斜坡震裂岩体结构特征与震后崩塌识别体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川地震触发了数以万计的崩塌、滑坡等次生地质灾害,造成了严重危害,同时强大的地震力震松了山体,使得震后长时期斜坡类地质灾害频发。其中岩体震裂松动是引起震后次生地质灾害的主要原因,当前对于这种特殊的破坏形式研究较少,主要因为地震的不可预见性及复杂性,地震造成的破坏范围广,岩体震裂破坏多发生在山区,现场考察难度大,这些都导致对震裂岩体的研究不足。震后频发的余震、强降雨是震裂岩体失稳的诱因,引起的斜坡类地质灾害主要是崩塌,造成的危害不仅规模大、破坏性强,比如2009年“7.25”彻底关崩塌、2010年“10.21”十二道拐崩塌,而且威胁时间久远,如1976年松潘大地震造成的白沙流大型崩塌点,至今山体仍不断发生崩塌。基于以上方面,作者首先从斜坡震裂岩体结构特征研究出发,现场结构精测和工程物探手段相结合,对地震裂缝的类别、特征、规律和震裂岩体的宏观特征和变形特性进行了研究。通过震后长期对震区公路沿线崩塌灾害的跟踪调查,掌握其分布规律、类别和失稳模式,并且对震后崩塌进行识别研究。崩塌造成的危害主要是崩落滚石具有极强的冲击力造成的,在自主研制的冲击力测试系统的基础上,对冲击力的规律和计算方法进行研究,主要研究成果如下:
     (1)根据对块状结构、中厚层状结构反倾型、软硬互层结构顺倾型斜坡震裂破坏特征的调查,将斜坡震裂缝分为表面型、贯穿型、走向型、倾向型、闭合型、扩展型六种基本类型。震裂缝总体走向在N30o~60oE,主要分布在发震断层附近或者山脊位置、以及斜坡陡缓交界部位。震裂缝延伸性好、张开程度高,剖面形态上宽下窄,充填物较少或者无充填。
     (2)震裂岩体具有结构面显著张开、无充填或者少量充填和岩体架空等宏观特征,同时具有回弹强度低、大范围的低波速带和强渗透性等变形特性。坡表岩体的回弹强度在20~30MPa之间,波速值普遍小于3000m/s,集中在2000~3000m/s之间,完整性系数在0.15~0.5之间,完整性较差,渗透性基本上属于强透水、严重透水段。以波速值为主要划分依据,将震裂岩体分为严重震裂岩体、中等震裂岩体、轻度震裂岩体三个等级。
     (3)震后崩塌主要分布在Ⅹ和Ⅺ烈度区内,集中在坡度40o以上的斜坡,以斜坡中上部位失稳为主。崩塌失稳模式可以归结为倾倒式、滑移式、溃屈式、错落式和偏心滚(滑)落式这五大类,其中以滑移式和溃屈式为主,占了震后崩塌数量的近60%,其次依次为倾倒式、错落式和偏心滚(滑)落式失稳模式。滑移式崩塌以整体滑移为主;倾倒式崩塌以倾倒~拉裂模式为主。
     (4)采用相互作用层次分析法建立了震后崩塌识别体系。选取主控结构面倾角、地形坡度、结构面特性、凹腔发育特征、岩性及组合特征、岩体结构和震裂损伤程度这七个因子作为崩塌识别的基本指标,采用层次分析法半定量的研究了指标之间相互作用关系对崩塌识别的影响权重和指标重要性程度,提出了崩塌识别的“震后崩塌判别指数CDI”方法,建立了震后崩塌识别体系。结合震后长期对震区公路沿线斜坡的调查,以震后崩塌识别方法为基础,获得崩塌隐患点CDI指数。依托崩塌识别指数分级区间,CDI指数越高,发生崩塌的可能性越大。
     (5)独创性的设计了一套冲击力的测试装置,包括滚石运动支架、冲击拦挡装置和数据采集装置三个组成部分。结合冲击力测试系统,采用模拟试验对最大冲击力进行研究,最大冲击力随着滚石重量的减小或者冲击速度的降低,逐渐减小,2cm厚度缓冲层比直接冲击时减小了90%左右。同时最大冲击力随着入射角度的变缓而逐渐降低,但是当角度越缓时,冲击力值降低的幅度很小。
     (6)对冲击力计算方法进行研究,讨论各计算公式的异同、合理性和适用性。结合冲击力实测数据,基于冲量定理,并考虑斜碰撞时的条件,引入放大系数概念,建立了可用于不同质量、冲击速度、入射角度、不同缓冲层材料、厚度的最大冲击力计算方法(正碰时η=0)。对于缓倾角(θ<40°)的条件,本文建议冲击力取正碰条件下的0.7~0.9倍之间。
Tens of thousands of collapse, landslides and secondary geological disasterstriggered by Wenchuan Earthquake, caused serious harm, and powerful earthquakeforce shook-loose the mountains, it make slope geological disasters takes placeconstantly at long period after earthquake. And the shattered rockmass is the mainreason for cause the secondary geological disasters, the study on the special destroyform is less at present, mainly because of the unpredictable nature of the earthquakeand its complexity, damage range widely, rockmass shattered crack damage occurs inthe mountains, to inspect in site is very difficult, these lead to study on shatteredrockmass is shortage. Frequent the aftershock, heavy rainfall after earthquake is thecauses of shattered rockmass instability, not only large scale and destructive of thedisasters, for example,2009“7.25”CheDiGuan collapse、2010“10.21”12th Crytchcollapse, but also the threat time is long, for example the large-scale collapse