HIV-1高暴露持续血清阴性人群分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     性传播途径已经成为全球人类免疫缺陷病毒Ⅰ型(human immunodeficiency virusType 1,简称HIV-1)的主要传播途径,大约70%~80%感染者通过性接触感染HIV-1。HIV-1是一种具有高度变异性的逆转录病毒,其感染与疾病进展过程尚有很多问题需要阐明。在艾滋病的分子流行病学研究领域,有两类人群值得关注:一类是较高频率暴露于HIV-1但未感染,血清呈阴性反应,该类人群被称为暴露HIV-1后血清阴性者(HIV-1-exposed seronegative subjects,简称ESNs或ES人群)或HIV-1高暴露持续血清阴性者(higly exposed and persistently seronegative,简称HEPS人群);另一类为感染HIV-1后长期不进展者(long-term no-progressors,LTNP)。目前,对HIV-1不易感性机理及其影响因素尚不明确,国内外关于HEPS人群不易感HIV-1的研究报道并不多见。因此,我们选择经性传播途径高暴露HIV-1持续血清阴性的人群作为研究对象,探讨其对HIV-1不易感性的影响因素。
     研究目的
     1.探讨经性传播途径高暴露HIV-1的HEPS人群HIV-1感染相关基因CCR5-Δ32、CCR2b-64I和SDF1-3’A多态性与HIV-1不易感性的关系。
     2.了解经性传播途径高暴露HIV-1的HEPS人群与HIV-1感染者、无HIV暴露史健康对照人群的淋巴细胞亚群分布差异,分析其与HIV-1不易感性的关系。
     3.了解经性传播途径高暴露HIV-1的HEPS人群淋巴细胞亚群表达及其免疫活化状态,探讨经性途径高暴露HIV-1不易感性的免疫学机制。
     研究方法
     本研究采用流行病学病例对照研究方法,在深圳市疾病预防与控制中心2006年01月1日~2007年12月31日的自愿咨询检测(voluntary counselling and test,简称VCT)人群中选择经性传播途径高暴露HIV-1的HEPS人群作为病例组,选择经性途径感染HIV-1者及无HIV暴露史的健康对照人群作对照组。按年龄相差小于5岁、性别和民族相同的匹配条件选取对照。采用统一的调查问卷对病例组和对照组进行调查,并收集生物样本。用PCR/RFLP技术分析基因多态性的基因型;采用流式细胞术分析淋巴细胞亚群及其表面活化标志的表达。
     主要研究结果
     1.CCR5-⊿32等位基因突变HEPS人群(n=52)、健康对照人群(n=104)和HIV-1感染者(n=104)三组人群(n=260)中均未检测到;CCR2b-64I等位基因突变频率在这三组人群中分别为21.57%、22.12%和22.12%,三者之间的差异没有统计学意义;SDF1-3’A等位基因突变频率在这三组人群中分别是20.19%、28.37%和29.33%。HEPS人群的SDF1-3’A等位基因突变频率显著低于健康对照人群和HIV-1感染人群,差异具有统计学意义(P=0.023,P=0.049)。
     2.HEPS人群与健康对照人群外周血淋巴细胞亚群差异没有统计学意义;HPES人群和健康对照人群的CD4~+T淋巴细胞数量、CD4~+/CD8~+比值显著高于HIV-1感染者(P<0.001),而该两类人群的CD8~+T淋巴细胞数量则显著低于HIV-1感染者(P<0.001);HIV-1感染者外周血CD19~+B淋巴细胞、CD16~+CD56~+NK细胞数量显著低于HEPS人群和健康对照人群。淋巴细胞亚群相关性分析结果显示,HIV-1感染者和健康对照人群的CD19~+B淋巴细胞、CD16~+ CD56~+ NK细胞数量均与其CD4~+、CD8~+ T淋巴细胞数量呈一定程度正相关,HEPS人群的CD19~+ B淋巴细胞数量与CD4~+、CD8~+T淋巴细胞数量呈显著正相关,而CD16~+ CD56~+ NK细胞数量与其CD4~+、CD8~+ T淋巴细胞数量无相关性。
     3.HEPS人群和健康对照人群的CD38~+/CD4~+、HLA-DR~+ CD38~+/CD4~+百分比显著低于HIV-1感染者(P<0.001),同时HEPS人群的HLA-DR~+ CD38~+/CD4~+百分比显著低于健康对照人群(P<0.05);HEPS人群的HLA-DR~+/CD4~+百分比显著低于HIV-1感染者和健康对照人群(P<0.001)。
     研究结论
     1.CCR5-Δ32和CCR2b-64I等位基因突变与中国汉族人群通过性传播途径感染HIV-1的关系不大,SDF1-3’A等位基因突变可能增加经性传播途径感染HIV-1危险性。
     2.经性传播途径高暴露HEPS人群淋巴细胞亚群和健康对照人群比较差异无统计学意义,HIV-1感染可明显降低单位体积CD4~+ T淋巴细胞、CD19~+ B淋巴细胞和CD16~+ CD56~+ NK细胞数量。
     3.HEPS人群对HIV-1的不易感性可能与其T淋巴细胞表面标志活化抗原表达水平处于较低水平状态有关。
Background
     Sexual transmission is the major route of HIV-1 infection in the world. About 70% to80% of HIV-1-infected cases occured through sexual transmission. HIV-1 is a highvariability retrovirus, which infection and disease progression process still need to beclarified. In AIDS molecular epidemiology studies, two kinds of populations are worthpaying attention to, one of which is HIV-exposed seronegative individuals (ESNs or ES) orhighly HIV-1-exposed and persistently seronegative (HEPS) individuals, the other infectedHIV-1 with long-term no-progressors (LTNP). At present, the mechanism of HIV-1non-susceptivity and its influential factors in HEPS individuals are still unclear, and thereare few reports on it in the world. Therefore, we select the HEPS individuals of HanChinese as the subjects and explore influential factors of HIV-1 non-susceptivity by sexualtransmission in our study.
     Objective
     1. To determine the genetic polymorphisms of CCR5-A32, CCR2b-64I and SDF1-3'Ain highly HIV-1-exposed and persistently seronegative (HEPS) individuals, and analyzetheir correlations with HIV-1 non-susceptibility.
     2. To detect the distribution of lymphocyte subsets in highly HIV-l-exposed andpersistently seronegative (HEPS) individuals, and analyze their correlations with HIV-1non-susceptibility.
     3. To detect the distribution and immune activation status of T lymphocyte subsets inhighly HIV-1-exposed and persistently seronegative (HEPS) individuals, and explore the immunologic mechanism of HIV-1 non-susceptibility by sexual transmission in HEPSindividuals.
     Methods
     Case-control study was desiged in this study. Highly HIV-1-exposed persistentlyseronegative individuals by sexual transmission were enrolled as the cases, andHIV-1-seropositive individuals and healthy HIV-unexposed individuals were choosen as thecontrols. All subjects were voluntary counseling and test (VCT) individuals enrolled inShenzhen Center for Disease Control and Prevention from January 1, 2006 to December 31,2007. The cases and controls were matched by gender, ethnic, and age (within 5 years). Allof them were interviewed using the same questionnaire, whose blood samples were drawnin terms of the same conditions and standards. Polymerase chain reaction (PCR) andrestriction fragment length polymorphism (PCR/RFLP) analysis were used for genotypedetermination. Flow cytometry was used to analyze lymphocyte subsets and the expressionof activation markers.
