197-3207.
    130 Katherine A. Gallagher, Zhao-Jun Liu, Min Xiao, Haiying Chen, Lee J. Goldstein, Donald G. Buerk, April Nedeau, Stephen R. Thom, Omaida C. Velazquez. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. The Journal of Clinical Investigation. 2007; 117(5):1249-1259.
    131 Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Hardan I, Resnick I, Rot A, Lapidot T. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005 Oct;6(10):1038-1046.
    132 Shang-Wei Chong, Le-Minh Nguyet, Yun-Jin Jiang, Vladimir Korzh. The chemokine, Sdf-1, and its receptor, Cxcr4, are required for formation of muscle in zebrafish. BMC Developmental Biology. 2007;7:54.
    133 Lisheng Wanga, Pablo Menendeza, Chantal Cerdana, Mickie Bhatia. Hematopoietic development from human embryonic stem cell lines. Experimental Hematology. 2005; 33: 987–996.
    134 Claudia Lengerkea, George Q. DaleyPatterning definitive hematopoietic stem cells from embryonic stem cells. Experimental Hematology. 2005; 33: 971–979.
    135 Calne R. Chalenges of organ transplantation. J. Transplant Proc. 2005; 37 :1979-1983.
    136 Flower DH. Shared biology of GVHD and GVT effect s: po2 tential met hods of separation. J. Clin Rev Oncol/ Hematol.2006;57:225-244.
    137 de Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP, Albani S, Kuis W, Wulffraat N, Prakken B. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood. 2006 Feb 15;107(4):1696-1702.
    138 Westerman KA, Ao Z, Cohen EA, Leboulch P. Design of a trans protease lentiviral packaging system that produces high titer virus. Retrovirology. 2007 Dec 28;4:96.