ofBaiShaLiu triggered by SongPan earthquake in1976, yet still collapse to now. Basedon the above aspects, firstly the author study on the shattered rockmass structurecharacteristics of slope by combination of precise measurement andengineering geophysical means, make research to the categories、characteristics、lawsof seismic fractures and shattered rockmass feature from macroscopic properties anddeformation characteristics. Through long-term follow-up investigation of collapsealong the highway in earthquake region, master their distribution, categories andinstability modes, and make identification to the collapse after earthquake. The harmtriggered by collapse is mainly caused by the strong impact force of rolling rock,based on the independently developed impact force testing system, make research tothe laws and calculation methods of impact force, the principal results are as follows:
     (1) Through survey the shatter failure characteristics of blocky structure slope、middle thickness rock layer structure and antidip stratified slope、soft and hard rocklayered slope, the seismic fractures was divided into six types: surface type、transfixing type、strike type、tendency type、closure type、extension type. Seismicfracture was N30o~60oE trending and mainly distributed in seismogenic faults areaor ridge、and steep with slow border area. Seismic fracture was well extension、highopen degree、upper wide and lower narrow of profile morphology, fillings less or no.
     (2) Shattered rockmass has the characteristics such as open structural planes、fillings less or no、overhead rockmass and so on, then it has the deformationcharacteristics such as low rebound strength、large range of low wave velocity andstrong permeability. Rebound strength of slope surface is between20~30MPa, wavevelocity value common less than3000m/s, concentrated in between2000~3000m/s, integrity coefficient was between0.15and0.5, integrity is poorer, permeabilityis basically high、serious. The partitioning standards of shattered rockmass is based onwave velocity value, divided into three communities: severe shattered rockmass、medium shattered rockmass and slight shattered rockmass.
     (3) Collapse after earthquake is mainly distributed in the Ⅹ and Ⅺ intensityzone, focused on the slope above40o, the main instability part is in middle-upper.Collapse instability modes could be attributed to five categories: toppling、sliding、buckling、scattering、eccentric-runoff, among them with sliding type and buckling typeprimarily, account for nearly60%of the all, followed by toppling type, scattering typeand eccentric-runoff type instability mode. The sliding type is integrity slip mainly;The toppling type is falling-ripping mainly.