     Results
     1. The CCR5-A32 mutation was not detected in HEPS, healthy HIV-unexposedindividuals and HIV-1-seropositive individuals (n=260). The allelic frequencies ofCCR2b-64I were 21.57%, 22.12%, 22.12% in the three groups respectively. There was notsignificant difference among the three groups on CCR2b-64I distribution. The allelicfrequencies of SDF1-3'A were 20.19%, 28.37% and 29.33% in the three groupsrespectively. There was significant difference in the allelic distribution of SDF1-3'Abetween HEPS and healthy HIV-unexposed individuals (P=0.023), also between HEPS andHIV-1-seropositive individuals (P=0.049).
     2. The differences in distributions of lymphocyte subsets were not significant betweenHEPS individuals and healthy HIV-unexposed individuals. CD4~+ counts, CD4/CD8 ratiowere higher in HEPS individuals and healthy HIV-unexposed individuals than those inHIV-1-seropositive individuals (P<0.001), but CD8~+ counts were significantly lower in thetwo groups than that in HIV-1-seropositive individuals (P<0.001); CD19~+ counts on B lymphocytes and CD16~+ CD56~+ counts on NK cells in HIV-1-seropositive individuals weresignificantly lower than those in I-IEPS individuals and healthy HIV-unexposed individuals.Correlation analysis showed that there were significantly positive correlations betweenCD19~+ counts on B lymphocytes, CD16~+ CD56~+ counts on NK cells and CD4~+ counts,CD8~+ counts in HIV-1-seropositive individuals and healthy HIV-unexposed individuals tosome extent. There were significantly positive correlations between CD19~+ counts on Blymphocytes and CD4~+ counts, CD8~+ counts, but significant correlations did not existbetween CD16~+ CD56~+ counts on NK cells and CD4~+ counts, CD8~+ counts in HEPSindividuals.
     3. Percentages of CD38~+/CD4~+, HLA-DR~+ CD38~+/CD4~+ were significantly lower inHEPS and healthy HIV-unexposed individuals than those in HIV-1-seropositive individuals(P<0.001). Meanwhile, the percentage of HLA-DR~+ CD38~+/CD4~+ in HEPS individuals waslower than that in healthy HIV-unexposed individuals (P<0.05). The percentage ofHLA-DR~+/CD4~+ in HEPS individuals was significantly lower than that inHIV-1-seropositive individuals and healthy HIV-unexposed individuals (P<0.001).
     Conclusions
     1. The mutant genotypes on CCR5-A32 and CCR2b-64I were not correlated withHIV-1 infection through sexual transmission in Han Chinese. SDF1-3'A was associatedwith high risk of HIV-1 infection by sexual transmission in Han Chinese.
     2. There are no differences in distributions of lymphocyte subsets between HEPSindividuals and healthy HIV-unexposed individuals; CD4~+ counts on T lymphocytes,CD19~+ counts on B lymphocytes and CD16~+ CD56~+ counts on NK cells significantlydecrease for HIV-1-seropositive individuals.
     3. The expression of activation antigen marker HLA-DR on CD4~+ T cells was at a lowlevel, which probably was correlated with HIV-1 non-susceptibility in HEPS individuals bysexual transmission.
引文
[1] 联合国报告称:全球艾滋病流行趋势首次呈现缓和.[2008-11-24].http://health.people.com.cn/GB/26466/122279/139434/139445/8400807.html.
    [2] 我国艾滋病预防控制工作进展与政策措施.[2007-11-30].http://www.chain.net.cn/zyzx/mtpxzl/Media_Training/mtbdzyzx/15362.htm.
    [3] 我国已累计报告22万余例艾滋病病毒感染者和病人.[2007-11-29].http://news.xinhuanet.com/newscenter/2007-11/29/content_7168811.htm.
    [4] 截至9月30日我国累计报告艾滋病病例26万例.[2008-11-30].http://news.sohu.com/20081130/n260933377.shtml.
    [5] 艾滋病流行现状与危害.[2007-11-30].http://www.chain.net.cn/zyzx/mtpxzl/Media_Training/mtbdzyzx/15363.htm.
    [6] Ostrowski MA, Justement S J, Catanzaro A, Hallahan CA, Ehler LA, Mizell SB, et al. Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals. J Immunol 1998; 161 (6): 3195-3201.
    [7] Giovannetti A, Ensoli F, Mazzetta F, De Cristofaro M, Pierdominici M, Muratori DS, et al. CCR5 and CXCR4 chemokine receptor expression and β-chemokine production during early T cell repopulation induced by highly active antiretroviral therapy. Clin Exp Immunol 1999; 118 (1): 87-94.
    [8] De Clercq E., Schols D. Inhibition of HIV infection by CXCR4 and CCR5 chemokine receptor antagonists. Antivir Chem Chemother, 2001, 12 (Suppl 1): 19-31.
    [9] Rodriguez Frade, J. M., del Real G., et al. Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. Embo J, 2004, 23 (1): 66-76.
    [10] 张莉,郭葆玉.CXCR4结构功能与HIV-1感染的分子生物学.国外医学:分子生物学分册,2001,23(6):81-83.
    [11] 刘海周,周华英,郑煜煌,等.趋化因子受体与HIV感染.国外医学:流行病学.传染病学分册,2004,31(2):76-79.
    [12] 靳昌忠,吴南屏.HIV-1感染中第二受体与艾滋病进程的关系.国外医学:流行病学.传染病学分册,2005,32(5):274-276.
    [13] Michael N L. Host genetic influences on HIV-1 pathogenesis. Curr Opin Immunol, 1999, 11 (4): 466-474.
    [14] Samson M, Libert F, Doranz B, et al. Resistance to HIV-1 infection of Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature, 1996, 382 (6593): 722-725.
    [15] Smith MW, Dean M, Carrington m, et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science, 1997, 277(5328): 959-965.
    [16] Michael N L. Host genetic influences on HIV-1 pathogenesis. Curr Opin Immunol, 1999, 11 (4): 466-474.
    [17] Jianming Tang, Brent Shelton, Nina J. Makhatadze, et al. Distribution of Chemokine Receptor CCR2 and CCR5 Genotypes and Their Relative Contribution to Human Immunodeficiency Virus Type 1(HIV-1) Seroconversion, Early HIV-1 RNA Concentration in Plasm, and Later Disease Progression. Journal of Virology, 2002, 76 (2): 662-672.
    [18] 王福生,金磊,刘明旭,等.中国普通人群中HIV-1感染相关辅助受体和配体基因多态性的分析.科学通报,2001,46(7):569-573.
    [19] 王晓辉,冯铁建,王福生等.CCR5△32、CCR5m303、CCR264I、SDFl3'A基因多态性对中国HIV-1感染者预后的影响.中华实验与临床病毒学.2005,19(3):256-259.
    [20] Tran, H. K.; Chartier, L.; Troung, L. X.; et al. Systemic immune activation in HIV-1-exposed uninfected Vietnamese intravascular drug users. AIDS Res Hum Retroviruses, 2006, 22 (3): 255-261.
    [21] Janet M. Mcnicholl, Nattawan Promadej. Insights into the role of host genetic and T-cell factors in resistance to HIV transmission from studies of highly HIV-Exposed thais. Immunologic Research 2004; 29(1): 161-174.