     (4) Identification system of collapse after earthquake bulit based on interaction ofAHP. Take control discontinuity、gradient of geomorphology、 discontinuitycharacteristics、state of recessed cavity、feature of lithology assemblages、rockmassstructure、degree of seismic damage these seven factors as the basic indicators ofcollapse identification, with AHP, the influence weight of collapse identification andindex importance degree were semi-quantitatively analyzed based on the interactionrelationship between index, put forward the "collapse after earthquake discriminantindex CDI" method of collapse identification, built the identification system ofcollapse after earthquake. Combined with the investigation of slopes along thehighway in quake zones by long-term, based on collapse after earthquakeidentification method, get CDI index of potential collapse-hazards. Relying oncollapse identification index classification interval, the higher the CDI index, the collapse happened has bigger possibility.
     (5) Original design a set of impact force testing device, including three parts: therolling rock stent、impact resistance device、data acquisition device. Combined withthe system, make research to maximum impact force by simulation test, the force withthe decrease of the rolling rock weight or the lower impact velocity, reduce gradually,the force of2cm buffer layer thickness was reduced by90%than direct. Then itreduced gradually as the incident angle slow, but when the smaller the angle, the littleof lower value of the impact force.
     (6) Make research to the calculation method of impact force, discuss thesimilarities and differences、rationality、applicability of each calculation formula.Combined with the measured data of impact force, based on impulse theorem, andconsidered the oblique collision conditions, introduced the concept of amplificationcoefficient, set up a maximum impact force calculation method can be used fordifferent impact velocity、different incident angles、 different materials and thicknessof buffer layer(normalimpact η=0). For slow dip (θ<40°), this paper suggests that impact force is0.7~0.9times of the force under the condition of normal impact.
引文
[1]梁庆国.强震极震区地震动特征与岩体动力破坏研究[J].岩石力学与工程学报,2005(9):174-175.
    [2]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [3]李夕兵.论岩体软弱结构面对应力波传播的影响[J].爆炸与冲击,1993(4):334-342.
    [4]韩文峰,宋畅,梁庆国.黄河黑山峡大柳树松动岩体工程地质研究[M].甘肃科学技术出版社,1993.
    [5]黄润秋.汶川地震地质灾害研究[M].北京:科学出版社,2009.
    [6]杨晓平,冯希杰,戈天勇.龙门山断裂带北段第四纪活动的地质地貌证据[J].地震地质,2008(3):644-656.
    [7]余团,何昌荣,龙学明.龙门山南段五龙断裂带构造岩特征[J].矿物岩石,1999(1):74-80.
    [8]李勇,黄润秋,周荣军,等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报.2009(1):3-17.
    [9]四川省交通运输厅公路规划勘察设计研究院.汶川地震公路震害-地震地质灾害.2010.12.
    [10]许强,裴向军,黄润秋.汶川地震大型滑坡研究[M].北京:科学出版社,2009.
    [11]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008(6):246-257.
    [12]彻底关大桥抢通现场.交通建设与管理[J].2009(8):86.
    [13]胡凯衡,葛永刚,崔鹏,等.对甘肃舟曲特大泥石流灾害的初步认识[J].山地学报,2010(5):628-634.
    [14]马东涛.舟曲“8.8”特大泥石流灾害治理之我见[J].山地学报,2010(5):635-640.
    [15]余斌,杨永红,苏永超,等.甘肃省舟曲8.7特大泥石流调查研究[J].工程地质学报,2010(4):437-444.
    [16]甘建军,黄润秋,李前银,等.都江堰-汶川公路汶川地震次生地质灾害主要特征和形成机理[J].地质力学学报,2010(2):146-158.
    [17]关晶晶,周健.试论危岩稳定性评价与防治[J].中国高新技术企业,2010(6):185-187.
    [18]刘胜军.公路边坡柔性防护系统在山区高速公路工程中的应用[J].安全科学技术,2010(6):10-12.
    [19]李小强,严树.滚石防护机理简介及防治对策[J].土工基础,2010(5):58-62.
    [20] Kaiser J. A study of acoustic phenomena in tensile test[D].Munich:TechnischeHochschule,1953.
    [21]傅宇方,唐春安.岩石声发射KAISER效应的数值模拟实验研究[J].力学与实践,2000(2):42-44.
    [22]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1993.
    [23]邵鹏.断续节理岩体中弹性波动力效应研究[M].徐州:中国矿业大学出版社,2005.
    [24] Myer L,Cook,N G W. Effects of single fractures on seismic wave propagation[C].Proceedings of ISRM Symposium on Rock Joints: A.A Balkema,1990:467-475.
    [25]左宇军,李夕兵,张义平.动静组合加载下的岩石破坏特性[M].北京:冶金工业出版社,2008.
    [26]宋博学,俞缙,林从谋.穿越位移不连续结构面的随机地震波模拟[J].武汉理工大学学报,2010(9):145-148.
    [27]黄润秋,余嘉顺.软弱夹层特性对地震波强度影响的模拟研究[J].工程地质学报,2003(3):312-317.
    [28] Lin J S, Whitman. Earthquake induced displacements of sliding blocks[J].Journal of Geotechnical Engineering,1986(1):45-59.
    [29]梁庆国,韩文峰等.岩体地震动力破坏问题研究[J].岩石力学与工程学报,2003(2):2783-2788.
    [30]中国岩石力学与工程学会岩石动力学专委会.第八届全国岩石动力学学术会议论文选集[C].武汉:测绘科学技术出版社,2003.
    [31]中国科学院武汉岩土力学研究所,防护工程组会议简报[R].武汉,1965.
    [32]中国岩石力学与工程学会岩石动力学专委会.第四届全国岩石动力学学术会议论文选集[C].武汉,测绘科学技术出版社,1994.
    [33]黄理兴,陈奕柏.我国岩石动力学研究状况与发展[J].岩石力学与工程学报,2003(11):1881-1886.
    [34]郭彦双.脆性材料中三维裂隙断裂试验、理论与数值模拟研究[D].山东大学,2007.
    [35]柴红保,曹平等.裂隙岩体损伤演化本构模型的实现及应用[J].岩土工程学报,2010(7):1047-1053.
    [36] Holzer,T l,Gabrysch.Effect if Water-level recoveries on fault Creep, Texas[J].Ground Water,1987(4):392-397.
    [37] Leonard,R J.An earth fissure in southern Arizona[J].Journal ofGeology,1929(8):765-774.
    [38] Williams F M,Aumento F.Temsional fissures and crustal extemsion rates in thenorthern part of the Main Ethiopian Rift[J].Journal of African Earth Sciences,2004(38):183-197.
    [39]尤惠川,徐锡伟,吴建平等.唐山地震深浅构造关系研究[J].地震地质,2002(4):571-581.
    [40]马宗晋.(中国大陆地震分区及其动力学讨论)国际大陆岩石圈结构演化与动力学讨论.第二届全国构造地质会议论文集[C],1990.
    [41]李树德,袁仁茂.大同地裂缝灾害形成机理[J].北京大学学报(自然科学版),2002(1):104-108.
    [42]王景明,郑文俊,陈国顺等.唐山大地震主破裂带及地震成因探讨[J].地震研究,1981(1):306-311.
    [43]王景明.渭河地堑断裂与地震活动的周期性[J].地震学报,1985(2):275-280.
    [44]蔡华昌,张景余,刘荣利等.张北6.2级地震地裂缝特征及其研究意义[J].华北地震科学,2001(19):47-53.
    [45] Tapponnier P,Peltzer G,Le Dain A Y,et. New insights from simple experimentswith plasticine[J]. Geology,1982(10):612-616.