    [22] 苏艳丽,尚红,刘静,等.中国HIV暴露未感者CD4+T淋巴细胞的体外抗HIV 活性.中国医学科学院学报,2006,28(5):613-617.
    [23] 焦洋,谢静,韩扬,等.HIV-1高暴露持续血清阴性者对Nef,Gag肽段库的特异性CTL应答的研究.中华微生物学和免疫学杂志,2006,26(10):890-893.
    [24] 刁莹莹,尚红,张子宁,等.中国HIV-1暴露未感染者及感染者趋化因子受体CX3CR1的表达研究.中华微生物学和免疫学杂志,2007,27(5):413-417.
    [25] Rowland-Jones, S. L.; Pinheiro, S.; Kaul, R.; et al. How important is the 'quality' of the cytotoxic T lymphocyte (CTL) response in protection against HIV infection? 2001, Immunol Lett, 79 (1-2): 15-20.
    [26] Yang C., Li M., Limpakamjanarat K., et al. Polymorphisms in the CCR5 coding and noncoding regions among HIV type 1-exposed, persistently seronegative female sex-workers from Thailand. AIDS Res Hum Retroviruses, 2003, 19 (8): 661-665.
    [27] Kulkami P. S., Butera, S. T., Duerr A. C., et al. Resistance to HIV-1 infection: essons learned from studies of highly exposed persistently seronegative (HEPS) individuals. AIDS Rev, 2003, 5 (2): 87-103.
    [28] McNicholl J. M., Promadej N. Insights into the role of host genetic and T-cell factors in resistance to HIV transmission from studies of highly HIV-exposed Thais, Immunol Res, 2004, 29 (1-3): 161-174.
    [29] Soderlund J., Hirbod, T., Smed-Sorensen A. et al. Plasma and mucosal fluid from HIV type 1-infected patients but not from HIV type 1-exposed uninfected subjects prevent HIV type 1-exposed DC from infecting other target cells, AIDS Res Hum Retroviruses, 2007, 23 (1): 101-106.
    [30] Liu H. W., Hong K. X., Ma J., et al. Identification of HIV-1 specific T lymphocyte responses in highly exposed persistently seronegative Chinese. Chin Med J (Engl), 2006, 119 (19): 1616-1621.
    [31] Alimonti J. B., Koesters S. A., Kimani J., et al. CD4+ T cell responses in HIV-exposed seronegative women are qualitatively distinct from those in HIV-infected women. J Infect Dis, 2005, 191 (1): 20-24.
    [32] Suy A., Castro, P., Nomdedeu M., et al. Immunological profile of heterosexual highly HIV-exposed uninfected individuals: predominant role of CD4 and CD8 T-cell activation. J Infect Dis, 2007, 196 (8) : 1191-1201.
    [33] Truong L. X., Luong T. T., Scott-Algara D., et al. CD4 cell and CD8 cell-mediated resistance to HIV-1 infection in exposed uninfected intravascular drug users in Vietnam. Aids, 2003, 17 (10): 1425-1434.
    [34] Lopalco L. Humoral immunity in HIV-1 exposure: cause or effect of HIV resistance? Curr HIV Res, 2004 2 (2): 127-39.
    [35] A Saksena N. K., Ge Y. C, Wang B. et al. n HIV-1 infected long-term non-progressor (LTNP): molecular analysis of HIV-1 strains in the vpr and nef genes. Ann Acad Med Singapore, 1996,25 (6) : 848-854.
    [36] Antoni S., Walz N., Landersz M., et al. Genetic and biological characterization of recombinant HIV type 1 with Env derived from long-term nonprogressor (LTNP) viruses. AIDS Res Hum Retroviruses, 2007, 23 (11): 1377-1386.
    [1] Smith M, Dean M, Carrington M, et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV- 1 infection and disease progression. Science, 1997, 277(5328): 959-965.
    [2] Martinson JJ, Chapman NH, Rees, et al. Global distribution of the CCR5 gene 32 - basepair deletion. Nature Genetics, 1997, 16(1): 100-103.
    [3] Mummidi S, Ahuja SS, Gonzalez E, et al. Genealogy of the CCR5 locus and chemokine system gene vatiants associated with altered rates of HIV-1 disease progression. Nat Med, 1998, 4(7): 786-793.
    [4] Hendel H, Henon N, Lebuanec H, et al. Distinctive effects of CCR5, CCR2, and SDF1 genetic polymorphisms in AIDS progression. J Acquir Immune Defic Syndr Hum Retrovirol, 1998, 19(4): 381-386.
    [5] Katzenstein TL, Eugen-Olen J, Hofmann B, et al. HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. Copenhagen AIDS Cohort Study Group. J Acquir Immune Defic Syndr Hum Retrovirol, 1997, 16(1): 10-14.
    [6] Kostrikis LG, Huang Y, Moore JP, et al. A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat Med, 1998, 4(3):350-353.
    [7] Meyer L, Magierowska M, Hubert JB, et al. Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The SEROCO Study Group. AIDS, 1997, 11(11): F 73-F78.
    [8] Michael NL, Louie LG, Rohrbaugh AL, et al. The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat Med, 1997, 3(10): 1160-1162.
    [9] Morawetz RA, Rizzardi GP, Glauser D, et al. Genetic polymorphism of CCR5 gene and HIV disease: the heterozygous (CCR5/delta ccr5) genotype is neither essential nor sufficient for protection against disease progression. Swiss HIV Cohort. Eur J Immunol, 1997, 27(12): 3223-3227.
    [10] Winkler C A, Hendel H, CarringtonM, et al. Dominant effects of CCR2-CCR5 haplotypes in HIV-1 disease progression. J Acquir Immune Defic Syndr, 2004, 37(4): 1534-1538.
    [11] Stewart GJ, Ashton LJ, Biti RA, et al. Increased frequency of CCR-5 delta 32 heterozygotes among long-term non-progressors with HIV-1 infection. The Australian Long-Term Non-Progressor Study Group. AIDS, 1997, 11(15): 1833-1838.
    [12] Suresh P, Wanchu A, Sachdeva R K, et al. Gene polymorphisms in CCR5, CCR2, CX3CR1, SDF-1 and RANTES in exposed but uninfected partners of HIV-1 infected individuals in North India. J Clin Immunol, 2006, 26(5): 476-484.
    [13] Eugen-Olsen J, Iversen AK, Garred P, et al. Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 Tcell decline in a cohort of HIV-seropositive individuals. AIDS, 1997, 11(3): 305-310.
    [14] Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1 alpha, MlP-lbeta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996, 272(5270): 1955-1958.
    [15] Choe H, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 1996, 85(7): 1135-1148.
    [16] Deng HK, Unutmaz D, KewalRamani VN, Littman DR. Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature, 1997, 388(6639): 296-300.
    [17] Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996,85(7): 1149-1158.
    [18] Roy A M, Schweighardt B, Eckstein L A, et al. Enhanced replication of R5 HIV-1 over X4 HIV-1 in CD4(+)CCR5(+)CXCR4(+) T cells. J Acquir Immune Defic Syndr, 2005, 40(3): 267-275.
    [19] Samson M, Libert F, Doranz B, et al. Resistance to HIV 1 infection of Caucasian individuals bearing mutant alleles of the CCR5. chemokine receptor gene. Nature, 1996, 382(6593): 722-725.