    [46] Luo Z L.The relationship between India collision northward and the presenttectonic stress field in western China and adjacent areas and seismicactivity[J]. Northwestern Seismological Journal,1979(4):11-22.
    [47]卢海峰,张世民,马保起等.泣川Ms8.0地震断层映秀一南坝段的活动方式、形变特征及其形成机制[J].地球物理学报,2009(5):117-121.
    [48]玛文凯,黄润秋,许强.震裂斜坡机理及变形破坏模式研究[J].水文地质工程地质,2009(6):42-47.
    [49]郑象铣,鲍鹤龄,董奋.实用铁路工程地质学[M].北京:人民铁道出版社.1961.
    [50]胡厚田.崩塌与落石[M].北京:中国铁道出版社.1989.
    [51]哈秋舲,张永兴.岩石边坡工程-长江三峡西陵峡链子崖危岩体稳定性研究[M].北京:重庆大学出版社,1995.
    [52]罗永忠,徐志文,祝世强.达县城区立石子危岩形成机制分析及稳定性评价[J].地质害与环境保护.2004(2):32一37.
    [53]邹雪芹,何功桌.岩体可崩性灰色评价模型[J].鞍山钢铁学院学报,1992(4):15-18.
    [54]胡存亮.山区公路崩塌地质灾害评判模型研究[J].公路工程与运输,2007(7).
    [55]吉随旺,宋光润.“5.12”汶川大地震灾区公路边坡崩塌滑移破坏特征初步分析[J].西南公路,2008(4):178-182.
    [56]赵纪生,魏景芝,吴景发等.汉川8.0级地震滑坡、崩塌机制[J].震灾防御技术,2008(4):379-383.
    [57]宋光润,吉随旺,封崇德.汶川大地震工程震害调查分析与研究[M].北京:科学出版社.2009.
    [58]崔鹏,庄建琦.5.12汶川地震崩塌滑坡影响因子评价[J].地质科技情报,2009(2):16-22.
    [59]陈晓利,周本刚,冉洪流.汶川地震中擂鼓镇地区的滑坡崩塌规律及预测[J].吉林大学学报(地球科学版),2010(6):1371-1379.
    [60] Yoichi Okura, Hikaru Kitahara, Toshiaki Sammori. The effects of rockfall volumeon runout distance[J].Engineering Geology,2000(58):109一124.
    [61] D.Peila,C.Oggeri,C.Castiglia. Ground reinforced embankments for rockfallprotection:design and evaluation of full scale tests[J].Original Article,2007(22):255一264.
    [62] N.Sasiharan,B.Muhunthan,T.C. Badger,et. Numerical analysis of the performanceof wire mesh and cable net rockfall protection systems[J].Engineering Geology,2006(88):121-132.
    [63]唐红梅.危岩拦石墙计算方法研究[J].中国地质灾害与防治学报,2005(3):12-15.
    [64] Jean-Pierre Mougin,Pascal Perrotin. Rock fall impact on reinforced concreteslab:an experimental approach[J]. International Journal of Impact Engineering2005(31),169-183.
    [65] AzzoniA,Barbera G,Zaninetti A.Analysis and prediction of rockfalls using amathmatical model[J].International Journal of Rock Mechanics and MiningSeiences,1995(7):709-725.
    [66]荆宏远.落石冲击下管道动力学响应分析与模拟[D].武汉:中国地质大学(武汉),2007.
    [67]罗艾民,林大能,藩国斌.建筑物塌落体触地冲击力计算方法研究[Jl.西安科技学院院报,2002(3):268-271。
    [68] Ruta.A,Srydlo.Drop-weight test based identification of elastic half-spacemodel parameters[J]. Journal of Sound and Vibration,2005(282):412-427.
    [69] Thornton C.Coefficient of restitution for collinear collisions ofelastic-perfectly plastic spheres [J].Journal of Applied Menchanics,1997(64):383-386.