    [20] Baggionlini M. Chemokines and leukocyte traffic. Nature, 1998, 392(6676): 565-568.
    [21] 邱为龙,熊思东.CCR5的结构与功能:近2年的研究进展.国外医学分子生物学分册,1999,21(1):3135.
    [22] Ioannidis JP, Rosenderg PS, Goedet JJ, Effects of CCR5dalta32, CCR264I, and SDF13' A alleles on HIVI disease progression: an international metaanalysis of individualpatient data. Ann Intern Med, 2001, 135(9): 782-795.
    [23] Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection andprogression to AIDS by a deletion allele of the CKR5 structural gene. Science, 1996, 273(5283): 1856-1862.
    [24] Paxton W A, Kang S, Liu R, et al. HIV-1 infectability of CD4+ lymphocytes with relation to beta-chemokines and the CCR5 coreceptor. Immunol Lett, 1999, 66(1-3): 71-75.
    [25] Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996, 86(3): 367-377.
    [26] Ioannidis JP, O'Brien TR, Rosenberg PS, et al. Genetic effects on HIV disease progression. Nature Med, 1998, 4(5): 536.
    [27] Sheppard HW, Celnm C, Michael NI, et al. HIV1 infection in individuals with the CCR5delta32 / delta32 genotype: acquisition of syncytiuminducing virus at seroconversion. J Acquir immune Defic Syndr, 2002, 29(3): 307-313.
    [28] [28] Deng HK, Liu R, Ellmeier R, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381(6584): 661-666.
    [29] [29] Wang FS, Hong WG, Cao Y, et al. Population survey of CCR5 delta32 CCR5 m3O3, CCR2b 64I, and SDF1 3'A allele frequencies in indigenous Chinese healthy individuals, and in HIV-1 infected and HIV-1-uninfected individuals in HIV-1 risk groups. J AIDS, 2003, 32(2): 124-130.
    [30] Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382(6594): 829-833.
    [31] Rousset D, Soares JL, Reynes JM, et al. High frequency of the 3'A mutation of the SDF-1 gene in Cambodia. AIDS, 1999, 13(3): 420-421.
    [32] Wolday, D., Tegbaru, B., Kassu, A., et al. Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients. J Acquir Immune Defic Syndr, 2005, 39(3): 265-271.
    [33] Winkler C, Modi W, Smith MW, et al. Genetic resitrication of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science, 1998, 279(5349): 389-391.
    [34] Su B, Chakraborty R, Jin L, et al. Distribution of two HIV-1-resistant polymorphisms (SDF1-3'A and CCR2-64I) in East Asian and world populations and its implication in AIDS epidemiology. Am J Human Genet, 1999, 65(4): 1047-1053.
    [35] Magdalena M, Loannis T, Patrice D, et al. Combined genotypes of CCR5, CCR2, SDF1, and HLA genes can predict the Long-Term Nonprogressor status in human immunodeficiency virus21 infected individuals. Blood, 1999, 93(3): 936-941.
    [36] Brambilla A, Villa C, Rissardi G, et al. Shorter survival of SDF1-3'A/3'A homozygotes linked to CD4+ T cell decrease in advanced human immunodeficiency virus type 1 infection. J Infect Dis, 2000, 182(1): 311-315.
    [37] Van Rij RP, Broersen S, Goudsmit J, et al. The role of a stromal cell-derived factor-1 chemokine gene variant in the clinical course of HIV-1 infection. AIDS, 1998, 12(9): 85-90.
    [38] Pornthep Tiensiwakul. Stromal Cell-Derived Factor (SDF) 1-3'A Polymorphism May Play a Role in Resistance to HIV-1 Infection in Seronegative High-Risk Thais. Intervirology, 2004, 47(2): 87-92.
    [39] 王福生,金磊,刘明旭,等.中国普通人群中HIV-1感染辅助受体和配体基因多态性的分析.科学通报,2001,46(7):569-573.
    [40] Jeremy J. Martinson, Lily Hong, et al. Global distribution of the CCR2-64I/CCR5-59653T HIV-1 disease-protective haplotype. AIDS, 2000, 14(5): 483-489.
    [41] Hoffman TL, MacGregor RR, Burger H, et al. CCR5 genotypes in sexually active couples discordant for human immunodeficiency virus type 1 infection status. J Infect Dis, 1997, 176(4): 1093-1096.
    [42] Goh WC, Markee J, Akridge RE, et al. Protection against human immunodeficiency virus type 1 infection in persons with repeated exposure: evidence for T cell immunity in the absence of inherited CCR5 coreceptor defects. J Infect Dis, 1999; 179(3): 548-57.
    [43] Huanliang Liu, Yon Hwangbo, Sarah Holte, et al. Analysis of Genetic Polymorphisms in CCR5, CCR2, Stromal Cell-Derived Factor-1, RANTES, and Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin in Seronegative Individuals Repeatedly Exposed to HIV-1. JID, 2004, 190(6): 1055-1058.
    [44] Amalio Telenti, John P. A. Ioannidis. Susceptibility to HIV Infection-Disentangling Host Genetics and Host Behavior. JID, 2006, 193(1): 4-6.
    [45] Michael NL, Louie LG, Rohrbaugh AL, et al. The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat Med, 1997, 3(10): 1160-1162.
    [46] Lockett SF, Alonso A, Wyld R, et al. Effect of chemokine receptor mutations on heterosexual human immunodeficiency virus transmission. J Infect Dis, 1999, 180(3): 614-621.
    [47] 王福生,金磊,雷周云,等.HIV-1感染相关基因多态性在中国汉族人群的分布.中华流行病学杂志,2000,21(4):256-260.
    [48] 王晓辉,冯铁建,王福生,等.中国HIV-1感染人群和普通人群四种基因多态性分布的差异分析.中国艾滋病性病,2004,10(3):166-168.
    [49] 王福生,金磊,雷周云,等.中国汉族人群HIV-1感染相关基因型和基因多态性.中华医学杂志,2001;114(11):1162-1166.
    [50] 王晓辉,冯铁建,陈琳,等.中国HIV-1感染者相关基因SDF1、CCR2b、CCR5多态性分析.中国公共卫生,2002,18(9):1073-1075.
    [1] 艾滋病传播途径及易感染人群.[2008-11-27].http://health.people.com.cn/GB/26466/122279/139434/8422853.html.
    [2] Padian NS, S Shiboski and N. P. Jewell. Female-to-male transmission of human immunodeficiency virus. J Am Med Assoc, 1991, 266 (12): 1664-1667.
    [3] Claudia Barassi, Adriano Lazzarin, Lucia Lopalco. CCR5-specific mucosal IgA in saliva and genital fluids of HIV-exposed seronegative subjects. Blood, 2004, 104(7): 2205-2206.
    [4] Suresh P, Wanchu A, Sachdeva R K, et al. Gene polymorphisms in CCR5, CCR2, CX3CR1, SDF-1 and RANTES in exposed but uninfected partners of HIV-1 infected individuals in North India. J Clin Immunol, 2006, 26(5): 476-484.
    [5] Nattawan Promadej, Caroline Costello, Mary M. Wernett. et al. Broad Human Immunodeficiency Virus (HIV)-Specific T Cell Responses to Conserved HIV Proteins in HIV-Seronegative Women Highly Exposed to a Single HIV-Infected Partner. The Journal of Infectious Diseases, 2003, 187 (7): 1053-63.
    [6] Nicholson JK, Hearn TL, Gross GD, et al. 1997 revised guidelines for performing CD4 + T cell determinations in persons infected with human immunodeficiency virus (HIV). MMWR Recomm Rep, 1997, 46 (RR-2): 1-29.
    [7] Conti L, Fantuzzi L, Del Corno M, et al. Immunomodulatory effects of the HIV-1 gp120 protein on antigen presenting cells: implications for AIDS pathogenesis. Immunobiology, 2004, 209 (1-2): 99-115.
    [8] Sieg SF, Mitchem JB, Bazlar DA, et al. Close link between CD4+ and CD8+T cell proliferation defects in patients with human immunodeficiency virus disease and relationship to extended period of CD4+ lymphopenia. J Infect Dis, 2002, 185(10): 1401-1416.
    [9] Paul ME, Shcarcr WT, Kozinctz CA, et al. Comparison of CD8+T cell subsets in HIV infected rapid progressor children versus non-rapid progressor children. J Allergy Clin Immunol, 2001, 108(2): 258-264.
    [10] 龚非力.医学免疫学[M].北京:科学出版社,2000,6:163.
    [11] Hu P F, Hultin LE, Hultin P, et al. Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol, J Acquir Immune Defic Syndr Hum Retrovirol, 1995, 10 (3) : 331-340.
    [12] Gonz(?)lez I, Gil L, Molina R. et al. Immunological characteristic of children vertically infected with HIV: a case-control study. Rev Invest Clin, 2005, 57(4): 498-504.
    [13] Powles T, Imami N, Nelson M, et al. Effects of combination chemotherapy and highly active antiretroviral therapy on immune parameters in HIV-1 associated lymphoma. AIDS, 2002, 16(4): 531-536.
    [14] Benacerraf B. Role of MHC gene products in immune regulation. Science, 1981, 212(4500): 1229-1238.
    [15] LiuZ, Cumberland W G, Hultin L E, et al. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J Acquir Immune Defic Syndr Hum Retrovirol, 1997, 16 (2) : 83-97.
    [16] Mehta K,Shahid U,Malavasi F.Human CD38,a cell-surface protein with multiple functions.The FASEB Journal, 1996, 10(10): 1408-1416.
    [17] hweta Kaushik, Madhu Vajpayee, V. Sreeniva, et al. Correlation of T-lymphocyte subpopulations with immunological markers in HIV-1-infected Indian patients. Clinical Immunology, 2006, 119(3), 330~338.
    [18] Kestens L, Vanham G, Vereecken C, et al. Selective increase of activation antigens HLA-DR and CD38 on CD4+ CD45RO+ T lymphocytes during HIV-1 infection. Clin Exp Immunol, 1994, 95 (3) :436-441.
    [19] Gascon R L, Narvaez A B, Zhang R, et al. Increased HLA-DR expression on peripheral blood monocytes in subsets of subjects with primary HIV infection is associated with elevated CD4 T-cell apoptosis and CD4 T-cell depletion. J Acquir Immune Defic Syndr, 2002, 30 (2) : 146-153.
    [20] Mahalingam M, Peakman ET, Davies A, et al. T cell activation and disease severity in HIV infection. Clin Exp Immunol, 1993, 93(7): 337-343.
    [21] Ostrowski MA, Justement SJ, Catanzaro A, et al. Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals. J Immunol, 1998, 161(6): 3195-3201.
    [22] Levacher M, Hlstaert F, Tallet S, et al. The significance of activation markers on CD8 lymphocyles in human immunodeficiency syndrome., staging and prognostic value. Clin Exp Immunol, 1992, 90(3): 376-382.
    [23] Peakman M, Mahalingam M, Pozniak A, et al. Markers of immune cell activation and disease progression. Cell activation in HIV disease. Adv Exp Med Biol, 1995, 374: 17-26.
    [24] L. Kestens, G. Vanham, C. Vereecken, et al. Selective increase of activation antigens HLA-DR and CD38 on CD4~+CD45RO~+T lymphocytes during HIV-1-infection. Clin Exp Immuonl, 1994, 95(3): 436-441.
    [25] 张子宁,尚红,姜拥军,等.高效抗逆转录病毒治疗对中国HIV/AIDS患者淋巴细胞活化及第二受体表达的影响.中华医学杂志,2006,119(23):1966-1971.
    [26] A. Kassu, A. Tsegaye, D. Wolday, et al. Role of incidental and/or cured intestinal parasitic infections on profile of CD4~+ and CD8~+T cell subsets and activation status in HIV-1 infected and uninfected adult Ethiopians. Clin Exp Immunol, 2003, 132(1): 113-119.
    [27] McBreen S, Imlanch S, Shirafuji T, et al. Infection of the CD45RA + (nave) Subset of Peripheral CD8 + Lymphocytes by Human Immunodeficiency Virus Type 1 in Vivo. Virol, 2001, 75(9): 4091-4102.
    [28] Loran TC, Peter EV. Georgienne EB. Novel Immunoregulatory Functions of Phenotypically Distinct Subpopulations of CD4 + Cell in the Human Neonate. J Immun, 1990, 145(1): 102-108.
    [29] Chun, T. W., K. Chadwick, J. Margolick, et al. Differential susceptibility of naive and memory CD4 T cells to the cytopathic effects of infection with human immunodeficiency virus type 1 strain LAI. J. Virol, 1997, 71(6): 4436-4444.
    [30] Farnet, C. M., and F. D. Bushman. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell, 1997, 88(4): 483-492.
    [31] Helbert M R, Walter J, L'Age J, et al. HIV infection of CD45RA+ and CD45RO+ CD4+ T cells. Clin Exp Immunol, 1997, 107 (2): 300-305.
    [32] Benito J M, Zabay J M, Gil J, et al. Quantitative alterations of the functionally distinct subsets of CD4 and CD8 T lymphocytes in asymptomatic HIV infection: changes in the expression of CD45RO, CD45RA, CD11b, CD38, HLA-DR, and CD25 antigens. J Acquir Immune Defic Syndr Hum Retrovirol, 1997, 14 (2): 128-135.
    [33] Zack, J. A., A. M. Haislip, P. Krogstad, et al. Incompletely reverse transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J. Virol, 1992, 66(3): 1717-1725.
    [34] 任莉莉,李富荣,戴勇,等.41例HIV携带者及艾滋病患者外周血中Nave/Memory T细胞亚群的变化.中国现代医学杂志,2003,13(2):27-28.
    [35] Clement LT, Yamashita N, Martin AM. The functionally distinct subpopulations of human CD4+ helper/inducer T lymphocytes defined by anti-CD45R antibodies derive sequentially from a differentiation pathway that is regulated by activation-dependent post-thymic differentiation. J Immunol, 1988, 141(5): 1464-70.
    [36] Arizcorreta A, Marquez M, Fernandez-Gutierrez C, et al. T cell receptor excision circles (TRECs), CD4+, CD8+, and their CD45RO+, and CD45RA+, subpopulations in hepatitis C virus (HCV)-HIV-co-infected patients during treatment with interferon alpha plus ribavirin: analysis in a population on effective antiretroviral therapy. Clin Exp Immunol, 2006, 146 (2): 270-277.
    [37] Sleasman JW, Aleixo LF, Morton A, et al. CD4~+ memory T cells are the predominant population of HIV-1-infected lymphocytes in neonates and children. AIDS, 1996, 10(13): 1477-84.