    [70] Thornton C, Ning Z.A theoretical model for the stick/bounce behavior ofadhesive,elastic-plastic spheres[J」.Powder Technology.1998(99):154一162.
    [71]杨其新,关宝树.落石冲击力计算方法的试验研究[J].铁道学报,1996(1):101-106.
    [72]郭见扬.强夯夯锤的冲击力问题(强夯加固机理探讨之一)[J].土工基础,1996(2):35-39.
    [73] B.Pichler,Ch.Hellmich,H.A.Mang.Impact of rocks onto gravel design andevaluation of experiments[J].International Journal of Impact Engineering,2005(31):560-578.
    [74] B.Pichler,Ch.Hellmich,H.A.Mang.Loading of a gravel-buried steel pipesubjected to rockfall[J]. Journal of Geotechnical and GeoenvironmentalEngineering,2006(11):1465-1473.
    [75] Markus Stoffela, Simone Perret. Reconstructing past rockfall activity withtree rings[J]. Dendrochronologia,2006(24):1-15.
    [76] N.Kishia,H.Konnob,K.Ikedab.Prototype impact tests on ultimate impactresistance of PC rock-sheds[J]. International Journal of Impact Engineering,2002(27):969-985.
    [77]王林峰,唐红梅,陈洪凯.落石冲击力变化规律的试验研究[J].第十一次全国岩石力学与工程学术大会论文文摘.2010.
    [78]沈均,何思明,吴永.滚石对垫层材料的冲击特性研究[J].安徽农业学报,2009(11):8286-8288.
    [79]何思明.滚石对防护结构的冲击压力计算[J].工程力学,2010(9):175-180.
    [80]季丰旭,孙友宏.崩塌岩石落地时的应力分析[J].西部探矿工程,2006(12).284-286.
    [81]张鹏,周德源.多层框架结构弹性和弹塑性动力响应比较分析[J].地震工程与工程振动,2007(5):40-47.
    [82]孙波,石少卿,汪敏.落石冲击被动防护系统能量衰减规律分析[J].中国地质灾害与防治学报,2010(12):34-38.
    [83]汪敏,石少卿,康建功.落石冲击作用下环形网耗能性能的理论及数值模拟研究[J].振动与冲击,2011(3):10-14.
    [84]梁庆国,韩文峰.强震区岩体地震动力破坏特征[J].西北地震学报,2009(1):15-20.
    [85]吴永,何思明,李新坡等.震后裂缝危岩体的失稳机理与诊断方法[J].四川大学学报(工程科学版),2010(5):185-190.
    [86]黄润秋,许模,陈剑平.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [87]祁生文,伍法权,严福章等.岩质边坡动力反应分析[M].北京:科学出版社,2007.
    [88]王存玉,王思敬.边坡模型振动试验研究[M].北京:科学出版社,1987.
    [89]谢广林.地裂缝[M].北京:地质出版社,1988.
    [90]冯文凯,许强,黄润秋.斜坡震裂变形力学机制初探[J].岩石力学与工程学报,2009(1):3124-3130.
    [91] Newmark N M.Effects of earthquakes on dams and embankments[J].Geotechnique,1965(2): l39-l60.
    [92]沈成康.断裂力学[M].上海:同济大学出版社,1996.
    [93]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [94] Sommer E.Formation of fracture lances in glass[J].Engineering FractureMechanics,1969(1):539-546.
    [95]李世愚,和泰名,尹祥础.岩石断裂力学导论[M].北京:中国科学技术大学出版社,2010.
    [96]张振南,葛修润.地震荷载作用下的节理岩体破裂模型[J].岩石力学与工程学报,2005(10):1645-1648.
    [97] Rosenberg RM,Analytical Dynamics of Discrete Systems[M].New York:PlenumPress,1957.
    [98]韩文峰.黄河黑山峡河段开发重大工程地质问题研究[M].北京:科学出版社,2004.