    [38] Julia Blanco, Jordi Barretina, Arantxa Gutierrez, et al. Preferential attachment of HIV particles to activate and CD45RO~+CD4~+ T cells, AIDS research and human retroviruses, 2002, 18 (1): 27-38.
    [39] L Pinto, M J Covas, R M Victorino. Loss of CD45RA and gain of CD45RO after in vitro activation of lymphocytes from HIV-infected patients. Immunology, 1991, 73(2): 147-50.
    [40] M. R. Helbert, J. Walter, J. L' age, et al. HIV infection of CD45RA+ and CD45RO+ CD4+ T cells, Clin Exp Immunol, 1997, 107(2): 300-305.
    [1] 郑锡文.加强我国艾滋病性病综合监测能力.中国预防医学杂志,2001,2(1):324.
    [2] Oelrichs R B, S M Crowe. The molecular epidemiology of HIV-1 in South and East Asia. Curr HIV Res, 2003, 1 (2): 239-248.
    [3] 李晖,曾常红,陈伟师,等.采用异源双链泳动法进行HIV-1亚型分析的研究.中国性病艾滋病防治,2000,6(1):19-21.
    [4] Gottlieb, G. S., P. S. Sow, et al. Molecular epidemiology of dual HIV-1/HIV-2 seropositive adults from Senegal, West Africa. AIDS Res Hum Retroviruses, 2003, 19(7): 575-84.
    [5] Ndembi N, A Abraha, et al. Molecular characterization of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in Yaounde, Cameroon: evidence of major drug resistance mutations in newly diagnosed patients infected with subtypes other than subtype B. J Clin Microbiol, 2008, 46(1): 177-84.
    [6] Toro C, A Amor, et al. Diagnosis of HIV-1 non-B subtypes and HIV-2. Enferm Infecc Microbiol Clin, 2008, 26 (Suppl 13): 66-70.
    [7] 姚均.HIV分型的分子流行病学和临床意义.传染病信息,2002,15(2):65.
    [8] Lal RB, Chakrabarti S, Yang C. Impact of genetic diversity of HIV-1 on diagnosis, antiretroviral therapy& vaccine development. Indian J Med Res, 2005, 121(4): 287-314.
    [9] Saad M D, A Al-Jaufy, et al. HIV type 1 strains common in Europe, Africa, and Asia cocirculate in Yemen. AIDS Res Hum Retroviruses, 2005, 21(7): 644-8.
    [10] Flores I, D Pieniazek, et al. HIV-1 subtype F in single and dual infections in Puerto Rico: A potential sentinel site for monitoring novel genetic HIV variants in North America. Emerg Infect Dis, 1999, 5(3): 481-3.
    [11] Papuashvili M N, A S Novokhatsky, et al. Characteristics of HIV-1 env V3 loop sequences for subtype A1 variant spread in Eastern Europe. Infect Genet Evol, 2005, 5(1): 45-53.
    [12] Dwyer, D E, Y C Ge, et al. Subtype B isolates of human immunodeficiency virus type 1 detected in Australia." Ann Acad Med Singapore, 1996, 25(2): 188-91.
    [13] Oelrichs, R B, C. Workman, et al. A novel subtype A/G/J recombinant full-length HIV type 1 genome from Burkina Faso. AIDS Res Hum Retroviruses, 1998, 14(16): 1495-500.
    [14] Ryan, C. E., J. H. Elliott, et al. The molecular epidemiology of HIV type 1 among Vietnamese Australian injecting drug users in Melbourne, Australia. AIDS Res Hum Retroviruses, 2004, 20(12): 1364-7.
    [15] Tong, C. Y., J. Mullen, et al. Genotyping of B and non-B subtypes of human immunodeficiency virus type 1. J Clin Microbiol, 2005, 43(9): 4623-7.
    [16] Castro, E., G. Echeverria, et al. Molecular epidemiology of HIV-1 in Venezuela: high prevalence of HIV-1 subtype B and identification of a B/F recombinant infection. J Acquir Immune Defic Syndr, 2003, 32(3): 338-44.
    [17] Costello, C., K. E. Nelson, et al. HIV-1 subtype E progression among northern Thai couples: traditional and non-traditional predictors of survival. Int J Epidemiol, 2005, 34(3): 577-84.
    [18] Tripathy, S. P., S. S. Kulkarni, et al. Subtype B and subtype C HIV type 1 recombinants in the northeastern state of Manipur, India. AIDS Res Hum Retroviruses, 2005, 21(2): 152-7.
    [19] Srisuphanunt, M., W. Sukeepaisarnchareon, et al. The epidemiology of HIV-1 subtypes in infected patients from northeastern Thailand. Southeast Asian J Trop Med Public Health, 2004, 35(3): 641-8.
    [20] Jameel, S., M. Zafrullah, et al. A genetic analysis of HIV-1 from Punjab, India reveals the presence of multiple variants. AIDS, 1995, 9(7): 685-90.
    [21] Janssens W, Buve A, Nkengasong IN. The puzzle of HIV-1 Subtypes in Africa. AIDS, 1997, 11(6): 705-712.
    [22] 邵一鸣,苏玲,邢辉,等.全国艾滋病毒分子流行病学研究.医学研究通讯,2000,29(11):58.
    [23] 邢辉,潘品良,苏玲,等.1996-1998年中国流行的E亚型艾滋病病毒1型毒 株的分子流行病学研究.中国性病艾滋病防治,2002,8(4):200-203.
    [24] 全国艾滋病毒分子流行病学调查及数据库的建立项目组.全国艾滋病毒分子流行病学调查及数据库的建立项目总结.[2004-05-30].http://shgy.jhgl.org/shownews.asp?newsid=893.
    [25] 孔朝霞,李恩翘.重组HIV毒株正在全球蔓延.中国艾滋病性病,2003,9(2):72.
    [26] 邢辉,梁浩,万卓越,等.中国CRF01_AE亚型人类免疫缺陷病毒毒株的分子流行病学研究.中华预防医学杂志,2005,38(5):300-304.
    [27] 凌华,汪宁.HIV-1基因分型及其在追踪病毒传播研究中的应用.中国艾滋病性病,2006,12(2):185-187.
    [28] Shao Y. AIDS in South and Southeast Asia. HIV/AIDS: Perspective on China. AIDS Patient Care and STD, 2001, 15 (8): 431-432.
    [29] Su L, Graf M, Zhang Y, et al. Characterization of a virtually full -length human immuno -deficiency virus type 1 genome of a prevalent intersubtype (C/ B') recombinant strain in China. J Virol, 2000, 74 (23): 11367-11376.
    [30] 李关汉,陈志伟,陈铮,等.中国部分地区HIV-1流行株基因型分布与母婴传播.中华流行病学杂志,2004,25(12):1013-1018.
    [31] 冯铁建 赵广录 陈琳,等.深圳市HIV-1毒株的流行状况.中国医学科学院学报,2006,28(5):637-641.
    [32] 万卓越,邢辉,李杰,等.广东省人免疫缺陷病毒1亚型基因序列特征分析.中华预防医学杂志,2006,40(5):344-347.
    [33] 颜瑾,王玉,李杰,等.艾滋病病毒1型流行株分子流行病学调查.中国公共卫生,2005,21(1):90-91.
    [34] 颜瑾 王玉 李杰,等.广东省珠江三角洲地区吸毒者中流行的HIV-1 ENV基因序列分析.中华实验和临床病毒学杂志,2006,20(3):223-225.
    [35] 陈杰,刘伟,Nancy L,等.广西HIV-1首次流行的分子流行病学分析.中华流行病学杂志,1999,20(2):74-77.
    [36] 邵一鸣,张家鹏.1995年云南瑞丽HIV1毒株的基因变异和分析.病毒学报,1995, 12(1):9-17.
    [37] 刘刚,王敦志,秦光明,等.四川省HIV/AIDS流行现状及趋势分析[J].中国艾滋病性病,2003,9(2):79-80.
    [38] 李勇,高玉红,李峥,等.云南省2006年HIV-1流行毒株的基因测定.国际检验医学杂志,2008,29(9):112-114.
    [39] 孙显光,雷世光,邢辉,等.贵州省HIV-1毒株亚型分布研究.贵州医药,2007,31(7):85-89.
    [40] 凌华,邢辉,韩梅,等.重庆市HIV-1流行毒株的基因序列测定和亚型分析.中国艾滋病性病,2005,11(5):345-347.
    [41] 黄海龙,郑健,颜苹苹,等.人类免疫缺陷病毒1型AE重组亚型毒株全长gpl 20基因序列分析艾滋病基础研究.中华医学杂志,2006,86(44):3104-3104.
    [42] 陈柯,严延生,翁育伟,等.福建省HIV-1病毒基因亚型分布的研究.中国公共卫生,2001,17(1):31-32.
    [43] 刘建芳,严延生,林勋.福建省HIV-1流行毒株基因分型与流行特征分析.中国人兽共患病学报,2006,22(7):601.
    [44] 潘启超,康来仪,薛以乐,等.上海市人类免疫缺陷病毒阳性人群HIV-1分布特征分析.上海预防医学杂志,2004,16(8):361-364.
    [45] 周磊明,潘启超,郑晓虹,等.上海市新诊断114例人类免疫缺陷病毒Ⅰ型感染者的分子生物学研究.中华传染病杂志,2006,24(5):328-332.
    [46] 羊海涛,邢辉,贾成梅,等.江苏省艾滋病病毒感染的分子流行病学研究.中华流行病学杂志,2003,24(11):976-979.
    [47] 潘晓红,姚亚萍,夏时畅,等.浙江省2003-2005年HIV-1感染者分子流行病学研究.中国艾滋病性病,2007,13(4):308-310.
    [48] 易志强,邢辉,胡国良,等.江西省部分吸毒人群HIV-1分子流行病学调查.中华实验和临床病毒学杂志,2007,21(1):14-16.
    [49] 傅继华,李盛长,张静,等.山东省HIV-1感染者分子流行病学研究.中华流行病学杂志,2005,26(2):124-127.
    [50] 陈曦,邢辉,贺健梅,等.湖南省HIV-1分子流行病学研究.实用预防医学,2005,12(3):483-485.
    [51] 刘萍萍,张伟,汤恒,等.湖北省采供血HIV-1感染者分子流行病学分析.中国公共卫生,2007,23(9):1047-1049.
    [52] 陈慧萍,褚小刚,詹发先,等.湖北省HIV-1 B’亚型核心蛋白基因序列分析.中国公共卫生,2008,24(12):1419-1420.
    [53] 崔为国,邢辉,王哲,等.河南省HIV流行毒株env膜蛋白基因C2-V3区序列特征和亚型研究.中国艾滋病性病,2004,10(6):403-406.
    [54] 王哲,薛晓玲,赵飞,等.河南省部分地区HIV流行毒株的基因序列测定及亚型分析.河南中医学院学报,2006,21(4):1-3.
    [55] 叶景荣,邢辉,刘海林,等.北京市2006年HIV-1流行毒株的gag和env基因序列测定及亚型分析.中华流行病学杂志,2007,28(6):586-588.
    [56] 韩晓旭,姜拥军,尚红,等.辽宁省流行的人类免疫缺陷病毒1基因亚型调查.中华流行病学杂志,2001,22(6):432-434.
    [57] 关琪,王素芬,冯晓光,等.沈阳市人类免疫缺陷病毒的基因序列分析.中国病毒学,2005,20(4):370-373.
    [58] 黎志东,徐志凯,张亮,等.陕西省HIV-1分子流行病学研究.中国皮肤性病学杂志,2003,17(1):12-15.
    [59] 邢爱华,邢辉,李翔,等.陕西省HIV-I流行毒株亚型分析.中国公共卫生,2007,23(9).1044-1046.
    [60] Milich L, Margolin B H, Swanstrom R, et al. Patterns of amino acid variability in NSI-like and SI-like V3 sequences and a linked change in the CD4-binding domain of the HIV-1 Env protein. Virology, 1997, 239 (1): 108-118.
    [61] Malkevitch N, McDermott D H, Yi Y, et al. Coreceptor choice and T cell epletion by R5, X4, and R5X4 HIV-1 variants in CCR5-deficient (CCR5delta32) and normal human lymphoid tissue. Virology, 2001, 281 (2): 239-247.
    [62] Lamers S. L, Salemi M, McGrath M. S, et al. Prediction of R5, X4, and R5X4 HIV-1 coreceptor usage with evolved neural networks. IEEE/ACM Trans Comput Biol Bioinform, 2008, 5 (2) : 291-300.
    [63] David L, Robertson PM, Sharp FE, et al. Recombination in HIV-1. Nature, 1995, 374(6518): 124-126.
    [64] Martinson J, Chapman N, Rees DC, et al. Global distribution of the CCR5 gene32-basepair deletion. Nature Geneties, 1997, 16(1): 100-102.
    [65] Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infection diseases. Blood, 2000, 95 (10): 3032-3034.
    [66] Samson M, Libert F, Doranz B, et al. Resistance to HIV-1 infection of Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature, 1996, 382(6593): 722-725.
    [67] Meyer L, Magierowska M, Hubert JB, Rouzioux C, Deveau C, Sanson F, et al. Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The Seroco Study Group. AIDS, 1997, 11(17): 73-78.
    [68] Mummidi S, Ahuja SS, Gonzalez E, Anderson SA, Santiago EN, Stephan KT, et al. Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med 1998, 4(7): 786-93.
    [69] Smith MW, Dean M, Carrington M, et al. Contrasting genetic Influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Seience, 1997, 277(5328): 959-965.
    [70] Michael NL, Louie LG, Rohrbaugh AL, Schultz KA, Dayhoff DE, Wang CE, et al. The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat Med, 1997, 3 (10) : 1160-1162.
    [71] Hendel H, Henon N, Lebuanec H, Lachgar A, Poncelet H, Caillat-Zucman S, et al. Distinctive effects of CCR5, CCR2, and SDF1 genetic polymorphisms in AIDS progression. J Acquir Immune Defic Syndr Hum Retrovirol, 1998, 19(4): 381-386.
    [72] Kostrikis LG, Huang Y, Moore JP, Wolinsky SM, Zhang L, Guo Y, et al. A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat Med 1998, 4(3): 350-353.
    [73] Michael NL, Nelson JA, Chang G, et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol, 1998, 72(7): 6040-6047.
    [74] Salkowitz JR, Bruse SE, Meyerson H, et al. CCR5 Promoter polymorphysim determines macrophage CCR5 density and magnitude of HIV-1 propagation in vitro. Clin Immnunol, 2003, 108(3): 234-240.