    [99]韩文峰,宋畅,梁庆国.极震区的地震动与潜在震源区内重大工程安全[J].工程地质学报,2004(4):346-353.
    [100]中华人民共和国国家标准.《建筑边坡工程技术规范》(GB_50330-2002).北京:中国建筑工业出版社.2002.
    [101]谌文武,孙冠平,宋畅,等.大柳树堤址松动岩体的渗透特性[J].岩石力学与工程学报,2003(2):2564-2567.
    [102]曹东盛,韩文峰,李树德.黄河黑山峡大柳树松动岩体渗透特性研究[J].水土保持研究,2003(3):29-33.
    [103] Neuman S P.Trends,prospeets and challenges in quantifying flow and transportthrough fractured rocks[J].Hydrogeologyjournal,2005(1):124-147.
    [104]李茂芳.水文地质压水试验[M].北京:水利电力出版社.1987.
    [105]王生俊.大柳树坝址松动岩体发育深度研究[J].土工基础,2006(5):49-51.
    [106]裴来政,葛永刚,周小军,等.震后次生山地灾害对山区道路的危害及防治体系[J].西南科技大学学报,2010(4):44-48.
    [107]刘惠军,陈倩,魏昌利,等.5.12”大地震前后汶川县地质灾害发育研究[J].地质灾害与环境保护,2009(2):112-115.
    [108] Ambraseys N,Srbulov M.Earthquake induced displacements of slopes[J].SoilDynamics and Earthquake Engineering,1995(1):59-71.
    [109] Marzorati S,Luzi L,De Amicis M.Rock falls induced by earthquakes:a statisticalapproach[J].Soil Dynamics and Earthquake Engineering,2002(7):565-577.
    [110] Brace W,Walsh J,Frangos W.Permeability of granite under high Pressure[J].J2GeoPhys.Res,1978(6):2225-2236.
    [111] Gripps J.Aninve Stigation of the permeability of York Shireehalk underdiffering porewater and coofining pressure conditions[J].EnergySourees,1982(4):321-334.
    [112] Itasca Consulting Group. UDEC(Universal Distinct Element Code)user‘s manual,Version3.0[R]. Itasca Consulting Group.Inc.1996.
    [113]肖克强.地震荷载作用下顺层岩体边坡变形特性及稳定性研究[D].武汉:中国科学院研究生院,2006.
    [114]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析[J].岩石力学与工程学报,2007(12):2385-2394.
    [115]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,2010.
    [116]刘红岩,王明.节理岩质边坡稳定性的离散元分析[J].金属矿山,2008(9):15-18.
    [117]向喜琼,黄润秋.地质灾害危险性评价系统的实现[J].地理学与国土研究,2002(3):76-78.
    [118]赵建军.公路边坡稳定性快速评价方法及应用研究[D].成都:成都理工大学,2007.
    [119]黄润秋,王贤能.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000(5):573-576.
    [120]丁继新,周圣华,陈梦熊,等.基于多因素相互作用关系矩阵的边坡稳定性定量评价[J].工程勘察,2006(7):5-8.
    [121]张晓晖,王辉,戴福初,等.基于关系矩阵和模糊集合的斜坡稳定性综合评价[J].岩石力学与工程学报,2000(3):346-351.
    [122] Mazzoccola D F, Hudson J A. A comprehensive method of rock masscharacterization for indicating natural slope instability [J]. QuarterlyJournal of Engineering Geology,1996(1):37-56.
    [123]许树柏.实用决策方法-层次分析法原理[M].天津:天津大学出版社.1988.
    [124]王莲芬,许树柏.层次分析法引论[M].背景:中国人民大学出版社.1990.
    [125]许强,李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报,2010(6):818-826.
    [126]冯文凯,黄润秋,许强,等.震裂斜坡形成机理及变形破坏模式研究[J].水文地质工程地质,2009(6):42-48.