    [75] Kawamura T, Gulden FO, Sugaya M, et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Natl Acad Sei USA, 2003, 100(14): 8401-8406.
    [76] 王福生,金磊,刘明旭,等.中国普通人群中感染HIV-1感染辅助受体和配体基因多态性的分析.科学通报,2001,46:569-573.
    [77] 刘明旭,王福生,洪卫国,等.中国人群中HIV-1辅助受体CCR5基因新突变位点及CCR5-894C缺失基因多态性分析.中华医学杂志,2002,82(21):1468-1472.
    [78] DaviB, Dikic I, Unutmaz D, et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med, 1997, 186 (10): 1793-1798.
    [79] Liu Q H, Williams D A, McManus C, et al. HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation. Proc Natl Acad Sci U S A, 2000, 97 (9): 4832-4837.
    [80] GrivelJ. C, Margolis, L. B. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med, 1999, 5 (3): 344-346.
    [81] Ito Y, Grivel J C, Chen S, et al. CXCR4-tropic HIV-1 suppresses replication of CCR5-tropic HIV-1 in human lymphoid tissue by selective induction of CC-chemokines. J Infect Dis, 2004, 189 (3): 506-514.
    [82] Joly M, Pinto J M. CXCR4 and CCR5 regulation and expression patterns on T- and monocyte-macrophage cell lineages: implications for susceptibility to infection by HIV-1. Math Biosci, 2005, 195 (1): 92-126.
    [83] Winkler C, Modi W, Smith MW, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science, 279(5349): 1998, 387-391.
    [84] Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTRP fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382(6594): 833-835.
    [85] Su B, Jin L, Hu F, et al. Distribution of two HIV-1-resistant polymorphisms (SDFl-3'A and CCR2-64I) in East Asian and world populations and its implication in AIDS epidemiology. Am J Hum Genet, 1999, 65 (4) : 1047-1053.
    [86] Su B, Sun G, Lu D, et al. Distribution of three HIV-1 resistance-conferring polymorphisms (SDFl-3'A, CCR2-64I and CCR5-delta32) in global populations. Eur J Hum Genet, 2000, 8 (12) : 975-979.
    [87] Apostolakis S, Baritaki S, Krambovitis E, et al. Distribution of HIV/AIDS protective SDF1, CCR5 and CCR2 gene variants within Cretan population. J Clin Virol, 2005, 34 (4) : 310-314.
    [88] Royo J L, Ruiz A, Borrego S, et al. Fluorescence resonance energy transfer analysis of CCR-V64I and SDFl-3'A polymorphisms: prevalence in southern Spain HIV type 1 cohort and noninfected population. AIDS Res Hum Retroviruses, 2001, 17(8): 663-666.
    [89] Reiche, E. M, Watanabe, M. A, Bonametti, A. M, et al. Stromal cell-derived factor 1 (SDF1) genetic polymorphism in a sample of healthy individuals, seronegative individuals exposed to human immunodeficiency virus type 1 (HIV-1) and patients infected with HIV-1 from the Brazilian population. Int J Immunogenet, 2006, 33(2): 127-133.
    [90] Verma R, Gupta R B, Singh K, et al. Distribution of CCR5delta32, CCR2-64I and SDFl-3'A and plasma levels of SDF-1 in HIV-1 seronegative North Indians. J Clin Virol, 2007, 38 (3) : 198-203.
    [91] Wang F S, Hong W G, Cao Y, et al. Population survey of CCR5 delta32, CCR5 m303, CCR2b 64I, and SDFl-3'A allele frequencies in indigenous Chinese healthy individuals, and in HIV-1-infected and HIV-1-uninfected individuals in HIV-1 risk groups. J Acquir Immune Defic Syndr, 2003, 32 (2) : 124-130.
    [92] Wang FS, Hong WG, Cao Y, et al. Population survey of CCR5 delta32 CCR5 m3O3, CCR2b 64I, and SDFl 3'A allele frequencies in indigenous Chinese healthy individuals, and in HIV-1 infected and HIV-1-uninfected individuals in HIV-1 risk groups. J AIDS, 2003, 32(2):124-130.
    [93] Petersen D C, Glashoff R H, Shrestha S, et al. Risk for HIV-1 infection associated with a common CXCL12 (SDFl) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr, 2005, 40 (5) : 521-526.
    [94] Lacey SF, McDanal B, Horuk R, et al. The CXC chemokine Stromal cell-derived factorl is not responsible for CD8+ T cell Suspension of syncytia-inducing strains of HIV-1. Proc Natl Acad Sci USA, 1997, 94(18): 9842-9847.
    [95] Deng HK, Liu R, Ellmeier R, et. al. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381(6584): 661-666.
    [96] Lee B, Doranz BJ, Rana S, et al. Influence of the CCR2-64I Polymorphism on human immunolodeiciency virus type 1 corecptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J Virol, 1998, 72(9): 7450-7458.
    [97] Burton C T, Gotch F M, Imami N. CCR2/64I mutation detection in a HIV-1-positive patient with slow CD4 T-cell decline and delay in disease progression. Int J STD AIDS, 2005, 16 (5): 392-394.
    [98] Mulherin S A, O'Brien T R, Ioannidis J P, et al. Effects of CCR5-Delta32 and CCR2-64Ⅰ alleles on HIV-1 disease progression: the protection varies with duration of infection. Aids, 2003, 17 (3): 377-387.
    [99] Adje C A, Bile C E, Kestens L, et al. Lack of effect of chemokine receptor CCR2b gene polymorphism (64Ⅰ) on HIV-1 plasma RNA viral load and immune activation among HIV-1 seropositive female workers in Abidjan, Cote d'Ivoire. J Med Virol, 2001, 64 (4): 398-401.
    [100] Choi B S, Choi J H, Kim S S, et al. CCR2b-64I allelic polymorphisms in advanced HIV-infected Koreans accelerate disease progression. AIDS Res Hum Retroviruses, 2007, 23 (6): 805-811.
    [101] Eugen-Olsen J, Iversen A K, Benfield T L, et al. Chemokine receptor CCR2b 64Ⅰ polymorphism and its relation to CD4 T-cell counts and disease progression in a Danish cohort of HIV-infected individuals. Copenhagen AIDS cohort. J Acquir Immune Defic Syndr Hum Retrovirol, 1998, 18 (2): 110-116.
    [102] Schinkel J, Langendam M W, Coutinho R A, et al. No evidence for an effect of the CCR5 delta32/+ and CCR2b 64I/+ mutations on human immunodeficiency virus (HIV)-l disease progression among HIV-1-infected injecting drug users. J Infect Dis, 1999, 179 (4): 825-831.
    [103] Brouwer K C, Yang C, Parekh, et al. Effect of CCR2 chemokine receptor polymorphism on HIV type l mother-to-child transmission and child survival in Western Kenya. AIDS Res Hum Retroviruses, 2005, 21 (5): 358-362.
    [104] Liu H, Hwangbo Y, Holte S, et al. Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-l.J Infect Dis, 2004, 190(6): 1055-1058.
    [105] Philpott S, Burger H, Tarwater P M, et al. CCR2 genotype and disease progression in a treated population of HIV type 1-infected women. Clin Infect Dis, 2004, 39(6): 861-865.