    [127]许年春,石维力,石东虹.地震作用下边坡动力系数有限元分析[J].地下空间与工程学报,2008(6):1006-1010.
    [128]程强,吴事贵,苏玉杰.映秀—卧龙公路沿线汶川地震地质灾害研究[J].工程地质学报,2010(2):160-167.
    [129]马立广.地面三维激光扫描仪的分类与应用[J].地理空间信息,2005(3):60-62.
    [130]董秀军,黄润秋.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报,2006(2):3629-3635.
    [131]董秀军,黄润秋.三维激光扫描测量在汶川地震后都汶公路快速抢通中的应用[J].工程地质学报,2008(6):774-779.
    [132]黄润秋,刘卫华.滚石在平台上的运动特征研究[J].地球科学进展,2008(5):517-523.
    [133]叶四桥.隧道洞口段落石灾害研究与防治[D].成都:西南交通大学,2004.
    [134]陈洪凯,唐红梅,王林峰.危岩崩塌演化理论及应用[M].北京:科学出版社,2009.
    [135]刘九卿.压电石英称重传感器及其在动态公路车辆称重系统中的应用[C].称重科技暨第六届称重技术研讨会论文集,2007.
    [136] K L Johnson.Contact mechanics[M].Cambridge University Press,1985.
    [137]乔纳斯A朱卡斯.碰撞动力学[M].北京:北方工业出版社,1989.
    [138]刘宏,韩文喜,张倬元.砂砾石土料的压实特性[J].三峡大学学报(自然科学版),2002(4):297-299.
    [139]周志刚,张起森,郑健龙.土工加筋技术在公路铁路工程中应用研究新进展[J].长沙交通学院学报,2002(1):34-39.
    [140]阳友奎,周迎庆,姜瑞琪等.坡面地质灾害柔性防护的理论与实践[M].北京:科学出版社,2005.
    [141]裴向军,黄润秋等.强震触发崩塌滚石运动特征研究[J].工程地质学报,2011(4):498-504.
    [142]韩维.斜碰撞振动系统动力学研究[D].南京:南京航空航天大学,2003.
    [143] S.Kawahara,T.Muro.Effects of dry density and thickness of sandy soil on impactresponse due to rockfall[J].Journalof Terramechanics.2006(43):329-340.
    [144] Labiouse V.Experimenta1study of rock sheds impacted by rockblocks[J].Structural Engineering International,1996(1):171-175.
    [145]李润培,陈伟刚,顾永宁.船舶与海洋平台碰撞的动力响应分析[J].上海交通大学学报,1996(3):40-47.
    [146]罗琳.船桥碰撞理论及猎德大桥防撞装置的性能研究[D].长沙:长沙理工大学,2008.
    [147]梁文娟,金允龙,陈高增.船舶与桥墩碰撞力计算及桥墩防撞[C].第十四届全国桥梁学术会议论文集,2000.
    [148]北京理工大学.ANSYS/LS-DYNA算法基础和使用方法[M].北京:北京理工大学.1999.
    [149] LS一DYNA TheoryManual[R].Livermore Software Technology Corporation.2005.
    [150]梁艳晨,田志昌,李娟.碎石垫层地基对提高建筑物抗震能力的ANSYS/LS-DYNA显式积分程序模拟分析[J].内蒙古科技大学学报,2009(4):354-357.
    [151]张瑞坤,韩磊磊,王立阁,等.基于ANSYS/LS-DYNA的钢筋混凝土框架柱抗冲击性能有限元分析[J].河北理工大学学报(自然科学版),2010(1):81-84.
    [152]蒋建军,蒋劲松.321战备钢桥在彻底关大桥打通抢通工程中的应用[J].西南公路,2008(4):66-72.
    [153]吴洪朗,曹瑞,刘小波,等.都汶路彻底关321钢桥抢险施工技术[J].西南公路,2008(4):73-83.